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Bayesian Packet Loss Detection for TCP

Nahur Fonseca and Mark Crovella

Abstract— One of TCP’s critical tasks is to determine
which packets are lost in the network, as a basis for control
actions (flow control and packet retransmission). Modern
TCP implementations use two mechanisms: timeout, and
fast retransmit. Detection via timeout is necessarily a time-
consuming operation; fast retransmit, while much quicker,
is only effective for a small fraction of packet losses.
In this paper we consider the problem of packet loss
detection in TCP more generally. We concentrate on the
fact that TCP’s control actions are necessarily triggered by
inference of packet loss, rather than conclusive knowledge.
This suggests that one might analyze TCP’s packet loss
detection in a standard inferencing framework based on
probability of detection and probability of false alarm.
This paper makes two contributions to that end: First, we
study an example of more general packet loss inference,
namely optimal Bayesian packet loss detection based on
round trip time. We show that for long-lived flows, it is
frequently possible to achieve high detection probability
and low false alarm probability based on measured round
trip time. Second, we construct an analytic performance
model that incorporates general packet loss inference into
TCP. We show that for realistic detection and false alarm
probabilities (as are achievable via our Bayesian detector)
and for moderate packet loss rates, the use of more general
packet loss inference in TCP can improve throughput by
as much as 25%.

Index Terms— Queuing theory/Performance Evaluation,
Network Measurements

I. INTRODUCTION

HE detection of packet loss is at the core of modern

TCP implementations. TCP’s principal control loop
increases the utilization of network resources gradually
up to the limit when packets are dropped, at which
point it reduces its sending rate, retransmits the lost
packets, and begins a new round of rate increases.
TCP detects a packet loss by two mechanisms: it either
waits for a timeout of the retransmission timer, or it
waits for the arrival of some number of duplicate ACKs
(“dupacks” — ACKs with the same sequence number)
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from the receiver. The first mechanism is necessarily
time consuming because the retransmission timer must
be set high enough to enable the network recover from
severe congestion events, and also to avoid unnecessary
timeouts caused by transient network conditions. For ex-
ample, the recommended minimum retransmission timer
is 1 second [1]. The second mechanism is faster; however
it assumes that if a packet receives a few (usually three)
dupacks then it was lost, even though dupacks may also
arise due to reordering of packets in the network. Thus
TCP control actions are necessarily triggered by infer-
ence of packet loss, rather than conclusive knowledge.
The retransmission timer mechanism is guaranteed to
detect all packet losses, but also generates some false
positives; whereas the fast retransmit mechanism may
not detect all packet losses, and may also generate false
positives.

Given the observation that TCP’s congestion control
operations are based on the inference of packet loss,
it is reasonable to ask whether an approach based on
a standard inferencing framework may yield better re-
sults than the algorithms currently in use. A natural
framework for such situations is the Bayes detector. The
Bayes detector assumes that some observable quantity is
correlated with the (unobservable) event of interest, and
exploits that correlation to establish a decision rule for
event detection.

In this paper we explore the use of round trip delay
measures (“RTT”) as the observable quantity for this
problem. This is particularly appropriate because TCP
already measures RTT as part of its retransmission timer
calibration.

The correlation between RTT and packet loss, which
is the basis for our detection approach, arises due to
the phenomenon illustrated in Fig. 1. In this setting,
we assume that routers use FIFO queuing and drop-tail
gueue management, which is by far the most common
situation in the Internet today. Thus, when a TCP sender
emits a sequence of back-to-back packets they are likely
to arrive at the end of a queue at the bottleneck link. If
this queue does not have enough room for the entire set,
packets in front of the sequence will be put in the queue,
but later packets will be dropped.

In the event of a packet loss the last successfully
transmitted packet will likely experience a high delay,



Fig. 1. lustration of the Queue Build Up Phenomenon

because it will often have to wait for the transmission
of a queue full of packets. This case is illustrated by
the sequence of packets (ai,as2,as,as) in Fig. 1. On
the other hand, in the event of packet reordering, the
last packet transmitted in sequence may not experience
a high delay, because the reason for a reordering event
is not a buffer overflow. The cause is related to network
structure (e.g. multi-channel paths, load balancing, etc.).
This latter case is illustrated by the sequence of packets
(bl, b3, bg) in Fig.l.

This phenomenon may be captured by conditional
probability density functions. We are interested in two
conditions, or hypotheses, either a packet is lost or
reordered. For each of these we have a conditional
probability density function of delay, p(y|h), where
h € {loss,reordering}. Given a particular delay value
yo, p(yo|h) gives the likelihood of y, for each hypoth-
esis. Thus we believe that p(yol|loss) will be higher
than p(yo|reordering) for high yo, and vice-versa. Using
Bayes’ rule, it is possible to invert the conditional in this
function in order to get p(hly) o p(y|h)p(h). This gives
a way to compute the probability of each hypothesis
for a particular value, encoded by y, which could be
a sequence of observations. This is a typical inference
problem, cast into a Bayesian framework.

