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Abstract— Accurate estimation of network charac-
teristics based on endpoint measurements is a chal-
lenging and important problem. In this paper we pro-
pose and evaluate a new tool for the discovery of net-
work characteristics called loss pairs. A loss pair is a
pair of packets travelling the same path and close to-
gether in time, such that exactly one of the two packets
is dropped in the network. Loss pairs provide insight
into network conditions close to the time when loss is
occurring. Using loss pairs, we show that it is pos-
sible to characterize the packet dropping behavior of
drop-tail and AQM routers internal to the network,
from measurements made at end systems. Further-
more, we show that loss pairs can be used to estimate
bottleneck buffer sizes of droptail routers. An attrac-
tive feature of loss pairs is that they lend themselves
naturally to use in a passive-measurement setting. Us-
ing such an approach, we show that loss pairs provide
estimates that are generally accurate and robust over
a wide range of network conditions.

I. INTRODUCTION

Methods for discovering network-internal charac-
teristics using measurements taken at endpoints are
increasingly valuable as applications and services
seek to adapt to network properties. Previous work
on estimation of network properties has focused on
estimating bottleneck bandwidth [3], [5], [22], [17]
and estimating per-link bandwidth, latency, and loss
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[15], [19], [7], [23]. While each of these techniques
is useful, an important network resource that has
not previously been addressed is the configuration
of routers in the network — for example, the amount
of buffering present and the packet dropping scheme
in use.

Knowing such properties of a router can be use-
ful in a number of settings. First, from the simple
standpoint of network element discovery, knowing
how much storage a router uses to buffer a link al-
lows one to configure simulations intended to mimic
the routing element. In a more sophisticated setting,
knowing the buffering and dropping scheme in use
at the bottleneck link of an Internet path may be use-
ful for adapting congestion control behavior of the
sources using the path; for aggregate flow control of
multiple concurrent streams using the path [2]; and
for predicting delay and jitter for multimedia appli-
cations using the path.

In some settings it may be relatively easy to esti-
mate the amount of buffering on a link. When pack-
ets flow over only a single hop (or in the absence
of any cross traffic on a multi-hop path) then one can
estimate buffering based on minimum and maximum
observed delays along the path. However methods
based on min- and max-filtering can be error prone
in the presence of cross traffic since the final esti-
mate is determined by measurements of (typically)
only the two packets that experienced the extreme
cases (similar problems are noted in [7]). To obtain
a robust estimate, it is necessary to develop an esti-
mator that allows the identification and elimination
of noise due to cross traffic along the network path.

To this end we have developed a method called
loss pairs. A loss pair is a pair of packets traveling



the same network path and close together in time,
such that exactly one of the two packets is dropped in
the network. The utility of the loss pair derives from
the fact that the packet that is not lost can be used
to estimate network conditions. If the two packets
traverse the network sufficiently close to each other
in time, the conditions seen by each packet will be
roughly similar. Thus in the case where one packet
is lost, the other packet provides information about
network conditions close to periods of loss.

Clearly, for arbitrary pairs of closely-spaced pack-
ets, either loss of both packets, or successful trans-
mission of both packets, is more likely than the drop
of exactly one packet. However, it is not neces-
sary for loss pairs to occur frequently for them to
be useful. Furthermore, we find that in the course
of observing data flowing over a heavily used link,
loss pairs occur sufficiently often in practice to yield
good estimates.

The basic idea of loss pairs can be cast into ei-
ther an active or a passive measurement style. Active
measurement (injection of measurement or “probe”
packets into the network) has been the more common
approach historically. More recently, the drawbacks
of active measurement (the additional network load
due to injected traffic, and the potential for probes
to perturb network conditions) have led researchers
to look for ways to discover network conditions pas-
sively, i. e., though observation of the traffic that is
already flowing through the network [1], [24].

While it is clear that loss pairs could form the basis
for an active measurement tool, in this paper we fo-
cus in the use of loss pairs in a passive mode. Thus
we are interested in discovery of characteristics of
the bottleneck router in a busy network path, sim-
ply by observing traffic flowing over that path. In
this case we assume that most (but not all) losses oc-
cur in the bottleneck router. Furthermore, in all our
experiments we make the assumption that traffic is
primarily using TCP as its transport; this allows us
to gather necessary loss and delay information from
snooping on TCP’s acknowledgment process. As a
result we are able to derive all of our estimates from
observations made at only a single point in the net-
work.

