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ABSTRACT
The routes used in the Internet’s interdomain routing
system are a rich information source that could be ex-
ploited to answer a wide range of questions. However,
analyzing routes is difficult, because the fundamental
object of study is a set of paths. In this paper we present
new analysis tools – metrics and methods – for analyz-
ing AS paths, and apply them to study interdomain
routing in the Internet over a recent 13-year period.
Our goal is to develop a quantitative understanding of
changes in Internet routing at the micro level (of indi-
vidual ASes) as well as at the macro level (of the set
of all ASes). To that end we equip an existing metric
(Routing State Distance) with a new set of tools for
identifying and characterizing unusually-routed ASes.
At the micro level, we use our tools to identify clusters
of ASes that have the most unusual routing at each
time (interestingly, such clusters often correspond to
sets of jointly-owned ASes). We also show that analysis
of individual ASes can expose business and engineering
strategies of the organizations owning the ASes. These
strategies are often related to content delivery or ser-
vice replication. At the macro level, we show that ASes
with the most unusual routing define discernible and in-
terpretable phases of the Internet’s evolution. Further-
more, we show that our tools can be used to provide a
quantitative measure of the ‘flattening’ of the Internet.
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1. INTRODUCTION
Many networks exist in order to provide paths be-

tween network nodes, such as highway, air travel and
data networks; a prime example is the Internet at the
Autonomous System (AS) level. In this case, the com-
plete network structure is not readily available; instead,
what is available is a path-based network, i.e., a set of
nodes and set of paths describing routes taken between
nodes.

Path-based networks capture more complex relation-
ships between nodes than do the pair relations in usual
networks. Hence, understanding the nature of paths
and how paths change over time is more challenging,
but is nonetheless potentially valuable in understand-
ing how networks are structured and used.

To treat the Internet as a path-based network, we
identify each AS with a node, and associate each pre-
fix with its announcing AS. Each AS is managed by
a single organization, which uses the AS for its busi-
ness purposes; these can include providing Internet ac-
cess or connectivity, content or cloud service, infrastruc-
ture services, or other services. Based on these business
goals, organizations make peering and routing decisions
that constrain the set of paths over which data flows in
the network. Hence, the set of ASes and AS paths can
be seen as a path-based network, in which the paths
are determined by algorithmic computations realized in
BGP (the Border Gateway Protocol) combined with AS
policies driven by business strategies. Because path con-
struction in the Internet is a complex process, driven by
commercial as well as engineering concerns, it is both
important and difficult to fully characterize.

In this paper we develop new tools – metrics and
methods – for analyzing path-based networks. Our
questions can be broadly grouped into micro and macro
levels. At the micro level, we are interested in identify-
ing and understanding unusually-routed ASes – reached
through a set of paths that can be considered unusual,
when compared to the remaining of the network. Fur-
thermore, we are interested in how business and en-
gineering decisions of individual ASes are reflected in
their decisions to adopt unusual routing structures.

We develop tools for answering these questions, and
using them we show that unusually-routed ASes are
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Figure 1: A path-based network over nodes V = {a, b, c, d, e, f}, broken out to separately show the paths
towards each square node. A path is a sequence of directed edges with same line style. Examples
of path sets are: P (f, d) = {fcabd}, P (b, b) = {b}, and P (d, c) = {dbac, dbc}. Those path sets entail
respectively the following next-hop multisets: N(f, d) = {c}, N(b, b) = {b}, and N(d, c) = {b, b}.

very likely to be economically important. Further, we
show that these unusually-routed ASes form clusters,
and that the clusters often consist of ASes owned by the
same organization. When an AS is unusually-routed, it
tends to be highly-connected. However, the unusual as-
pect of such an AS (or group of ASes) is not simply that
it is highly-connected (a network property); it is that
paths to the AS do not make typical use of the Internet’s
hierarchy (a path property). Our analysis of individual
ASes shows that there are a variety of reasons why an
AS may employ unusual routing, and allows us to track
how individual ASes adopt unusual routing strategies
over time, including infrastructure build-out for content
delivery and anycast.

Driven by the results at the micro level we ask ques-
tions related to the macro level as well. Here we
seek to understand the high-level evolution of the set
of all paths in the network over time. We approach
this two ways. First, we start from the observation
that unusually-routed ASes are often significant Inter-
net businesses. Hence, we identify the set of unusually-
routed nodes at each point in time, and use those sets
to identify phases of Internet evolution. We show that
a segmentation of unusually-routed AS sets yields five
phases over 13 years. Digging into the kinds of ASes
in each phase, we see that the most unusually routed
ASes have shifted over time: from those delivering net-
work operations services, to those involved in content
delivery, to those involved in cloud services and domain
registry.

The second question at the macro level is driven
by the observation that many (but not all) unusually-
routed nodes are contributing to the so-called ‘flatten-
ing’ of the Internet [20, 28, 17]. This is the trend of
major ASes to move away from hierarchical routing and
towards more mesh-like routing. To explore this, we de-
velop metrics to measure quantitatively the process of
Internet flattening over time. We show evidence sug-
gesting that Internet flattening has been taking place
fairly consistently over the 13-year period of our study,
predating the first reports in the literature. We back
up our measurements with theoretical and simulation
results, and we discuss their robustness due to missing
data (i.e., unknown AS-links).

Finally, in addition to the results presented in the
paper, in [3] we make available supplementary material,
including the proof of two propositions and more exten-
sive documentation of our results, which due to space
limitations are not in this manuscript. It also contains
instructions for obtaining code and data to reproduce
our results.

2. DEFINITIONS
In this section we present the basic definitions that

constitute the basis for the tools and methods devel-
oped in the next sections. To that end, we borrow RSD
(Routing State Distance) from [23], and we equip such
concept for cases where next-hops from a source to a
destination are not unique. Such modification enables
the study of a wider class of path-based networks, at
different granularities and over time. Therefore, a con-
tribution of the present work is to show how RSD can
be used as part of a larger tool set to take on a new
class of problems.

2.1 Path-based networks
The set of paths used in interdomain routing can

be abstracted as a path-based network. We define a
path-based network G as a pair (V, P ), where V is a
set of nodes and P is a function that, for a, b ∈ V ,
maps (a, b) to a set of paths P (a, b). Each element
p ∈ P (a, b) is a sequence of nodes from V , forming
a directed path starting at a and finishing at b. If
p = a → v1 → · · · → vp → b, we say that the next-
hop of a towards b is v1; and if p = a we say that a is
the next-hop to itself. Hence, the set P (a, b) entails a
multiset of next-hops N(a, b), representing the diversity
of local decisions made at a in order to reach b. Figure
1 presents an example of path-based network.

Structurally, a path-based network is more complex
than a network. A network is a two-way relationship
among nodes, and may be encoded in a set of pairs
(v1, v2), denoting that vertices v1 and v2 are connected
by an edge. In contrast, path-based network is a three-
way relationship among nodes; a set of paths may be
encoded in a set of triples (v1, v2, v3) stating that v3 is a
next-hop taken from v1 on the path to v2. For instance,



in Figure 1, b has a direct connection to reach node c,
but b cannot use this connection to reach f .