This approach suggests two key questions, which are
the focus of this paper. First, how well can a Bayes
detector distinguish between packet loss and reordering,
based on RTT? Answering this question forms the body
of Section IV. Second, what is the benefit of using such
a detector in TCP? We answer the second question in
Section V.

To address the first question, we need good models for
delay under each hypothesis (loss and reordering). These
models are encoded using conditional density functions.
Unfortunately there are no off-the-shelf models of delay
for TCP, since there are many factors (including network
topology, the nature of competing traffic, and the degree
of path multiplexing) that affect the characteristics of
a particular connection’s RTT. Therefore, we start by
looking at three different techniques that TCP might use
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to estimate the distribution of RTT conditioned on loss
and reordering.

We evaluate these algorithms using traces of real TCP
traffic collected in front of a Web server of a university
campus, and also from routers located at different points
in the middle of the Internet. After filtering the relevant
connections, we classify the packets for which dupacks
were received, as either lost, reordered or unknown. For
each connection, we emulate a TCP sender that uses
our Bayes detector to infer packet losses, and compare
the output of the inference mechanism to the offline
classification. We find that the fraction of losses that
are detected by the inference mechanism is in the range
80 — 90%, and the fraction of reordered packets that are
misclassified as lost is in the range 10 — 40%.

To address the second question, we need to define how
TCP could use such a detector in practice. We assume
that once a dupack arrives at the sender, it invokes the
Bayes detector based on the packet’s RTT measurement.
If a loss is inferred, TCP triggers fast retransmit, oth-
erwise, it does nothing. This is a minimal change to
TCP, which allows it to make an early detection decision
where possible, but does not affect its correctness. We
do not propose changing the congestion control behavior
of TCP, or TCP’s behavior when the detector does not
detect a loss; so, if a packet is not acknowledged before
the retransmission timer expires, TCP will still trigger
slow-start, and if enough dupacks arrive for a packet,
TCP will still trigger fast retransmit.

To answer the second question, we construct a model
for the throughput of this Bayes-enhanced TCP. To do so,
we extend a Markov model of TCP developed by Padhye
et al. [2]. Using this model, it is possible to calculate the
throughput of TCP in steady-state for long connections.
We find that for the kind of detectors obtained as above,
and under reasonable conditions of loss and reordering
rates (5% and 0.2%, respectively) the improvement in
throughput for TCP can be as much as 25%.

The rest of the paper is organized as follows. Related
work is presented in Section Il. The traces we used to
evaluate our methods are presented in Section Ill. In
Section 1V we present the Bayes detection framework,
the three techniques to estimate the delay distributions
and the performance of the Bayes detector thus obtained.
The extended TCP model and its evaluation is presented
in Section V. Finally, we conclude the paper in VI with
a discussion of the applicability of this work.

Il. RELATED WORK

The packet loss detector proposed in this paper resem-
bles the idea of the detector used in TCP Vegas [3]. Vegas
includes a simple packet loss detector based on delay.
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On arrival of a dupack, Vegas checks the delay since
the transmission of the first unacknowledged packet; if
this delay is larger than a fine-grained timeout value
(updated every ack), the packet is assumed to be lost,
and so is retransmitted. It performs the same test for the
first two normal ACKs that arrive after a sequence of
dupacks in order to recover from two or three losses
which happen close together. In our work, we use a
Bayesian framework to detect losses, instead of the
simple threshold test used by Vegas.

A Bayesian framework similar to ours has been used
in evaluating TCP in hybrid wired/wireless networks,
with the objective of distinguishing between wireless
losses caused by link errors, and losses caused by
congestion. Liu et al. [4] observed differences in lo-
cation and scale between the distributions of RTT in
the eminence of congestion losses and wireless losses.
As a result, they proposed a loss type classification
mechanism based on Hidden Markov model in which
each state is characterized by a Gaussian distribution of
RTT with different mean and variance and associated
with a type of loss. Barman et al. [5] introduced an
explicit loss labeling mechanism in TCP NewReno [6].
The observation in that work was that RTT is highly vari-
able in the presence of congestion loss. Thus they used
two exponentially weighted moving averages of delay.
One is used only for recent samples which fall within a
small range (low variability), the other is used when a
sample falls off that range and thus has higher variability.
Whenever a packet loss is detected, their method counts
how many times the more variable EWMA was used;
if it is above a threshold, a congestion loss is inferred,
otherwise a wireless loss is inferred. In further work,
Barman et al. [7] look at the same problem from a
Bayesian framework perspective (much like what we
do). They conclude that if losses induced by congestion
and those induced by errors in the wireless link have
distinguishable enough statistics, a binary Bayes detector
can effectively be used to infer the nature of a packet loss
in TCP.