In this setting we show that the loss pairs ap-
proach is quite versatile. When the bottleneck router
employs a drop-tail queueing policy, the measured
round trip time obtained from a loss pair includes
the time spent to drain the (approximately) full bot-
tleneck queue. Comparing round-trip measurements
taken from loss pairs with the round trip times of
arbitrary (non-loss-pair) packets allows us to dis-
tinguish the portion of delay that is due to bottle-
neck buffer draining. Combining the knowledge
of this delay with the estimated bottleneck band-
width (e.g., as obtained from one of the bottleneck-
bandwidth tools mentioned above) yields the buffer
size in bytes.

We also demonstrate the use of the loss pairs ap-
proach for characterizing AQM routers. For exam-
ple, when the bottleneck router employs the RED
active queue management scheme [10, see also [6]]
there are three parameters that determine the router’s
behavior. Since loss pairs provide information about
network conditions during loss, they can inform us
about the state of a RED queue when it chooses to
drop packets. Using this insight, we show how to
estimate the three parameters of a bottleneck RED
router using the loss pairs approach — again, from
measurements made at just one end system along the
network path. We also show that the loss-pairs ap-
proach can distinguish RED dropping patterns from
those used by BLUE [9], [8].

The remainder of the paper covers related work
in Section II; detailed specification of the loss pairs
method in Section III; application of loss pairs to
buffer size estimation in Section IV; application of
loss pairs to RED router characterization in Sec-
tion V; and our conclusions in Section VI.

II. RELATED WORK

Network measurement tools have been in exis-
tence since the earliest deployment of TCP/IP; ping
(for discovering reachability) and traceroute
(for discovering IP routing) are standard tools on
most Internet hosts. As the Internet has grown, more
sophisticated tools have become worth developing.

Link bandwidth was first estimated using packet
pairs by Keshav in [16]. A packet pair consists of



two packets that queue back-to-back in front of the
link being measured. This results in an effect (orig-
inally illustrated in [14]) in which the inter-packet
gap of the two packets leaving the bottleneck is in-
versely proportional to the link bandwidth. This phe-
nomenon was explored further in [3] and developed
into a tool in [5]. A number of further fruitful di-
rections have followed, including the use of groups
of packets and single packets [22], [17], [18], [12].
While some of these methods use pairs of pack-
ets, just as the loss pair method does, the loss pair
method focuses on relating drop behavior to network
state, rather than on bandwidth estimation.

A large effort has gone into the development of
tools to measure dynamic network properties: uti-
lization, latency, and loss rate. The TReno tool
[20] measures the throughput achievable by a TCP
connection over a given path, and Sting [23] uses
TCP as a probe to distinguish between loss rates in
each direction along the network path. Pathchar
[15] and its improvements pchar [19] and clink
[7] focus on link-by-link analysis of network con-
ditions; unfortunately these tools rely on injecting a
large amount of probe traffic into the network.

Recent work has used correlations among mea-
surements as a basis for inferring network condi-
tions. In [4] the authors rely on the correlation
in measurements induced by multicast splitting of
packets to develop an efficient estimator for link-by-
link loss rates. In [11] the authors use the correlation
in measurements experienced by pairs of packets that
travel through the network close together in time to
measure link-by-link loss rates without the need for
multicast probes. The loss pair method bears some
similarity to that method in the sense that it relies
on temporally adjacent packets experiencing similar,
and thus correlated, conditions.

Finally, the loss pair method can be applied pas-
sively, a direction also taken in some other recent
measurement efforts. In [1], the authors show how to
estimate bottleneck link bandwidth from interpacket
spacing in a TCP connection; and in [24] the authors
use passive measurements to estimate network prop-
erties to a large set of hosts.

III. USING LOSS PAIRS

We define a loss pair as two packets p1 and p2
injected into the network such that:

1. p2 initially follows p1 with time � between the
trailing edge of p1 and the leading edge of p2;
2. exactly one of p1 and p2 happens to be dropped in
the network; and
3. p1 and p2 traverse the same sequence of links and
routers up to the point where one of them is dropped.