A path-based network is a particularly suitable tool
for modeling the interdomain routing system, because
the set of paths used is hard to describe concisely, and
because data is constrained to flow only over specific
paths. In this context, we consider that the set of nodes
is formed by ASes and IP prefixes (as destinations), and
the path sets are formed by the AS-paths leading to the
AS originating the prefixes. In this case the next-hop
representation takes into account the fact that the same
AS can choose different next-hops toward the same pre-
fix. At the AS granularity, we model ASes as nodes, and
the next-hops as the multiset union over the next-hops
toward each prefix originated at the AS. Thus, if a and
b are ASes, N(a, b) characterizes the diversity of local
decisions of a in order to reach b. In other words, it
naturally considers that ASes are not atomic structures,
and that by a variety of reasons, there can be different
paths from a source to a destination [32, 31].

A limitation of our modeling approach (driven by
characteristics of currently available datasets) is that
it labels prefixes associated with caches deployed at an
access network as originated by the access network, even
though the addresses may be related to services offered
by other companies. This limitation and its impact on
our results are subjects of future work.

2.2 RSD
Additional background to the methods we use in this

paper is a metric called routing state distance (RSD),
which is defined for a path-based network. RSD concep-
tually measures the dissimilarity of two nodes in terms
of how they are reached in a path-based network.

Definition 1. Given Z ⊆ V , the Routing State Dis-
tance between two network nodes x and y is defined as

RSD(x, y) =
1

|Z|
∑
z∈Z

d(N(z, x), N(z, y)), (1)

where d is a dissimilarity measure over multisets that
assumes values between 0 and 1.

RSD values range between 0 and 1, and if d satis-
fies the triangle inequality, so does RSD. For d we use
the Generalized Jaccard Distance (GJD) between the
vectors of frequencies of each next-hop in N(z, x) and
N(z, y) normalized by the number of prefixes originated
at x and y respectively. GJD has been studied and
used in many contexts and is a metric (see e.g., [12]).
For two real and non-negative n-dimensional vectors u
and w (given that u and w are not simultaneously null
vectors), GJD is defined as follows:

GJD(u,w) = 1−
∑n

i=1 min(ui, wi)∑n
i=1 max(ui, wi)

. (2)

Taking Figure 1 as example, for destinations a and b,
the sources d and f completely agree on their next-hops

choices toward both destinations; sources a, b and e
completely disagree; and source c partially agrees (with
d(N(c, a), N(c, b)) = 0.5). Therefore, RSD(a, b) ≈ 0.58.

Unfortunately, in practice it is not always the case
that we can have access to full visibility of the net-
work. Hence it is not possible to obtain Z = V in order
to compute RSD. In our work we choose Z such that
N(z, x) 6= ∅ for all z ∈ Z and x ∈ V ; we call Z the set
of sources. One way of describing RSD(x, y) is that it
approximates the probability that an arbitrary node in
Z uses different next-hops on the paths to x and y.

Finally, although in this work we use GJD as the
distance function d in Equation (1), it is possible to
use different distances for different applications. For
instance, one can incorporate weights related to other
sources of information (e.g., traffic volume and prefix
popularity), if it is available.

3. DATA PREPARATION
In this section we describe the data used in our

analysis and how we adapt it to measure RSD consis-
tently. We obtain Internet AS paths from two sources:
the RIPE Routing Information Service (RIS)1 and the
Route Views2 projects. We assess the potential impact
of missing data (specially AS peering links) in Section 8.

Data acquisition: From each project we obtain all
available RIBs (Routing Information Base) for the first
three days of each month from January 2003 to Decem-
ber 2015. Each entry in each RIB provides one AS-path
record of the form [t; AS1, . . . , ASs; p], for day t, AS-
path AS1, . . . , ASs, and IP prefix p (IPv4 only). The
choice of the three first days is arbitrary, and we expect
results to hold if one consistently uses any three con-
secutive days of the month. Considering much longer
periods of time can lead to complications when trying to
obtain a good approximation of the state of the system
(for a given time), thus introducing noise in the results.

Next-hop determination: Each AS-path record pro-
vides (s−1) next-hop records of the form [t, ASi, ASi+1,
p, ASs], i = 1, . . . , s−1. Such record means that at day
t, ASi uses ASi+1 as next-hop towards prefix p, which
is originated at ASs. All tuples with ASi = ASi+1 are
filtered out. This processing allows us to cover cases
where a prefix is originated at more than one AS.

Instability filtering: For each month, we remove
next-hop records [t, x, y, p, o] for which (x, y, p, o) ap-
pears in only one of the three snapshots of the month.
This lowers the influence of short-term routing changes
on our data. Each day t is converted to its correspond-
ing month, and resulting duplicate records are removed.
We refer to the portion of the resulting dataset for any
given day as a single snapshot. There are a total of 156
snapshots covering the 13 years of our study.

1www.ripe.net/data-tools/stats/ris/
2www.routeviews.org



Prefix assignment: Each prefix is assigned to its orig-
inating AS. Thus, all next-hop records are converted
from [t, x, y, p, o] to [t, x, y, o], (i.e., we remove the
destination prefix, but keep the destination AS that
originates it). Next, all next-hops having the same
time, source and destination are aggregated. This yields
records of the form [t, x, N(x, o), o], where N(x, o)
represents the multiset of next-hops from x towards o.
These records define the next-hop function N(·, ·) used
in Equation (1). Observe that next-hops are still con-
strained to whole ASes. It is possible to consider finer
granularities, as in [23], but as we argue in [16], that
approach introduces several complications for temporal
analyses.

Selection of sources and destinations: Consistent
computation of RSD requires that we know the value
of N(x, o) for all x and o over some domain. Accord-
ingly, we heuristically looked for large AS sets Z and
V , denoting sources and destinations respectively, such
that every x ∈ Z had at least one next-hop towards
all o ∈ V . As a result, each of the 156 snapshots yield
sets Z that range in size from 37 (Jan 2003) to 183
(Dec 2015) and sets V that range in size from 14051
(Jan 2003) to 51202 (Dec 2015). For each snapshot the
corresponding Z is used as in Equation (1).

Stable source selection: For the static analyses in
Section 4 the above data is sufficient. However, for the
dynamic analyses in Sections 5-7, variation in the mem-
bership of sets Z introduces noise into the results. To
reduce the effects of ASes that appear only infrequently
in source sets Z, we keep only sources appearing in at
least 78 (half) of the 156 snapshots. After this stabil-
ity filtering the size of Z ranges from 21 (Jan 2003) to
roughly 70 in the end of 2015.

4. UNUSUALLY-ROUTED ASes
We start our investigation by exploring the nature

of the most unusually-routed Autonomous Systems at
any given time. In this section, we develop methods
for identifying unusual nodes in a fixed snapshot of the
network, and illustrate the value of the methods.