In contrast, in this work, we are not trying to distin-
guish the nature of a packet loss, but rather the presence
of packet loss per se. Many other papers have looked
at this problem from a more practical perspective. A
number of papers have proposed new technigques to
improve TCP packet loss detection [8], [9], [10], or to
recover from a wrong detection [11], [12], [13]. These
papers then compare the two versions of TCP with
and without the new technique in terms of throughput,
fairness, etc., under different network conditions using
either simulation or experimentation. In contrast, rather
than evaluating our method in simulation, we build an

analytic model of the resulting algorithm. This enables
us to analyze the impact of different detectors on TCP
performance independently of the technique used.

Finally, it is reasonable to wonder whether round-trip
delay is a good choice of observable feature on which
to base a Bayesian packet loss detector. In fact, the
variance of RTT is very high, as first observed by Paxson
and Floyd [14], [15] and recently confirmed in a large
study conducted by Aikat et al. [16]. This may make
the distribution of delays for different hypotheses appear
too much alike (e.g., loss versus reordering, congestion
versus wireless loss, etc.) Another observation, made
recently by Biaz and Vaidya [17], is that the RTT is
poorly correlated with the state of a single TCP connec-
tion going through a link shared by many flows (i.e. in
the presence of intense cross-traffic). Notice, however,
that in our case, we are exploring the correlation of
round trip delay with the network state, not with one
single TCP connection state. And our results on the
performance achieved by the Bayes detector (described
in § 1V) suggest that using round-trip delay as a feature
for a packet loss detector for TCP is in fact viable.

I11. DATASETS

To conduct this study, we use traces of TCP connec-
tions that include every packet seen on a link. NLANR
has a collection of such traces as part of their Passive
Measure and Analysis project, or simply PMA. We call
these traces the PMA datasets’. We also collected TCP
traces from a link directly in front of a Web server at
Boston University (using the Unix utility snoop). We
call these traces the BU datasets.

The main difference between these two datasets is the
location of the measurement point. The PMA datasets are
collected in machines which are in the middle of a path
between communicating TCP end-systems. In contrast
the BU datasets are collected in a proxy host in front of
a Web server, and therefore are quite close to the sender.
To compute the RTT in the PMA traces, we use the
technique described in [18]. That method estimates the
congestion window of the TCP sender, and approximates
the RTT by the time difference between the transmission
of two data packets, where the transmission of the second
is triggered by the reception of the acknowledge for the
first. In the case of the BU traces, because the TCP
sender is close to the measuring host, we approximate the
RTT by the time difference between the transmission of
a data packet and the arrival of its corresponding ACK.

PMA traces are available from the PMA project site at
http://pma.nlanr.net/.
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Dupacks | Fraction | P(loss|dupack)
BU-7 3,916 2.0% 77.4%
BU-12 9, 856 2.0% 50.4%
BU-14 12,509 1.6% 50.9%
PMA-BUF 2,270 1.8% 28.3%
PMA-MEM 639 3.4% 81.4%
PMA-MRA 4,892 2.1% 63.4%
PMA-TXG 2,909 6.7% 68.1%

TABLE |

PRIOR PROBABILITY OF DUPACKS CAUSED BY PACKET LOSS

As a result, the quality of the RTT measurements in the
BU traces is better than that for the PMA traces.

We only used symmetric, complete, long and inter-
esting connections in our study. A connection is said to
be symmetric if the collecting point sees both sides of
the connection, the data packets and the ACK packets.
We used the three-way handshake of TCP to identify
such connections. A complete connection is one that has
all its data packets and corresponding ACKs from its
establishment by a SYN packet, to its end by a FIN
packet. We considered a connection long and interesting
if it had more than fifty packets and at least one dupack.
In Table I we show the number of packets that received
duplicate acks, their fraction in relation to the total
number of packets, the fraction of these duplicate acks
which were caused by packet loss. The rest of the
dupacks were caused by reordered packets.