In all of the estimations used in this paper we take
� = 0. In an active measurement setting, this is
the natural choice. In a passive measurement setting,
such as we consider here, increasing � would serve
to increase the number of loss pairs that can be ex-
tracted from any fixed traffic trace. However increas-
ing � would lessen the likelihood that the two pack-
ets experience similar network conditions. We have
not explored this tradeoff since we find that even in
short traces, a set of loss pairs sufficient for accu-
rate estimation can generally be extracted even when
� = 0.

A loss pair is formed when either packet p1 or p2
is dropped. In this paper we chose to consider those
pairs in which p1 is dropped, but we tested other
cases (p2 is dropped, either is dropped) and found
no difference in results based on this selection.

The use of loss pairs in this paper relies on the fol-
lowing assumptions, some of which could be relaxed
under more sophisticated approaches. The most im-
portant assumption is is that most packet losses and
delays happen at the bottleneck (i.e., the highest-
loss link in the path, not necessarily the lowest-
bandwidth link). This makes it possible to ascribe
losses and delays seen at the endpoint to the internal
bottleneck. A second assumption is that the round-
trip path and the location of the bottleneck do not
change during measurement. This ensures that the
non-dropped packet in a loss pair is likely to see sim-
ilar queue state as the dropped one. In order to relate
delay in the router to queue occupancy, we assume
that the packet scheduling at routers along the path
is FCFS. Finally, in order to convert delay at the bot-
tleneck into queue occupancy in bytes, we assume
that the bandwidth of the bottleneck is known to us.



In this paper we focus on the round-trip time mea-
surement obtained from packet p2. In an active mea-
surement setting, this round-trip time could be ob-
tained if p2 were an ICMP ECHO packet, or some
other packet designed to generate an immediate re-
sponse from the destination end system. In the pas-
sive measurement setting that we study here, round-
trip time is obtained from those TCP data packets
that are immediately acknowledged by the destina-
tion. Furthermore, we identify the fact that p1 was
lost by observing TCP’s eventual retransmission of
p1 at a later time (our simulation uses TCP Reno).

Figure 1 shows a set of graphs that illustrate how
the loss pairs approach works in practice. This fig-
ure is based on a simulation (described in detail in
the next section) in which TCP traffic flows through
a multi-hop network with considerable cross traffic
on the bottleneck link, as well as on links upstream
and downstream of the bottleneck. The minimum
round trip time (due only to propagation delay) in
this network is 32 ms, which is seen when a packet
encounters no queueing at any router. The drain time
of a completely full bottleneck queue is 67 ms.

In this simulation there were 883,912 packets that
traversed the bottleneck link; of these, there were
246 packets that yielded estimates as part of a loss
pair. Figure 1(a) shows a histogram of the set of all
883,912 packets traversing the bottleneck link. From
this histogram it’s clear that the bottleneck queue is
almost always nearly empty. Almost all round trip
times are close to the empty-queue value of 32 ms,
and the tail of the histogram (corresponding to the
queue’s occupancy distribution) drops off roughly
exponentially.

Figure 1(b) shows a histogram of the subset of the
round trip times corresponding to loss pairs. This
figure shows how dramatic the effect is of filtering
using the loss pair method. The principal peak in
this histogram is around 99ms, which is the network
propagation delay (32ms) plus the full queue drain
time (67ms).

Figure 1(c) provides more insight by showing both
histograms in the region around 99ms. This figure
shows the remarkable selection ability of the loss
pairs method, since clearly the overall round trip

time distribution is quite noisy in this range. In fact,
we can see a sharp decline in the overall distribution
around 99ms, since round trip time values greater
than 99ms are only possible due to queueing at non-
bottlenecks, and noise introduced upstream or down-
stream of the bottleneck. Despite this sharp decline
in the overall distribution, the loss pairs method is
able to extract a sharply peaked histogram tightly
centered on the critical value of 99ms.

Figure 1 illustrates the basic idea of loss pairs and
shows that they can be remarkably precise at iden-
tifying network conditions at the time when packet
loss is occurring. We can make use of this basic idea
in solving a number of problems related to discov-
ery of network properties. In the next section we
discuss the use of loss pairs for drop-tail buffer size
estimation, while in the following section we apply
this idea to characterizing AQM routers.

IV. ESTIMATING BUFFER SIZE

In this section we explore the utility of the loss
pairs method for bottleneck buffer size estimation.
To do so we employ a simulation using the ns-2
simulator [13] that is intended to capture the essen-
tial characteristics of a typical network measurement
setting.