The key idea behind our approach is as follows: we
fix the concept of an ‘unusually-routed AS’ as meaning
one for which the set of paths leading to the AS is very
different from the set of paths leading to any other AS.
A natural similarity measure over paths is defined in
terms of the set of next-hops comprising a path. Keep-
ing in mind the view of RSD as ‘the probability that
an arbitrary node in Z uses different next hops to reach
the two destinations’ we can formalize an ‘unusually-
routed AS’ as one that has high RSD to all other ASes.
As an example, one can observe that paths leading to
node e in Figure 1 are very different from paths lead-
ing to any other node; such fact is captured by RSD,
which is 1 (maximum value) between e and any other
node. Hence, we say the e is unusually-routed in that
path-based network.

Although such reasoning leads to an operational def-
inition of unusually-routed ASes, an important compli-
cation arises because an organization may operate mul-
tiple ASes. Hence there may be multiple ASes with
similarly-unusual patterns of reachability. This necessi-
tates a search for clusters of unusually-reached ASes.

4.1 Problem definition
To identify unusually-routed clusters, we seek to

find a group of k non-overlapping subsets of V , say
C1, . . . , Ck, meeting three requirements:

1. each Ci is a small set;

2. the elements of a Ci are close to each other, as mea-
sured by RSD; and

3. the elements of a Ci are all far from all the elements
not in Ci, as measured by RSD.

We formalize these requirements by considering the
complete weighted undirected graph H, whose nodes
are V and whose edges connect each pair of nodes (x, y)
with weight given by RSD(x, y). Using H, we define the
notions of join and disconnect of C ⊆ V as follows:

Definition 2. Given C ( V , the join of C, denoted
by J(C), is:

J(C) = min
x∈C,y/∈C

RSD(x, y).

Intuitively, J(C) is the smallest RSD threshold at which
another node joins the subset of nodes in C.

Definition 3. Given C ⊆ V , the disconnect of C,
denoted by D(C), is:

D(C) = max
C′(C

min
x∈C′

y∈C\C′
RSD(x, y).

Intuitively, D(C) is the largest RSD threshold that in-
ternally disconnects the subgraph defined by C in H.

Note that one should expect that for a cluster C of
interest J(C) > D(C); this means that each node in
C has a closer connection to another node in C than
to any node outside C. Using the above definitions
we formalize our search for unusual node clusters as
Problem 1.

Problem 1. Given G(V, P ) and integers δ and k,
find k disjoint sets C1, . . . , Ck that

maximize min
1≤i≤k

J(Ci)

subject to 0 < |Ci| ≤ δ, i = 1, . . . , k,

J(Ci) > D(Ci), i = 1, . . . , k.

4.2 Algorithm
A solution to Problem 1 yields k clusters C1, . . . , Ck

that together satisfy the three requirements. The con-
straint that |Ci| ≤ δ ensures that the clusters are small,
and the constraint that J(Ci) > D(Ci) means that el-
ements in a cluster are generally close to each other.



Algorithm 1: FindUnusual(G(V, P ), δ, k)

1 H ← weighted and undirected graph
(V, V × V, ω), with ω((x, y)) = RSD(x, y)

2 TH ← a Minimum Spanning Tree of H
3 L← edges of TH sorted in non-increasing order
4 foreach e in L do
5 TH ← TH minus edges with weight ω(e)
6 C ← connected components of TH
7 C ← ∅
8 for c ∈ C do
9 if |c| ≤ δ then

10 C ← C ∪ {c}
11 if |C| = k then
12 return C

13 return NULL

The third requirement is met by maximizing the objec-
tive function min1≤i≤k J(Ci). Observe that the Ci’s do
not necessarily form a partition of V , only the unusual
nodes are clustered.

Problem 1 can be solved by a polynomial time algo-
rithm with complexity O(|V |2 log |V |) using algorithm
with pseudocode shown in Algorithm 1. Note that the
running time computation assumes that all pairwise
RSD distances RSD(x, y) are provided as part of the
input.

In a high level, the algorithm first builds the com-
plete, weighted graph H. Then, it computes a minimum
spanning tree of H and removes edges from the tree in
non-increasing order, until it obtains k connected com-
ponents smaller than δ. When we solve Problem 1 for
a particular value of k we refer to the solution as the
top-k clusters.

Although Problem 1 is different from single-linkage
clustering, Algorithm 1 has similarity to the solution
strategy for the single-linkage clustering problem [26].
We have the following result about the output of Algo-
rithm 1.

Proposition 1. For given G(V, P ), k and δ, Algo-
rithm 1 finds the optimal solution of Problem 1.

Proof. [3]

4.3 Results
Figure 2 is a dendrogram of the unusual AS clus-

ters for the snapshot of December of 2014, obtained by
solving Problem 1 for k = 40 and δ = 50. (Varying δ
up to 200 did not change the results; large values of k
generate many unusual clusters). Groups of ASes that
were placed in the same cluster in the solution have
been given the same color in the figure (all singletons
are shown in blue). The figure illustrates a number of
points:

Unusual clusters are important. The figure shows
that unusual clusters often correspond to important In-

Microsoft 

VeriSign 

Google 

OVH 

Leaseweb 

Yandex 

Figure 2: December 2014 dataset. (upper)
Density of dendrogram split values across the
dataset; (bottom) Dendrogram of the top-40
clusters of unusual ASes. AS descriptions are
shortened from [2].

ternet businesses or organizations. Among other sig-
nificant organizations, Google, Verisign, Motorola, Mi-
crosoft, Facebook, and GoDaddy are all represented in
the top-40 clusters (note that there are over 47,000 ASes
in the dataset). The ASes in the top-40 are quite un-
usual in terms of how they are reached in the Internet:



the x axis shows that the minimum RSD between these
clusters and any other nodes is in the range 0.6 - 0.74.
Comparing to the density plot of split values across the
entire dataset, we see that these values are quite rare.

Clusters often reflect organizational boundaries.
Figure 2 also shows that clusters of ASes are often
owned by the same company; only two clusters con-
sists of ASes that are not completely co-owned. The
remaining clusters (Google, Verisign, OVH, Leaseweb,
Yandex and Microsoft) all consist of separate ASes that
are owned and operated by the same company. For ex-
ample, the cluster marked ‘Google’ includes ASes that
are nominally registered to Postini, TxVia, and Dou-
bleClick – each of which reflects a prior acquisition by
Google. In fact, identifying ASes owned by the same
organization is important in analyzing the Internet for
business and political reasons [9]. These results suggest
that clustering ASes using routing information may be
another strategy for inferring co-ownership. Intuitively,
when unusual routing strategies arise in groups, it is
unlikely to be a coincidence – more likely, the partici-
pating ASes are seeking to achieve common business or
engineering goals because, for instance, they are owned
by the same organization.

Why unusual clusters are unusual. Each AS clus-
ter in Figure 2 has a distance greater than 0.6 from any
other AS in the dataset. Under our intuitive interpre-
tation of RSD, this means that given an AS x in one of
these clusters, at least 60% of the time an arbitrary AS
z ∈ Z chooses a different next-hop as the next step on
the path towards x as compared to any other AS in the
Internet.