After connections were filtered, their packets were
classified using an approach similar to that described
in [18]. We collect both sides of a TCP conversation,
and thus we are able to classify their packets into
four classes: successfully transmitted, transmitted out-
of-order, retransmitted due to a loss and others. In
Fig. 2 we show the number of connections we were
able to classify loss or reordered events or both, and
how many packets these connections had. For instance,
in the three BU traces, we were able to find at least
one loss event in approximately 400 connections on
average; approximately 275 connections had at least one
reordering event; and a bit more than 100 connections
had simultaneously at least one loss and one reordering
event. We observe that whether a connection has a loss
event seems approximately independent of whether it
has a reordering event. We also observe that for these
datasets most connections have a small number of loss
or reordering events; for example, about half of the
connections that have at least one loss or reordering event
have less than four events. Finally, we observe that the
PMA dataset had, proportionally, more reordering events
than the BU dataset. We attribute this difference to two
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Fig. 2. Breakdown of Dupack into Loss and Reordering Events

causes. First, in order to a packet loss be classified for our
use it needs to have a valid RTT measure immediately
before it. In the PMA traces obtaining a valid RTT
measure before a loss is more difficult than it is in the BU
dataset, because the measurement point is in the middle
of the end-to-end path. Second, it is known that the
causes of packet reordering are related to the network’s
physical properties [19], [20], so we conjecture that the
PMA traces were collected in a network which causes
more packet reorderings than is the case in the BU
dataset.

1V. BAYESIAN INFERENCE

In this section we present and evaluate a packet
loss inference mechanism for TCP using a Bayesian
framework based on the distribution of RTTs for packets
which immediately precede the loss event we need to
detect.

In order to gauge the existence of the phenomenon
depicted in Fig. 1 we investigated the distribution of
RTTs. In Fig. 3 we show histograms of RTT distribution
of two TCP connections. On the left of Fig. 3 we
plot histograms of RTTs for packets which immediately
preceded a packet loss, and on the right, we plot the same
for packets which immediately preceded a reordering
event. We see that there is a fair amount of mass, in
the case of packet loss, that have larger RTT values
than in the case of reordering events. This large values
correspond to packets that were put in the end of a queue,
just before another packet of the same flow was dropped
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Fig. 3. RTT Histograms Conditioned to Loss and Reordering Events
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due to buffer overflow. In the case of lost packets the
small values of RTT may correspond to packets that
were intermixed with a burst of packets from other flows,
which in turn caused the packet drop.

However, it is evident in Fig. 3 that the respective
distributions of RTT in the event of a packet loss and
reordering are different. It is possible to quantify this
difference with the normalized distance between the
distributions of RTTs of the two hypotheses, denoted by

2 (E[RTT|loss] — E[RTT|reordering])?
\/Var(RTT|loss)Var(RTT|reordering)

The higher d? the more distinct are the distributions,
and the easier is the problem of detecting them. Some
statistics of this quantity are plotted in Fig. 4 for all
connections in our datasets. The boxes delimit the 25t
and the 750 percentiles, the line inside the box gives
the median of the distribution, and the whiskers outside

the box mark the minimum and maximum values of d2.
Small circles are outliers. We notice in Fig. 4 that the
d? statistic is very low in our datasets, thus we expect
the detection process to be difficult.

A. The Bayes Detector

There are three components of the Bayes detector.
First is the process that generates the events that we are
interested in. We are interested in the causes of dupacks.
There are only two possible causes, either a dupack is
generated by a packet loss, or by a reordering event.?
The only thing that we need to know from this process
is the probability of loss, namely P;.. Since there are only
two hypotheses, the probability of reordering is simply
Pr=1-Pr.

Second is the measurement process. We have chosen
to use RTT as a measurement because of its distinct
distribution under the two hypothesis that we have, as it
was illustrated in Fig. 3. Let R(i) be a random variable
that describes the RTT of packet i, L(i) represent the
event of packet i being lost, and L(i) the event of packet
1 being reordered. From the measurement processes we
need the two conditional probability distributions func-
tions as pieces of the Bayes detector, p(R(i)|L(i + 1))
and p(R(i)|L(i + 1)).

The last piece of the Bayes detector is the decision
rule. A decision rule simply maps each value of RTT to
one of the hypotheses. In a Bayes detector, an optimal
decision rule is one that minimizes the Bayes risk. The
Bayes risk is given by the function C(D(r,q), H(i +
1)), where D(r,i) € {L,L} is the decision taken by
the detector for a delay value R(i) = r of packet
i, and H(i + 1) € {L,L} is the actual event that
happened to packet i + 1. A typical cost assignment
is C(L,L) = C(L,L) = 0 (no penalty for right
decisions) and C(L,L) = C(L,L) = 1 (high penalty
for wrong decisions), but the Bayes cost can be tunable,
to make TCP more or less aggressive, or to adapt it to a
network with persistent reordering, for example. There-
fore, given a cost assignment, the Bayes cost is given
by E[C] = ZDG{LI} EHG{L,Z} C(D,H)Prob(D, H).
Where Prob(D, H) denotes the probability that the
detector assigns label D to an event when the actual
event H have happened. Prob(-) is a function over two
random variables, the delay R(:) and the actual event
H (i+1), thus we rewrite the Bayes risk using conditional

2There are other two causes of dupacks, network duplicates and
unnecessary retransmissions. The former is very rare and was ignored
in this work; the dupacks generated by the latter can be discarded
simply by looking at the last packet sent. A loss or reordering event
can not generate a dupack for the last packet sent.