Our principal simulation topology is shown in Fig-
ure 2. We simulate a generalized network envi-
ronment in which a set of TCP sources are con-
nected to a corresponding set of TCP sinks. The path
used by the TCP flows traverses a single bottleneck
link. Three sets of cross-traffic sources and sinks are
present: one each upstream, concurrent, and down-
stream of the bottleneck link.

In this network, the link between router B and C
is configured to be the bottleneck. There are four
groups of TCP sources/sinks of which groups 1, 2,
and 3 generate cross traffic. We set the observa-
tion point at the leftmost group of TCP sources and
assume that all the traffic generated by those TCP
sources, as well as the ACKs from TCP sinks, are
visible to the estimation agent at the observation
point, while all other (cross) traffic is invisible to the
agent.

We generate network traffic intended to incorpo-
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Fig. 1. Histograms of round trip times of (a) all packets (b) only loss pair packets (c) both sets, zooming in on time
near 99ms.

rate realistic burstiness and self-similar properties by
using heavy-tailed ON-OFF TCP sources. Sources
used TCP Reno without delayed ACKs. All sources
alternate between transmitting using TCP, and lying
idle. Transmission sizes are drawn from a Pareto dis-
tribution with shape parameter � = 1:1. Idle times
are drawn from a Pareto distribution with shape pa-
rameter � = 1:5. This method has been shown to be
effective at generating self-similar traffic when the
sources use the TCP transport protocol [25], [21].
In the baseline case there are 200 TCP sources and
sinks generating observable traffic, and 90 sources
and sinks generating cross traffic. The 90 cross traf-
fic sources are divided evenly among groups 1, 2,
and 3.

     set of
  TCP sinks

     set of
TCP sources

    Group 3
 cross−traffic
(TCP sources)

    Group 2
 cross−traffic
(TCP sources)

    Group 1
 cross−traffic
(TCP sources)

    Group 1
 cross−traffic
  (TCP sinks)

    Group 2
 cross−traffic
  (TCP sinks)

    Group 3
 cross−traffic
  (TCP sinks)

Observation
    Point

A B C D

BackBone

Fig. 2. Principal network simulation topology.

This network setting can be considered to be an
abstraction of the typical end-to-end environment in
which the set of TCP sources can be considered as

Link Queue
Length
(bytes)

Bandwidth
in Mbps

Link
Delay
in ms

A! B 5000 3 4
B ! C 5000 1.5 4
C ! D 5000 3 4

B ! A 1 10 4
C ! B 1 10 4
D ! C 1 10 4

endnode $
router

1 10 2

TABLE I
BASELINE CONFIGURATION OF THE NETWORK

ILLUSTRATED IN FIGURE 2

the subset of traffic that is observable from a given
vantage point. The observable traffic does not con-
stitute all of the traffic flowing through the buffer of
interest, nor is the traffic observed at a point that is
necessarily “close” to the buffer of interest.

The observer has access to a single clock and
is able to observe traffic traces, matching acknowl-
edgments with the data packets that trigger them.
This assumes that significant delays are not intro-
duced between data packet arrival and acknowledg-
ment generation on the TCP sink, which is not nec-
essarily always the case in practice. However such
delays would generally take the form of noise that
would be filtered out in the estimation process.



We varied system settings over a wide range to ex-
plore sensitivity and accuracy of the estimation pro-
cess. The set of baseline simulation settings is shown
in Table I.

As the table shows, the central link from B ! C
is the bottleneck, and the outgoing buffer at router
B leading to C is the buffer whose size we are con-
cerned with estimating. The majority of losses occur
at this router, as shown in Table II. Table II shows
that even when varying the size of the critical buffer
over a wide range, the constriction of bandwidth on
the B ! C link results in the majority of losses oc-
curing due to overflow of this buffer.