To understand how this can occur, one relatively sim-
ple case is when the next-hop from z towards x is x itself
– i.e., x is ‘its own next-hop.’ In fact, this can be a good
approximation for certain unusual ASes (but not all, as
we show later). For instance, in the group of Google
ASes, AS15169 (the main Google AS) represents more
than 50% of the next-hops towards any AS in the group.
In other words, a large fraction of the source ASes in
our study, when exchanging data with Google, do so
by directly connecting to Google. We return to anal-
ysis of Google in the next section; here we just note
that these results are consistent with a number of other
studies [36, 13, 10]. We observed path properties simi-
lar to Google’s, if not as extreme, for a number of other
unusual clusters.

Reviewing the set of organizations in Figure 2, a num-
ber of different business goals are evident. Furthermore,
we have performed cluster analysis using Algorithm 1
for each month of our 13 year study, and the results (re-
fer to [3] for the extra results, not presented here due to
space considerations) show that various organizations
have come to adopt unusual routing strategies at differ-
ent times in the past. This motivates developing tools
to analyze how an individual AS’s connection and rout-

ing strategy evolves over time, which we present in the
next section.

5. INDIVIDUAL ASes
When analyzing an individual node, we are concerned

with understanding its path set – the set of all paths
leading to the node. An AS’s path set is a useful re-
flection of its business and engineering strategies. We
analyze the strategies employed by individual ASes over
time by asking:

1. How does the ‘unusualness’ of a node vary over
time?

2. When are a node’s path sets stable, and when are
they in flux?

3. What are the key path characteristics that char-
acterize a node’s path set?

To answer these questions we make use of three tools,
and introduce time-indexing on quantities of interest.
First, in order to quantify how unusual a node x is when
compared to the network as a whole, we define average
RSD, denoted ∆t(x).

Definition 4. (Average RSD) Given a destina-
tion x and a time t, define

∆t(x) =
1

|Vt| − 1

∑
y∈Vt,x 6=y

RSDt(x, y)−

1

|Vt|(|Vt| − 1)

∑
y,z∈Vt,y 6=z

RSDt(z, y), (3)

which measures how far the average RSD between x
and the other nodes is from the global average RSD of
the network. Next, to identify periods of time when
path sets are stable or in flux, we use temporal RSD
(as defined by the authors of [16]) which we denote by
τt,t′(x).

Definition 5. (Temporal RSD) Given a destina-
tion x and two points in time t and t′, define

τt,t′(x) =
1

|Zt,t′ |
∑

z∈Zt,t′

d(Nt(z, x), Nt′(z, x))), (4)

where the distance function d is the same as used in
Equation (1) and Zt,t′ = Zt ∩ Zt′ .

Finally, in order to examine a node’s path characteris-
tics in detail, we define next-hop distribution, denoted
ηt(x, y).

Definition 6. (Next-hop Distribution) Given
network nodes x and y, and time t, we define ηt(x, y)
as the fraction of times that x appears as a next-hop
towards y at time t:

ηt(x, y) =

∑
z∈Zt

frequency of x in Nt(z, y)∑
z∈Zt

|Nt(z, y)|
. (5)
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Figure 3: Columns correspond to ASes operated by Google (AS15169), GoDaddy (AS26496), Ams-
IX (AS1200) and K-Root Server (AS25152). The top row shows Average RSD (∆t) time series; the
red triangles at the bottom indicate when the AS was in one of the top-40 groups of unusual ASes.
The middle row shows Temporal RSD (τt,t′) comparing all possible pairs t and t′ over the 13 years of
study. The bottom row shows next-hop distribution (ηt) of the top 10 next hops used to reach the
corresponding AS.

We use four ASes as case studies, operated by Google
(AS15169), GoDaddy (AS26496), Ams-IX-Amsterdam
(Ams-IX, AS1200) and the K-Root Server (AS25152).
We choose these four ASes to illustrate key features seen
across the entire dataset. (A more extensive analysis of
1000 ASes is presented in [3]). Together the organi-
zations operating these four ASes conduct a very wide
range of activities, but each AS is in the top-40 un-
usual set at certain times. Results for these ASes are
presented in Figure 3, and are discussed individually
below.

Google. Founded in 1998 as a search engine, Google
became a major content provider on acquisition of You-
Tube in October 2006. Figure 3A shows that this ac-
quisition coincided with the beginning of a dramatic
increase in its average RSD. This increase is under-
stood via Figure 3I, which shows that the fraction of
ASes whose next-hop on the path to Google is Google
itself began to increase starting in late 2006, and has
increased steadily to the present. In the most recent
dataset, over 80% of the sources we studied connect
directly to Google and use it as the next-hop towards
Google prefixes.

The analysis shows that during the post-2006 pe-
riod Google built out a worldwide network of locations
connecting directly with many ASes, bypassing tradi-

tional hierarchical Internet routing. Since content deliv-
ery (e.g., YouTube video) involves the transfer of much
higher volumes of traffic than does search engine service,
this build-out was presumably motivated by a desire to
avoid the costs of paying transit providers, and to avoid
network delay and congestion by being closer to cus-
tomers. From mid-2008 onward Google appears contin-
uously in the top-40 unusual ASes. Corroborating this
view, the Temporal RSD plot in Figure 3E shows two
distinct phases, before and after 2008, corresponding to
Google’s transformation into business that has a major
content delivery component.

Besides Google, other companies that are known
to be expanding their network infrastructure are also
present in Figure 2. These include ASes owned by
Microsoft and SoftLayer, agreeing with results in [13].
Amazon, which is also discussed in [13], is occasionally
identified as unusual in our results. Using our tools to
analyze AS16509 (the main Amazon AS), we observe
that the popularity of AS16509 as a next-hop to itself
is consistently increasing over time, but that at present
Amazon still heavily relies on large transit providers.

GoDaddy. GoDaddy is the world’s largest domain reg-
istrar, managing the assignment of many of the names
held in the DNS. GoDaddy started in 1997 and began



a period of rapid growth in early 2005, which included
adding content-hosting services for small businesses.

Figures 3B, F, and J illuminate GoDaddy’s expansion
strategy. On commencing growth in 2005, GoDaddy be-
gan expanding its set of connections, leading to a jump
in ∆t and a diversification of the next-hops used to reach
AS26496 (visible also in Figure 3F). However, in early
2013, GoDaddy abruptly shifted to an unusual connec-
tion pattern, connecting directly to many networks and
cutting out the intermediaries that had been dominant
in 2005-2013. This is visible in the sharp rise in ∆t in
early 2013, and the sudden dominance of AS26496 as
its own next-hop in Figure 3J. This shift suggests an
intensive effort by GoDaddy to build new network in-
frastructure in order to reach its customers over shorter
paths. The pre-2013 period is also useful to illustrate
how the output of our tools for ASes that do not behave
unusually. In such case, one can observe lower RSD and
higher dependency on transit providers, when compared
to the post-2013 period.