densities, E[C] = E[E[C|R]], and minimize E[C|R]
instead. Given a fixed value of RTT, the decision rule is
a deterministic function, which maps that value of RTT
to one of the two hypotheses. Thus the optimal decision
rule has to minimize the Bayes risk for each RTT, if it
assigns a loss event for a particular RTT, the Bayes risk
is E[C|R] = EHG{Li}C(L,H)Prob(D = L,H|R)
and if it assigns a reordering event to it, instead, the
Bayes risk is E[C|R] = 3y, 7y C(L, H)Prob(D =
L, H|R). Thus, after applying the Bayes’ rule to invert
the conditioning and after doing some algebra manipu-
lation, we can write the optimal decision rule as:

p(R|H=L)Pr

_p(RIH=L)Pr (CcEn-cErn)y _
P(RIH=L)(1—Fy) )

CT.n-cLLy "1

A/

L . ,
The symbol =  means that the decision rule will

~

assign a loss event to a particular RTT value R if the
left side of Equation 1 is larger than its right side, and it
will assign a reordering event otherwise. This inequality
is known as the likelihood ratio test. The left side of this
inequality are quantities that we will need to estimate for
each connection, and the right side of this inequality can
be seen as the tunable cost parameter of the detector.
The intuition to understand how the detector uses
Equation 1 is as follows. We are given estimates of
the two conditional density functions (p(R|H = L) and
p(R|H = L)), the probability of loss P, and the cost
parameter n. Then when the first dupack arrives for a
packet, we look up its RTT, R, and evaluate the left side
of 1 to obtain the likelihood ratio. If this value is larger
than n, a packet loss is detected and TCP will trigger fast
retransmit, otherwise, TCP does nothing. As 7 increases
the likelihood of a packet loss event will need to grow
larger compared to the likelihood of a reordering event
in order to detect a packet loss. On the other hand, if we
decrease n, then we will favor the inference of packet
loss events. So, as we change 7, the decision rule is
changed, and the detector will behave differently. Later
in § IV-C we will show how the performance of the
detector changes as we change the cost parameter.

B. Probability Density Function Estimation

Before we move on to evaluate the performance of
the type of detectors that we can obtain, we need a way
to estimate the conditional probability densities for the
two events of loss and reordering. We will explore three
techniques, a naive approach using discrete histograms,
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a non-parametric estimation technique, and a parametric
estimation technique.

1) Histogram: This is the simplest method to estimate
a probability mass function. Let n be the total number
of samples taken from a distribution, h be the bin size,
and define the function g(r,y,h) as
{1 ify—h<r<y-+h

r? 7h - -
9(ryy.h) 0 otherwise

Then, p(r, h,y) is simply:

p(?") _ ZZ;? gygh Yi, h)

2) Parzen Method: The Parzen method estimates the
conditional densities by summing up a common kernel
function K (-) placed at each sample point and evaluated
at the point of interest, say r. In this paper we use the
Gaussian kernel

K(x) = L e /2

V2r
Let S be a set of N delay measurements, and let b be
the Parzen smooth parameter, also known as bandwidth.
The computation of the probability density is then:

p(r) = o

Wi\}@ 2 yes OXP — g —

3) Bayesian Method: One of the disadvantages of
the previous methods is that they need to see some
delay samples before they can make a good estimate
of the probability density function. Since most of the
connections in our datasets that have a loss or reordering
event have very few such events, a great number of
connections will not benefit much from these methods.
However in the Bayesian method, it is possible to encode
a prior belief about these events, thus making it possible
to estimate the probability of an event even before seeing
any data.

Note that in this case, we are using Bayesian statistics
to form inferences about the parameters of the detector;
this is distinct from the use of Bayes’ rule in the detector
itself. The key distinction between the Bayesian method
and the previous two methods is that in this case, the
parameters to be estimated are assumed to be random
variables. Thus they are equipped with probability dis-
tributions, and one can assign them some probability
distribution (a prior) even before any data is observed.
Bayes’ rule can then be invoked each time new data
arrives, allowing an informed progression from the initial
prior toward an updated distribution reflecting what is
learned from the data.

To use a Bayesian statistical approach, we assume
that the distribution of the RTT is Gaussian, with un-
known parameters § = (u,o), the mean and variance
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respectively. We express this as a likelihood function
p(y|0) = N(y; u,0?), where y is a real variable of the
round-trip delay.