To estimate buffer size from round trip time re-
quires knowledge of bottleneck link capacity (band-
width) as well as minimum (i.e., propagation) delay
along the path. In the estimations we do here, we as-
sume that bottleneck link bandwidth (C) is known,
perhaps by the use of tools such as [5], [22], [17].
We also assume that the minimum delay along the
path (tp) has been estimated, perhaps by observing
round trip times over some period and min-filtering
(as in [15], [19], [7]). Then if the estimator returns a
value tq to characterize the round trip time when the
bottleneck buffer is full, the final estimate becomes:

E[B] = C(tq � tp): (1)

The question then arises how to estimate tq ac-
curately in the presence of noise. To illustrate our
method we show a set of plots in Figure 3. The plots
in this figure are histograms of the round trip times of
loss pairs taken from our simulation. Simulation pa-
rameters followed the baseline case except that the
size of the bottleneck buffer B was varied over a
range from 5000 bytes to 12,500 bytes. This figure
shows that over this wide range of buffer sizes, the
histogram of loss pair round trip times is extremely
sharply peaked, with tight clustering in each case
around the correct value for the given buffer size.
The histograms show that there is considerable noise
in the measurements (spread in the histogram), but
this noise is nowhere near serious enough to compli-
cate the estimation problem. These plots show that
the straightforward method for estimating the mode
of this distribution is sufficient: we use small bin

size, e.g., 1 ms, in the histogram, and simply choose
the bin with the largest count. This is the method we
adopt in all of the results we report here.

To test our estimation procedure, we varied a num-
ber of parameters in our simulation setting. First, we
varied the link propagation delay, setting it to 40ms
for each link to simulate delays closer to wide-area
networks. These longer delays had no observable
impact on the quality of the estimates (shown next).

In our main set of experiments, we varied the bot-
tleneck buffer size B over a range of values from
1000 to 20000 bytes, and the link capacity C from
62500 Bytes/sec to 250000 Bytes/sec. In addition,
we varied the amount of cross traffic (groups 1, 2,
and 3 traffic) in the simulation over three levels: low,
medium, and high. These levels are characterized in
Table III. In this Table, the loss rate at each router
is presented, and in addition the loss rate due to the
traffic from the TCP (Observable) sources is pre-
sented.

The Table shows that the loss rates due to observ-
able traffic are generally low compared to the total
loss rates. Thus all of our results shown here are
based on observing only a fraction of all losses at
each link. The Table also shows that the loss rates
at Router C are much higher than Router B under
high load. That is, under high load the bottleneck has
shifted to Router C and so our principal assumption
(most losses are at the bottleneck) is being violated.

The accuracy of our buffer size estimation proce-
dure under the various settings is presented in Fig-
ure 4. The Figure shows that when cross traffic is
low (majority of losses are at Router B) the loss pairs
method is extremely accurate over all tested values
of B and C. Relative error of the estimate (i.e.,
(B̂ � B)=B) is less than 5% in all cases. (Note that
for the smaller link capacities, relative error is often
so small as to be invisible in these plots.) When cross
traffic is at a medium level (losses at Router B are
comparable to those at Router C) the relative error
is still within 50% for all cases, and is considerably
better in many cases. Finally, when cross traffic is
high (losses at Router C dominate) the relative error
is unacceptably high in some cases, but still gener-
ally less than 100% in most cases.



B=5000 bytes B=7500 bytes B=10000 bytes B=12500 bytes

All Fixed All fixed All Fixed All Fixed

Node A 0:103 0:086 0:108 0:075 0:159 0:148 0:064 0:053

Node B 8:568 8:140 7:992 7:517 7:203 6:692 6:155 5:671

Node C 0:030 0:011 0:042 0:019 0:025 0:010 0:021 0:007

TABLE II
LOSS RATE IN THE BASELINE SIMULATIONS, IN PERCENT. “ALL” MEANS THE TOTAL LOSS RATE EXPERIENCED

BY THE ROUTER AND “FIXED” MEANS THE LOSS RATE OF THE OBSERVABLE TRAFFIC.
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Fig. 3. Loss pairs histograms under different settings of the buffer size at the bottleneck link in Figure 2.

The Figure shows that the accuracy of the esti-
mations improve as the buffer size increases, and as
the link capacity decreases. These conditions cor-
respond to buffers with long drain times. The better
performance of the loss pairs method on buffers with
long drain times can be understood by thinking about
the most common way in which loss pairs become
inaccurate: when packets p1 and p2 become sepa-

rated in time, they experience the queue in different
states. As cross traffic increases, it becomes more
likely that the two packets will be separated in time
on downstream links. As buffer drain time shrinks,
the relative error introduced by the arrival of packets
at different times grows larger.