Ams-IX. Ams-IX operates Internet eXchange Points
(IXPs), locations established to facilitate connections
between ASes. Over 700 ASes currently make use of
the Amsterdam IXP as a location to connect to other
ASes. Figures 3C, G, and K show that, unlike the previ-
ous two examples, routing to the Ams-IX AS (AS1200)
has been unusual over almost the entire period of study.
Figure 3K shows that this is because, as with the previ-
ous two cases, AS1200 is the most common next-hop on
paths to itself. The difference in the temporal patterns
of ∆t compared to Google and GoDaddy arise because
direct-connection occurs not due to a large infrastruc-
ture build-out, but rather to the hundreds of ASes that
connect directly to Ams-IX at their IXP. These connec-
tions enable Ams-IX to provide coordination and sup-
port for the participating ASes.3

K-Root Server. As a final example we discuss
AS25152, which operates the K-Root Server. This
server is an important element of the Domain Name Sys-
tem (DNS), so ensuring the constant availability of the
services provided by K-Root is important for smooth
operation of the Internet and the Web.

To provide highly available service K-Root uses any-
cast, which consists of creating multiple hosts with the
same IP address and connecting those hosts to the In-
ternet in different locations. The normal action of the
routing system then serves to direct any request for ser-
vice sent to the K-Root IP address to a nearby K-Root
host; if a K-Root host fails, the routing system naturally
adapts to direct data to other K-Root hosts instead.

K-Root has been operated using anycast since near
the beginning of our study period, which explains why
it has consistently been an unusual AS. In contrast to
the three previous cases, the unusual routing towards
K-Root is not because its AS is its own most common

3More details at https://ams-ix.net/technical/
specifications-descriptions/as1200-peering.

next-hop (as can be seen in Figure 3L); K-Root is only
connected in less than 20 locations at present. However
the connection of the K-Root AS at multiple locations
means that it is not “near” any other single AS from the
perspective of a majority of other ASes.

This shows that anycast generates routing patterns
that meet our definition of unusual. Hence it suggests
that these methods might be useful for detecting any-
casted ASes in general, with the advantage of being
lightweight and requiring only passively collected infor-
mation (routing tables). As future work we intend to
evaluate such possibility and compare the results with
other works, e.g., [15] and [14]. For instance, initial in-
vestigation showed a considerable overlap between ASes
listed on Figure 2 and the results of [14].

Taken together, these case studies paint a varied pic-
ture of why and how an organization decides to make
use of an unusual routing strategy for its ASes. In some
cases, such as Google and GoDaddy, the goal is to build
out a worldwide infrastructure to provide high perfor-
mance, high reliability, or both. In other cases, the need
to provide coordination services for many other ASes (at
an IXP) leads to unique paths to the coordinating AS.
And yet another reason for adopting unusual routing
is when using anycast, which does not lead to the an-
nouncing AS using paths similar to any other particular
AS in the view of most other ASes.

6. EVOLUTION OF UNUSUAL ASes
Section 4 showed that unusually-routed ASes are of-

ten significant Internet organizations, and Section 5
showed that organizations make distinct decisions to
adopt unusual routing strategies at particular times.
This suggests that macro-level insights into the overall
business and engineering goals driving Internet routing
can be obtained by examining the sets of unusually-
routed ASes over time.

We characterize the evolution of unusually-routed
ASes as follows. We consider the set of unusual nodes
at a given time to be the union of the top-k clusters re-
turned as the solution to Problem 1. We collect all such
sets over time into an m×T binary matrix X, where m
is the total number of unusual nodes over all timesteps,
T = 156 is the number of timesteps, and xit = 1 if and
only if node i is unusual at time t.

Our initial results suggest that the unusually-routed
ASes in the Internet have formed a set of distinct phases
over time. This evidence is shown in Figure 4A. For each
snapshot we construct its set of unusual ASes, based on
the top-k clusters for k = 45, leading to the dataset
X (details on how k is selected are described later in
this Section). Figure 4A then plots for each pair of un-
usual sets A and B, the overlap distance (Od(A,B)),
representing the fraction of the smaller set that is not
contained in the larger set. It is possible to identify
a noisy diagonal block structure in the heat map, sug-
gesting that the sets of unusual ASes have gone through
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Figure 4: Phase-based analysis of unusual ASes for the past 13 years. Each month t is characterized
by its set of top-45 unusual AS clusters, denoted by Xt. (A) Od, overlap distance between sets of all
unusual ASes at different times. (B) Segmentation scores log(qr,t), showing the relative quality of t
as a segment boundary. Red arrows show actual segment boundaries determined by Problem 2. (C)
Mean Squared Error of the segmentation model, given the data for different r and k values. (D) Jd,
Jaccard distance between sets of unusual ASes after using segment representatives to filter noise.

periods of stability that have alternated with short pe-
riods of more rapid change.

This leads to the following goals, which drive the anal-
yses in this section: we seek to find a good segmentation
of the sets of unusual ASes over time, and we seek to
use that segmentation to understand evolution of rout-
ing strategies among important Internet organizations.

6.1 Problem definition
We say that X has a good r-segmentation if we can

partition the columns of X into r segments, in which
any two columns of the same segment of X show strong
similarity.

To formalize this problem, let S be a set of r + 1
segment boundaries 1 = s0 < s1 < · · · < sr = T + 1,
and P ∈ [0, 1]m×r, where pij represents the probability
that xit = 1 when sj−1 ≤ t < sj . If X has a good
r-segmentation, much of the information in X can be
captured by a modelM = (S,P). Hence we segment X
by finding a model M that has high likelihood. Under
the assumption of independence of the xit’s the task of
finding a goodM is formalized in the following problem
definition:

Problem 2. Given an integer r > 0 and an m × T
binary matrix X, find a model M = (S,P) that maxi-
mizes the likelihood function of M given by:

L(M|X) =

r∏
j=1

sj−1∏
t=sj−1

m∏
i=1

(pij)
xit(1− pij)1−xit . (6)

Hence we cast the problem of finding a good r-seg-
mentation to the problem of maximizing L(M|X), in
which the latent variables are the r−1 segment bound-
aries and the probability matrix P.

6.2 Algorithm
Our algorithm for solving Problem 2 is adapting the

standard dynamic-programming recursion [7] for seg-
menting the sequence of observations stored in X to the
likelihood function we describe in Equation (6). The al-

gorithm has running time O(T 2(r+m)), and since T is
small (156), execution takes only a few minutes.

An important step in identifying a good r-segmenta-
tion for X is the choice of r. To assess the quality of
a solution to Problem 2 for a given r, we ask whether
the computed segment boundaries are sharp. We com-
pute a score qr,t that indicates the relative quality of all
r-segmentations that contain t as a segment boundary.
More specifically,

qr,t =

∑
S∈Sr,t maxp L((S,P)|X)∑
S∈Sr maxp L((S,P)|X)

, (7)

where Sr is the set of all possible segmentation bound-
aries of 1, . . . , T in r segments, and Sr,t is the set of all
possible segmentation boundaries in which t is present
as a boundary. Intuitively, the presence of distinct
peaks in qr,t that correspond to the boundaries obtained
by solving Problem 2 suggests that the obtained seg-
ment boundaries are well-localized and distinct.