Making the Gaussian assumption for the delay is
justified in this work for a number of reasons: First,
even if the real distribution of delay is something else,
the Gaussian assumption can still be used to capture the
location of the mass of that distribution — which is what
is most important here, because we just seek a way to
distinguish the two hypotheses. Second, the Gaussian is
the best that can be done using only the simple statistics
of sample mean and variance. And finally, the Gaussian
has attractive mathematical properties that provide a
computationally efficient way to update the estimate as
new data becomes available to TCP during a connection.
This last point comes from the fact that the Gaussian has
conjugate prior distribution functions?®.

The true values of 1 and o2 are not known a priori.
However we believe that, under the hypothesis of packet
loss, the mean and the variance will be large; whereas
under the hypothesis of packet reordering the mean
will be small. This belief is expressed in the form of
prior distributions on p and o. This is a way of encod-
ing and incorporating our engineering knowledge about
the typical behavior of RTT under the two hypothe-
ses. We have chosen the conjugate prior distributions
as follows: The mean follows a Normal distribution,
plo? ~ N(uo,02/ko), and the variance follows an
Inverse Chi-square distribution, o2 ~ Inv — x2(v, 03).
The dependence of the mean on the variance in the prior
distribution is also justified by observations of variability
of RTTs, which have noted that connections with larger
delays experience larger delay variance [14], [16].

A strength of the Bayes method is that it provides a
way to use samples of RTT to improve the estimation
of the parameters of its distribution. We express the
dependence of the parameters 1, o2 on the data through
a conditional distribution, thus using the Bayes’ rule we
write the posterior distribution as

p(ylu, o®)p(p, o°)
p(ylu, o*)p(plo?)p(o?)
= N—TITnv-— XQ(/Ln, U%/Km I/n,O',%)

p(u, o%ly) o

3Formally, if F is a class of likelihood functions p(y|6), and P
is a class of prior distributions for 6, then the class P is conjugate
for F if p(0ly) € P for all p(:|9) € F and p(-) € P. In general, a
conjugate function allows treating additional data incrementally, just
by replacing the prior function with the posterior function as new
data is seen [21].

| Parameter | Loss Event | Reordering Event |

Lo 500 ms 100 ms

Ko 1 1

140} 1 1

o 20 20
TABLE I

INITIAL PARAMETERS OF PRIOR DISTRIBUTIONS

For this model, it can be shown that

o R0 + n _
fn = /ﬁo—i-nuo /ﬁo—i—ny
Kn = Ko+n
vV, = V+n
2 2 2 kom 2
v = Y n—1)s —
nOp 00 + ( )s” + KOJrn(Z/ o)

where n denotes the number of observations of y that
have been made, and the subscript n denotes the param-
eter estimate after the n*" observation of y.

The above equations show that the sufficient statistics
are the sample mean 7 and the sample variance s2, which
are already available to TCP. Notice also how easy it is
to incorporate new data, for example, v, is simply
equal to v, + 1.

So far, we have only a way to estimate a distribution
for the parameters of the probability density function
p(y). But what is needed by the detector is a way to
evaluate this function p(y) at particular values of delay g,
according to the parameters that we estimate after seeing
data. In order to do so we have to evaluate the following
expression p(gly) = [ [ p(Glu, 0%, y)p(p, o®|y)dudo.
The first of the two factors in the integral is just a
Normal distribution, given the two unknown parameters
(u, o) and doesn’t depend on y at all. The result of the
integration has the form of the Student-t distribution,
thus p(§) = tu, (i|ptn, (kn + 1)o2/K,). When no data
has been seen yet, we evaluate p(g) using the prior
distribution, instead of the posterior distribution. They
both have the same form, because of the conjugacy
property. So we only need to substitute for the initial
parameters in the above equation, which are summarized
in Table II.

4) Discussion: All methods presented use the avail-
able data to improve their estimates. One advantage of
the Bayesian approach over the others is that it is able
to form an estimate of the probability density function
even before seeing any samples. Another advantage is
that it only needs to keep record of the sample mean
and the sample variance of the distribution, instead of
all the samples. On the other hand, the advantage of the



histogram and Parzen methods is that their distributions
are more closely matched to the data, and thus their
estimates are more precise.

After presenting the three methods we are ready
to compare their performance in respect to detection
accuracy in terms of probability of detection (Pp) and
probability of false alarm (Pg).

C. Detector Performance

In this section we present the performance of detectors
obtained using the three techniques described above.
Clearly the performance of a detector will be related to
the quality of the estimation of the conditional distribu-
tions, thus by comparing the detector performance, we
will be able to compare the three techniques for density
estimation.

The performance of any detector can be evaluated
using the quantities bellow:

Pp
Pr

Pr(Choose loss|loss True)
Pr(Choose loss|reordering True)

Clearly a good detector must have high probability of
detection (Pp) and low probability of false alarm (Pr).

By varying the Bayes cost parameter  we obtain a
range of settings of the detector that trade off detection
probability for false alarm probability. The resulting so-
called ROC curves for our three detectors are shown in
Fig. 5.