Router A Router B Router C
Total Observable Total Observable Total Observable

Low Cross Traffic 0.0015 0.00094 0.072 0.063 0.00043 0.00009
Medium Cross Traffic 0.011 0.0074 0.054 0.020 0.0050 0.0002
High Cross Traffic 0.019 0.0081 0.029 0.010 0.050 0.017

TABLE III
LOSS RATES AT EACH ROUTER FOR LOW, MEDIUM, AND HIGH CROSS TRAFFIC LEVELS.
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Fig. 4. Performance (relative error) of the loss pairs based buffer size estimation for varying B, C, and (a) Low cross
traffic (b) Medium cross traffic, and (c) High cross traffic.

V. CHARACTERING PACKET DROPPING

BEHAVIOR IN AQM ROUTERS

One way to characterize the behavior of an AQM
scheme is to plot a curve of its drop rate as a function
of queue occupancy. Although many such schemes
are not fully captured by this curve alone, for any
given workload and network configuration this curve
is generally fixed. In this section we show how to use

loss pairs to discover such curves empirically.

To do so we make certain assumptions. First, we
assume that packet drops for a queue occupancy are
independent. This is in fact often an explicit goal
of AQM schemes. Second we make the assump-
tion that the formation of loss pairs (whether in ac-
tive or passive style) is independent of the state of
the queue. Finally, we make the assumption that the



queue dropping probability does not change signif-
icantly between the arrival of the first and second
packets of a loss pair. These latter two assumptions
may not be precisely true in practice, but are reason-
able in most cases.

Under these assumptions, we proceed as follows.
Let L be the set of packets that are lost at the router
during a particular experiment. Let X be the set of
packets that arrive at the router and see queue oc-
cupancy equal to x. Finally, let us call each pair of
packets (p1; p2) in the traffic trace that have � = 0 a
trial pair. (Note that trial pairs include all of the loss
pairs as well as pairs in which a packet is not lost).
Let F be the set of all of the first packets in trial
pairs. Each packet p 2 F has a successor packet
succ(p) that completes the trial pair.

To form the curve of drop rate vs. queue occu-
pancy, we would like to estimate

dx = P [ p 2 L j p 2 X ] (2)

for an arbitrary packet p, over a range of queue oc-
cupancies x. Our independence assumptions imply
that

fp 2 Fg is independent of fp 2 Xg (3)

and

fp 2 Fg is independent of f(p 2 X) & (p 2 L)g
(4)

Combining (2), (3), and (4) yields

dx = P [p 2 L j (p 2 X) & (p 2 F )] (5)

Finally we note that

f(p 2 X) & (p 2 F )g , fsucc(p) 2 Xg (6)

so combining (5) and (6) yields

dx = P [ p 2 L j succ(p) 2 X ] (7)

which suggests a feasible estimation algorithm as
follows:

d̂x =
number of loss pairs with rtt = r
number of trial pairs with rtt = r

When the fluctuation of round trip time due to
other reasons than the AQM queue fluctuations is ig-
nored, we can directly associate a particular queue
occupancy x with a particular rtt r via the same
method used in the previous section for calculating
buffer sizes based on round trip times (Equation 1).

A. Characterizing packet dropping behavior in RED

The original RED active queue management algo-
rithm [10] uses a drop function involving three pa-
rameters: thmin, thmax, and Mp. Roughly speak-
ing, when average queue occupancy is below thmin

the queue does not drop packets; when it is between
thmin and thmax, the queue drops packets at a rate
between 0 and and a function of Mp; and when it
is above thmax, the queue drops all incoming pack-
ets. Improved versions of RED and many variants
have been proposed; it is not our intention to evaluate
RED or other active queue management algorithms
but simply to use RED as an example of the utility
of the loss pairs approach on a router that shows rel-
atively sophisticated behavior.

Average queue occupancy is estimated using a ex-
ponentially weighted moving average of instanta-
neous occupancy, with weight parameter w. When
w = 1, average queue occupancy is considered to be
equal to current queue occupancy. As w approaches
zero, memory in the system increases and average
queue size changes more slowly. In this presentation
we will assume w � 1; in future work we intend to
explore estimation when w 6= 1.