Although computing qr,t requires going over all pos-
sible segmentations of the data into r segments, we
adopt techniques from [27, 37] to compute the values
of the above scores in polynomial time using dynamic
programming. In fact, the running time of the algo-
rithm for this task is the same as the time required to
compute the optimal segmentation (O(T 2(r +m))).

6.3 Results
Computing qr,t for different values of r suggests that

r = 5 is the smallest r with sharp segment boundaries.
Figure 4B shows the qr,t for r = 4 and 5, showing as an
example that segment boundaries for r = 4 are not as
distinct as they are for r = 5. To choose k we exam-
ined the MSE (Mean Squared Error) of the model M
given the data X. As showed in Figure 4C, increasing
r always decreases the MSE, but across all curves there
is a clear pattern change after k = 45, with the MSE
being minimum (or close to) at that point.

For k = 45 and r = 5 the segment boundaries ob-
tained by solving Problem 2 are December 2005, May
2008, December 2010 and November 2013. Inspection
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Figure 5: Segment representatives reflecting
evolution of unusually-routed ASes.

of the resulting segments shows that the dominant un-
usual ASes differ across segments. To demonstrate this,
we remove all ASes that do not appear in more than
half of the snapshots of at least one segment. This has
the effect of filtering noise due to ASes that only infre-
quently appear as unusual. While m = 1192 distinct
ASes appear as unusual at some point over the 13 years
of the study period, only 104 ASes4 appeared in at least
half of the snapshots of a segment. We define the rep-
resentative of segment j, denoted by Rj , as the set of
ASes that appear in the unusual sets of more than half
of the snapshots in segment j.

Figure 4D shows Jaccard distance among the sets of
unusual ASes over time, after denoising by intersecting
the unusual ASes in each snapshot with the respective
segment representative Rj . The figure shows that rep-
resentative nodes are present consistently throughout
each segment, and that there is little overlap in the rep-
resentative nodes across segments.

To interpret the nature of the phases shown in Fig-
ure 4, we manually select some well-known ASes that
are characteristic of a segment’s representative set and
appear in that set for the first time. These are shown in
Figure 5, and a reflect a number of aspects of Internet
organization over the past 13 years.

First, spanning all segments are DNS root servers
that use anycast to ensure high availability and per-
formance. This demonstrates the crucial role that DNS
plays in the Internet and the importance of reliable DNS
service.

In the period before December 2005, dominant un-
usual nodes tend to be associated with network oper-
ations, as exemplified by DNS servers and network in-
formation centers. The period from December 2005 to
May 2008 exhibits a shift towards the building of infras-
tructure for delivery of commercial content. Microsoft
and Akamai are notable for their emergence as unusual
ASes in this period. The third segment marks a turn-
ing point in which Google and its associated businesses
– YouTube, Postini, and Doubleclick, among others –
launch a very significant buildout of infrastructure. As
shown in the previous section, the goal of this buildout
was to minimize the use of the Internet as a hierar-
chy, instead constructing short, direct paths from many
of its customers to its network. Although Google has

4Those ASes are listed on [3].

appeared as unusual in earlier segments, one can note
that the emergence of Google as representative in this
segment is in accordance with the transformations ob-
served through Figure 3E. By December 2010, a num-
ber of other large content and cloud providers followed
Google’s lead, and expanding their own infrastructures,
including Facebook and OVH. Finally, after November
2013 a new set of organizations emerge with unusual
routing structures, mostly related to the commercial ex-
ploration of DNS services, exemplified by Verisign and
GoDaddy.

7. GLOBAL PATH CHARACTERIS-
TICS

Our last set of macro-level investigations concerns the
time evolution of global changes to the entire path set
of the network. At the highest level, our goal is to
measure the extent to which the set of all AS paths in
the Internet reflects a shift away from hierarchical and
toward mesh-like (flat) routing.

One of the results of Section 5 is that when an AS de-
viates from hierarchical routing, the RSD between that
AS and other ASes increases. In fact, we can formalize
this effect using the following proposition:

Proposition 2. Let G1(V, P1) and G2(V, P2) be
path-based networks, where P1 and P2 are composed by
shortest paths overlaid on a complete graph and on a
tree respectively. Then

RSD(x, y) = 1, for G1, and (8)

RSD(x, y) =
1 + treeDist(x, y)

|V |
, for G2, (9)

where treeDist(x, y) is the length of the shortest path
(counting edges) between x and y in a tree.

Proof. [3]

Proposition 2 shows that RSD is capable of distin-
guishing the extremes of hierarchical and flat routing
schemes. In particular, the RSD between two nodes as-
sumes its highest value for flat routing: for G1 the pair-
wise distances assume value 1. In contrast, RSD val-
ues in hierarchical routing are relatively low – roughly
O(log(|V |)/|V |) for G2 – assuming that the underlying
tree of G2 is balanced.

These observations suggest an approach for charac-
terizing the entire path set of the network in order to
assess Internet flattening over time. To that end, we
introduce the following metric.

Definition 7. (Global RSD) Given a path-based
network G(V, P ), define

∆(G) =
1

|V |(|V | − 1)

∑
x,y∈V, x 6=y

RSD(x, y). (10)
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Figure 6: (A) Global RSD over the 13-year pe-
riod of study. Line is fit using weighted least
squares (using the variance of pairwise RSD at
each time). (B) Global RSD for the six ITER
configurations of our simulation study. Configu-
rations 1 and 6 represent hierarchical and mesh-
like structures respectively. Error bars are 95%
confidence intervals.

The motivation for Global RSD is that if Internet flat-
tening is taking place, then average RSD values across
the entire network should be increasing.

Figure 6A shows Global RSD for each of the snap-
shots in our dataset. The figure shows a fairly steady
growth of Global RSD over the 13 years of our study.
According to Proposition 2, such growth is consistent
with a shift from tree-like to mesh-like routing. Inter-
estingly, we observe that Global RSD growth had been
taking place well before Internet flattening was first re-
ported by [20].

One concern in interpreting Figure 6A is that the ide-
alized routes considered in Proposition 2 differ consid-
erably from the more complex set of routes used in the
Internet. To explore whether RSD can reflect flattening
in routing patterns more representative of the Internet,
we turn to simulation. For this purpose we use ITER
[17], an agent-based simulator specifically developed to
shed light on the transition of the Internet from a hier-
archical scheme to one closer to a peering mesh. ITER
uses an agent-based formulation in which ASes individ-
ually adjust their connections to other ASes to meet
business strategies such as profitability.

The authors in [17] vary three parameters in ITER to
study the transition from hierarchical to mesh-like rout-
ing. These are: the number of regions that a content
provider can span (R), the fraction of traffic generated
by content providers (C), and the traffic threshold for
peering (α; we refer the reader to [17] for details).5 The
authors of [17] use settings of (R, C, α) equal to (1,
0.1, 1) and (6, 0.6, 10) to study hierarchical and flat

5We use here the notation from [17] for consistency.
ITER parameters in this section should not be confused
with the same symbols in other sections.

routing structures respectively. To study varieties of
networks ranging from hierarchical routing to flat rout-
ing, we use six parameter settings that interpolate be-
tween these two extremes. For each of the six config-
urations we execute 100 runs of the simulator. Each
run results in an AS topology with annotated link rela-
tionships (peer or customer-provider). Using these, we
employ standard algorithms to infer non-valley-prefer-
customer paths [19], and then compute global RSD as
in Definition 7.