In this figure we plot the weighted average of Pp and
Pr for all connections of the BU and PMA datasets.
The Pp value of each connection was weighted by the
number of loss events of that connection, and the Pr
value was weighted by the number of reordering events.
The extreme values of the cost parameter n are noted in
the figures. As expected, small cost parameters lead to
high Pp and also Pr, and large cost parameters do the
opposite.

Each figure plots a set of curves that correspond to
different modes of using the detector. Since the detector
accumulates information about the nature of the condi-
tional delay distributions p(R|H = L) and p(R|H = L)
as loss and reordering events occur, it is reasonable to
consider only using the detector after a certain number
of events have been observed. These cases are denoted
“train > n”, where the detector was trained until at least
“n” loss and “n” reordering events have been sampled.
For the case of the Bayesian method it is reasonable to
invoke the detector without any training at all so those
figures show additional curves for “train = 0.”

Furthermore, for comparison purposes we plot the
case in which the detector has been trained on all
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events in the connection. This line is denoted “train
all.” Note that the “train all” case is not feasible as
it uses all data (including future data) in each event
classification; however it provides a useful upper bound
for the performance of each detector.

The figures show that the detectors work remarkably
well. Performance is better on the BU datasets than
on the PMA datasets, due to the poor quality of RTT
measurements in the PMA datasets (as discussed in
§ 111). Note that the BU datasets, since they are collected
immediately in front of a busy server, represent a more
realistic set of statistics as seen by a TCP sender.

The figures show that the Bayesian method and the
Parzen method are roughly comparable. On average both
methods reach a detection probability of 90% with a false
alarm probability of only about 20% on the BU datasets.
Even on the PMA datasets the Parzen method is able to
reach a detection probability of 80% with false alarm rate
of 40%. The histogram method performs more poorly, as
might be expected due to its coarser representation of the
conditional probability distributions.

Next, we show a breakdown of the weighted average
Pp shown in previous figures as the number of sam-
ples used to estimate the conditional density functions
increases. In Fig. 6(a) we break down the connections per
number of loss events for which the Parzen detector was
invoked. In this plot we used the detector with the Parzen
density estimation with smooth parameter b = 10ms, a
cost parameter n = 0.25, and a minimum training set
size of 1 sample. We also plot in the second vertical
axis what was the average performance in terms of Pp
of the detector for those connections. The plots show that
the majority of the connections had only one chance to
invoke the detector, and Pp was less than 0.5 in those
cases. Note that as the number of loss events grows, the
performance also improves. This effect is less consistent
with Parzen method, which suggests that it may be a less
reliable method in practice.

In Fig. 6(b) we plot the same metrics for the detector
using Bayesian density estimation, with initial parame-
ters as given in Table I, with a cost parameter of = 0.5
and with no training set. We observe the same kind
of improvement in performance as the number of loss
events grows. We also notice that the detector is invoked
in many more connections, especially for connections
with a low number of loss events, which would not
have been enough to train the detector using the Parzen
method.

Although we do not show the corresponding plots
for Pr, the same type of behavior is observed; as the
detector has more data its performance improves, so Pr
decreases.
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Fig. 5. Pp and Pr of BU Dataset (upper) and PMA Dataset (lower)
D. Summary packet losses for which no dupack is generated. Addi-

In summary, we find that a Bayes detector can in
fact perform packet loss detection with good accuracy.
For the Bayesian method, the best performance was
obtained was Pp ~ 0.8 and Pr ~ 0.15, with a cost
n = 0.125, with no training set. For the Parzen method
the performance was very similar for a cost of = 0.25,
and bandwidth parameter of 10.

We also observed that the number of events of a
connection helps to improve the detector performance,
for it has more data to improve the estimation of RTT
distribution. On the other hand, connections with lots of
events are not as common as connections with as few as
1 or 2 events. For that reason, the Bayesian method may
be more suitable for actual deployment in TCP.

The next step is to analyze the improvements possible
in TCP performance using such a detector, which we do
in the next section.

V. A PERFORMANCE MODEL

In this section we answer our second question, which
concerns the impact on TCP performance that is possible
when using an early packet loss detector similar to that
developed in the last section.

We note that it is not desirable to add too much
computation to TCP, so we choose to invoke the detector
only when a packet receives its first dupack. As a result,
we still have to rely on the timeout mechanism to detect

tionally, if three or more dupacks are received by TCP,
it will trigger fast retransmit, just as it does currently.

In this setting, the relative significance of Pp and
Pr are as follows. A detection will trigger a response
to congestion earlier than would have occurred when
using unmodified TCP. Thus it can sometimes avoid the
long retransmission timer expiration. A false alarm will
trigger a halving of the congestion window that would
have not taken place in an unmodified TCP connection.
These two effects are in opposition: one increases, the
other decreases the throughput of TCP. To properly
evaluate this tradeoff requires an accurate model of TCP
throughput.