The dropping rate of a RED queue is defined as
zero at thmin rising to a maximum at thmax. If we
can use the procedure implied by (7) to empirically
characterize the relationship between dropping rate
and queue occupancy between the endpoints thmin

and thmax, then we will succeed.
We demonstrate this estimation procedure under

the same the multi-hop network configuration shown
in Figure 2. In this case however, the outgoing queue
of node B is a RED queue. The parameters of this
RED router are shown in Table IV.

The characterization results are shown in Figure 5.
Figure 5(a) shows the true (internally measured)
dropping rate, while Figure 5(b) shows the dropping



Link Capacity Buffer Limit min threshold max threshold Mp

1:5Mbps 18 KB 9 KB 18 KB 0:1

TABLE IV
CONFIGURATION OF THE RED QUEUE USED IN OUR EXPERIMENT

rate as measured using the loss pairs method. For
comparison we also plot the vertical lines at the val-
ues of thmin and thmax in these two plots. The two
curves look quite similar in the range of queue oc-
cupancy where they both have clear shapes, i.e., be-
tween 9 KB and 13 KB. The reason that both plots
do not have clear shapes outside this range is because
the queue rarely takes on these values, so sampled
values are erratic. This is shown in the histogram
of trail pairs in Figure 5(c), which can be used as a
guide to indicate the regions where sampling is high
enough to be accurate. This property (variable sam-
pling rates for different occupancies) occurs because
of our use of passive measurements; presumably, via
an active monitoring scheme, the queue could be
driven into different regimes.

B. Charactering Packet Dropping Behavior in
BLUE

In this section we show that our estimation ap-
proach can characterize other AQM methods as well,
by showing its use on BLUE [9], [8]. The basic set-
ting in this experiment still follows the one in 2, ex-
cept that the bottleneck queue at router B is now a
BLUE queue with its configuration shown in table V
which are the same as are used in [9].

Figure 6 shows the results of our estimation.
Fig. 6(a) shows the internal dropping function inside
the BLUE queue we monitored in the experiment;
it looks roughly flat, consistent with the description
in [9], [8]. Fig. 6(b) shows the measured BLUE
queue dropping function using loss pairs. It is clear
that the measured function is close to the true values
up to about 250 packets, after which both are quite
noisy. The reason for the noise about 250 packets is
again shown in Fig. 6(c) which is a histogram of the
actual BLUE queue occupancy. There are very few
samples for queue occupancy greater than 250 pack-

ets, which makes the sampled values erratic just as in
the case of the RED queue. We also note in Fig. 6(b),
that there are quite a few sample points lying on the
x-axis. This is an artifact of the bin size, which is
smaller than the increments of delay possible in the
queue; as a result certain bins have no contributions.

Thus we conclude that the loss pairs method can
characterize the dropping function of a AQM router
quite well; and when used in a passive manner the
method is restricted to the range of occupancies that
is well sampled.

VI. CONCLUSION

As the Internet grows in size and complexity the
need for automated methods for discovery of net-
work properties becomes more acute. The design
philosophy of the Internet has focused on keep-
ing network-internal elements simple, while pushing
complexity to the end systems; this has affected the
kind of network information that is available and the
style and methods best used for gathering network
information. As a result tools that can make use
of measurements taken in end systems to discover
network-internal properties are of special interest.

In this paper, we’ve proposed and evaluated a new
such tool for the discovery of network properties:
loss pairs. We have shown that loss pairs allow the
discovery of router properties which have previously
been not directly measurable. In particular, we have
shown how to use loss pairs to measure the amount
of buffering present at bottleneck routers in the net-
work. We’ve shown that this method is reasonably
accurate and robust over a wide range of network
configurations as well as under noisy network con-
ditions. These results have been developed while us-
ing loss pairs in a completely passive way, injecting
no additional traffic into the network. In addition
we’ve shown that loss pairs are versatile; they can
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Fig. 5. Characterization of RED queue dropping behavior using loss pairs.

Link Capacity Buffer Limit Increment Decrement Increment Hold Time Decrement Hold Time
1:5Mbps 500 packets 0:0025 0:00025 0:01 sec 0:01 sec

TABLE V
CONFIGURATION OF THE BLUE QUEUE USED IN OUR EXPERIMENT
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Fig. 6. Characterization of BLUE queue dropping behavior using loss pairs.

give insight into particular network conditions such
as correlations in queue occupancy. Finally, in an-
other example of their versatility, we’ve shown how
to successfully apply loss pairs to the discovery of
the configurations of routers employing active queue
management.
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