Figure 6B presents Global RSD averaged over each
of the 100 runs. The figure shows that RSD responds
smoothly to the transformation of the network from a
hierarchical to a flat structure. Thus we conclude that
the effect predicted by Proposition 2 extends to the sit-
uation in which the set of paths is more representative
of actual Internet routing.

Taken as a whole, the results in this section suggest
that Global RSD has been growing over the 13 year pe-
riod of our study. Furthermore, we conclude that Global
RSD changes in a predictable way as the set of paths
in a network transitions from hierarchical to mesh-like,
and that the changes in Global RSD we observe are con-
sistent with reports of such changes taking place in the
Internet.

8. DATA CONSIDERATIONS
The data sources for our study (Route Views and

RIPE RIS) determine the visibility we have on the In-
ternet’s routing structure. A natural question therefore
concerns the impact of that visibility on our results. In
that regard, we address two questions:

1. The monitoring points for Route Views and RIPE
RIS yield full visibility mainly for Internet tran-
sit providers. Are such points good locations for
observing global Internet evolution?

2. The nature of the Route Views and RIPE RIS
monitoring points is such that many unobserved
links are of the peering type, particularly those
formed in IXPs (Internet eXchange Points) [24, 6,
4, 33]. How does this affect our results?

8.1 Monitor locations
To understand whether the transit providers fully vis-

ible through Route Views and RIPE RIS are good lo-
cations for observing global routing changes, we first
observe that the degrees of freedom in making routing
decisions are much greater for highly-connected transit
providers than for the majority of ASes that are at the
edge of the network. For example, consider a stub AS
that is single-homed to its provider, through which it
reaches every destination. In that case, the next-hop
from that AS to every other AS is constant. In other
words, its routing table is constrained to carry the same
entry for every destination.

Another way of stating this is that a subset of paths
carries most of the information used in RSD analysis.



0 50 100 150 200 250 300 350 400
Source Rank

0.0

0.2

0.4

0.6

0.8

1.0
R

S
D

 C
o
n
tr

ib
u
ti

o
n

A - Enterprise Customer

Configuration

1

2

3

4

5

6

5 10 15 20 25 30 35
Source Rank

B - Small Transit Provider

1 2 3 4 5 6 7 8 9 10
Source Rank

C - Large Transit Provider

5 10 15 20
Source Rank

D - Content Provider

Figure 7: RSD contribution for different AS categories and parameter configurations. Error bars are
95% confidence intervals – Omitted for the leftmost figure to improve visibility.

For example, the next-hops from a stub AS provides no
information to measurements of RSD, since N(x, .) is a
constant function for a single-homed stub AS x.

To demonstrate this effect in realistic Internet rout-
ing, we provide further analysis of our ITER simulation
runs. ITER places ASes into four different categories:
Enterprise Customers (EC), Small Transit Providers
(STP), Large Transit Providers (LTP) and Content
Providers (CP). Depending on their category, ASes
have different functions to optimize and interconnec-
tion strategies. We use the default configuration of 500
ASes, consisting of 430 enterprise customers, 22 content
providers, 38 small transit providers, and 10 large tran-
sit providers. In the default configuration, about half of
the enterprise customers will be singly-homed, and half
will be multi-homed.

To investigate the contribution that an AS as a source
makes in measuring Global RSD, we have Definition 8.

Definition 8. (RSD contribution) Given an AS
s, its contribution as a source to global RSD is defined
as

ν(s) =
1

|V |(|V | − 1)

∑
x,y∈V, x6=y

d(N(s, x), N(s, y)),

(11)
where d and N are defined as for Equation (1).

For each of the 100 runs within each simulator con-
figuration, we ranked ASes according to their ν values
within categories, and then averaged the 100 values for
each rank.

Figure 7 presents ν(s) for each of the four categories
of ASes, considered as potential monitoring points. The
figure shows the results for each simulator configura-
tion, ranging from hierarchical routing (Configuration
1) to flat routing (Configuration 6). The figure shows
clearly how the “role” of an AS within the Internet af-
fects the amount of RSD information contributed by
the AS. Figure 7A shows that, across all configurations,
the first 200 or so EC ASes are single-homed enterprise
customers. These ASes have no effect on any RSD val-
ues. The next 230 or so ASes are multi-homed enter-
prise customers, which make modest contributions to
RSD measurements. However, there is no impact of
these measurements on Global RSD across routing con-
figurations. That is, the significant differences in RSD

contribution across the ITER configurations occur es-
sentially only among the transit providers and content
providers. Hence all of the information necessary to
construct Figure 6 as a measure of Internet flattening
can be obtained solely by measuring a small subset of
the most informative AS paths.

Figures 7B and C show that transit providers make
much larger contributions to overall RSD measures.
Furthermore, these monitoring locations allow the ob-
servation of distinct differences across the various rout-
ing configurations. Finally, we note that the greatest
variation in RSD contribution across routing configura-
tions is made by content providers, which makes sense
since content providers are mainly driving the evolution
of routing from hierarchical to mesh-like structure.

We conclude that transit providers and content provi-
ders that have many neighbors represent particularly in-
formative monitoring points for measuring RSD. How-
ever, we acknowledge that this conclusion is subject to
limitations of ITER, which in some cases do not cap-
ture real-world complexities. For example, ITER does
not include peering of ASes in the EC category.

8.2 Peering links
Fully understanding the impact of missing peering

links on our results is difficult in the absence of his-
torical data that includes peering links. However, we
are able to assess the impact of missing link data at
two specific time points, ten years apart. We make use
of two datasets from different sources and times; each
contains many AS links from IXPs not present in our
original data. The first is from May 2005 [24], and the
second from September 2015 [1]. Each of these datasets
is the result of a measurement campaign designed to
capture missing AS links, typically within IXPs.

When comparing the new and old datasets we iden-
tified 10504 and 27412 new undirected links for 2005
and 2015 respectively. The main challenge in integrat-
ing these datasets is that they contain links rather than
paths. We could simply add the corresponding link as
a single next-hop, corresponding to a one-hop path, but
that is too conservative; the presence of the link can be
used to infer additional next-hops as well. Accordingly,
for each new AS link (x, y) (we take same actions from y
to x), we chose to add y as the next-hop from x for all of



the destinations in the customer cone of y, as defined in
[29].6 From the customer cone of y we did not consider
ASes that were in the customer cone of x and peers of x.
These resulting inferred next-hops are consistent with
traditional Internet routing models, which despite their
limitations [5], we use as an approximation of what one
would expect to be visible if we had access to the rout-
ing table from x. In many cases such a strategy may
not yield the exact set of next-hops that actually in-
volve the link (x, y) – for example, when a customer of
y is multi-homed the path to it from x may not pass
through y. However we emphasize that the goal of this
exercise is not to obtain precise AS topologies.

By following the steps presented in Section 3 (except
the last one) we obtained new next-hop matrices con-
taining entries related to data from RIPE, Route Views
and the new AS-links. When comparing these new ma-
trices with the original ones (with only data from RIPE
an Route Views), we observed only minor changes in our
results. More specifically, global RSD changed by less
than 1.1% and the sets of unusual ASes (for k = 45 and
100, and for δ = 50) changed by less than 15% (for both
the 2005 and 2015 datasets). Therefore, the impact of
missing links in the next-hop matrices analyzed in this
work is not significant, and minor variation should be
expected.

However, these results do not prove that unknown
AS-links are unimportant. The methods that we use
rely on vantage points (sources) from which paths to
most Internet locations are visible (such as are provided
by Route Views and RIPE). Adding the new data unfor-
tunately does not provide additional vantage points of
this type. The reason is that many of the new AS-links
are related to IXPs, and paths crossing IXPs typically
reach certain customer cones, but not the majority of
the Internet. As a result, it is difficult to practically
assess the impact of the missing paths that cross IXPs.
We note that these initial studies did reveal small areas
with high RSD values in the new next-hop matrices. We
conclude that a full assessment of the impact of miss-
ing IXP links on RSD values is an open question and a
valuable direction for future work.

9. RELATED WORK
Little previous work has focused on analysis tools for

path-based networks. However the conclusions of our
study relate to a number of previous efforts.

RSD. The starting point for our work is the notion
of RSD as introduced in [22] and developed more fully
in [23]. While those papers showed that RSD is useful
for inferring missing data and for identifying similarly-
routed sets of ASes (“local atoms”), in this paper we
build an additional set of tools (metrics and algorithms)
on top of RSD to explore the nature of ASes that are
anomalous with respect to the set of routes used to reach
them.

6http://www.caida.org/data/active/as-relationships/

AS path analysis. A number of studies have carefully
analyzed AS paths, to characterize their behavior [8, 34]
or to understand routing policies [32, 31]. In contrast
to those papers, our work provides metrics and meth-
ods that are useful in analyzing path-based networks in
general, and focuses on different questions.

Internet flattening. The so-called ‘flattening’ of the
Internet has been the subject of a number of previ-
ous studies. The authors of [20] were the first to doc-
ument the phenomenon, using traceroute measure-
ments from 50 nodes. The authors of [28] document
flattening using a larger set of networks, and focus on
changes in traffic patterns (we do not address traffic vol-
umes in our work). The authors of [29] show that the
peering density of customer cones is increasing, which
translates into a shift away from a tree-like structure.
In the case of one specific AS that is contributing to
flattening, [13] showed that Google had more than 5000
peers by March of 2015, and that the number is increas-
ing. In contrast to these efforts, we focus on developing
metrics to directly analyze the paths in a path-based
network, and using those metrics we quantify flattening
effects at the macro level (across all paths) as well as
the micro level (with respect to individual ASes)

Graph analysis of interdomain topology. A num-
ber of studies have analyzed the AS-level Internet by
using graph metrics in static or dynamic fashion (e.g.,
[18, 11, 30, 21] – among many others). Graph analysis
of the Internet can provide insight about the underlying
structure over which data flows, but it does not take into
account the economic relationships between ASes, nor
the paths that data is actually allowed to traverse. Our
work avoids the ambiguities of using a graph to capture
routing, by analyzing the set of paths used rather than
the underlying graph.

Incompleteness of the known Internet topology.
A considerable amount of work has exposed the prob-
lem of missing information (links and nodes) in common
sources of data related to the Internet topology [35, 24,
6, 4, 33, 25]. While our work is subject to the same lim-
itations as previous studies, we show evidence in Sec-
tion 8 that our results do not appear to be strongly
affected by missing data.

10. CONCLUSIONS
The set of paths in a path-based network has rich

information content; analyzing them can expose nodes
with unusual path sets, identify how a node’s path set
has changed over time, and uncover network-wide tran-
sitions over time. We present metrics and efficient algo-
rithms for exploring each of these aspects of path-based
networks, and we illustrate their use in studying routing
in the Internet over the 13 year period ending December
2015.

We show that, at the level of individual ASes, char-
acterizing paths can expose relationships among ASes
in terms of managing organizations, and can reflect how



an organization’s business goals and the associated engi-
neering strategies shift over time. In particular, we show
that organizations deviate from hierarchically-routed
connections for a number of reasons, from content de-
livery (exemplified by Google), to service reliability (ex-
emplified by DNS servers), to inter-node coordination
(exemplified by Ams-IX).

At the level of the whole network, characterizing
paths can expose phases in the sets of ASes that are
most unusually routed over time. Applying this analy-
sis to the Internet details how content delivery began to
drive Internet flattening in late 2005, expanding in 2008
with Google’s move into video delivery, and maturing
by mid 2010.

Our results also suggest some directions for future
work. First, we note the need of further investigation
with regard to missing data, since from the RIPE RIS
and Route Views projects we cannot obtain all Inter-
net paths. Second, by considering only ASes and the
prefixes they originate, we are not able to distinguish
addresses associated with caches deployed inside access
networks (by content providers, content delivery net-
works, etc.). One possible approach to circumvent this
limitation is to consider destinations as services, instead
of ASes (e.g., google.com instead of AS15169). To that
end, it is necessary to obtain paths towards a large va-
riety of services, requiring active measurements – for
instance, from looking glass servers and RIPE Atlas.7

Third, we showed that groups of unusual ASes often
correlate with ASes that are owned by an organization.
Hence, routing information can be used to support other
techniques of co-owned ASes detection (e.g., [9]). In
this context, it may be worth investigating an AS that
joins/leaves a unusual group in order to decide whether
it was a simple routing strategy change or reflecting ac-
quisition or sale of another company. Similarly, unusual
ASes may be a good starting point to detect anycast
adoption. There are other approaches to that end (e.g.,
[15] and [14]), but addresses announced by these un-
usual ASes can be obtained without the need of active
measurements.

Fourth, the RSD framework can also benefit organiza-
tions. At the operational level some what if questions
can be asked. For example, what if RSD for a set of
ASes/prefixes changes more than some pre-established
threshold? It can be a first sign of prefix hijacking or
malicious re-routing, thus triggering the need of further
investigation. The framework can also provide valu-
able information to an organization about its compe-
tition. More specifically, observing the movement of a
groups of ASes in RSD space can expose how their busi-
ness and engineering strategies behave and change over
time. Naturally, these questions demand the ability to
produce results in real (or near to real) time, which

7https://atlas.ripe.net

could be achieved by implementing our tools on top of
BGPStream.8

Finally, we note that the tools presented here can be
applied whenever a node set is equipped with a set of
paths; for example, they can be applied to any path-
selection strategy used in a network, such as shortest-
path or maximum-flow. Based on the results in this
study, we believe that these tools show promise for the
analysis of other path-based networks, including the
movement of goods in transportation networks and the
movement of information in social networks.
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