A. A Markov model for TCP with a probabilistic loss
detector

To that end we turn to the work described in [2],
which created a Markov model for the performance
of TCP. The states of the model represent states of
TCP, as given by the size of the sending window, the
number of unacknowledged packets after a packet loss,
etc. The model incorporates TCP’s standard congestion
avoidance algorithm, with settings for the potential for
delayed acks, the number of dupacks that trigger a
fast retransmit, and the extent of exponential backoff.
Having chosen these TCP characteristics, the model can
be used to compute the sending rate and the goodput
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Fig. 6. Break Down of Pp for BU Traces

of a TCP sender, parameterized by the loss rate (Pp),
the maximum receiver window (V), the average round
trip delay (RT'T), and the base timeout value of the
retransmission timer (7p).

In our work, we have extended this model by integrat-
ing a detector of packet loss as described in the previous
sections. The added parameters are Pp and Pp, which
give the detector performance, and the reordering rate,
which gives the probability of a packet being reordered.

Space does not permit a complete specification of
our modifications to the model of [2], which are quite
involved. However, the key differences between the two
models are the following. In our model when TCP
receives a dupack sequence, it invokes the detector. If the
dupack sequence was caused by a packet loss, then with
probability Pp, it will be detected and TCP will trigger
fast retransmit. If that dupack sequence was caused
by a reordering event, then with probability Pr, the
detector will generate a false alarm and TCP will trigger
fast retransmit. The other two packet loss inference
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mechanisms of TCP are still there. If a packet loss
does not generate any dupack, the retransmission timer
will timeout and TCP will reduce its sending window
size to one and retransmit the lost packets, and if three
or more dupacks are generated by a packet loss, TCP
will trigger fast retransmit. These modifications consist
of adding additional transitions to the original Markov
chain model. The full specification of our modifications
is reported in [22].

We note that there are a number of simplifying
assumptions made in [2], which are retained in our
model. We also make the further assumption that packet
reordering is independent of packet loss. The justification
for this assumption is that these two events have dif-
ferent causes. Losses are caused by buffer overflows as
mentioned before; and reorderings are caused by parallel
paths and network anomalies, as discussed in [20], [15],
[18].

B. Results

We used the model developed above to evaluate the
effects of correct detection and false alarm on TCP
throughput.

In our analysis, we used W = 20, Ty = 2.45s, and
RTT = 250ms in the Markov model, which are the
same settings used for validation of the model in [2].
We compared the following four scenarios:

1) “Regular TCP” TCP Reno with dupt hr esh =
3. This means that TCP waits for 3 dupacks before
triggering fast retransmit.

2) “TCP with dacks=1"
dupt hresh = 1. This
detector with Pp = Pr = 1.

3) “TCPB PD = 0.8,PF = 0.15” TCP equipped
with the Bayes detector, whose performance is
Pp = 0.8, Pr = 0.15. These values were found
to be achievable in practice as described in § V-
D. In this case we set dupt hresh = 3,

4) “TCPB perfect” TCP Bayes with a perfect de-
tector, i.e., Pp = 1, Pp = 0, and dupt hresh =
3.

The overall performance of the different variants de-
pends on the relative frequency of packet loss vs. packet
reordering. Thus we first study the performance under
varying loss rates, and then under varying reordering
rates.

Fig. 7(a) shows the performance of the four variants
as a function of loss rate (where reordering probability is
fixed at 0.2%). These plots show TCP goodput relative
to the throughput obtained by the unmodified TCP. We

TCP Reno, with
is equivalent to a
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can see that all three variants lead to considerable im-
provement over TCP. TCP with dacks=1 performs nearly
as well as perfect detector. This is because nearly all
dupacks are due to packet losses, so the quick response
provided by setting dupt hr esh to 1 is appropriate.
However it is also important to note that in this setting,
the performance of the realistic detector is almost as
good as that of the perfect detector. The plot shows that
a realistic detector can achieve an improvement in TCP
goodput of up to 25% over standard TCP.

The problem with setting dupt hresh to 1, and
the reason for preferring the Bayes detector, becomes
clear in Fig. 7(b). We see that the performance of TCP
with dupt hr esh = 1 drops sharply off as the amount
of packet reordering increases. This is because TCP
is decreasing its congestion window unnecessarily. In
contrast, the performance of the practical Bayes detector
remains close to its level of 25% improvement over TCP
across the range of packet reordering rates.

In Fig. 7(c) and 7(d) we vary the last parameters
of study RTT and TO, while keeping the loss and
reordering rates fixed at 5% and 1% respectively. For
small RTT values, it pays off to retransmit on every
dupack because TCP can react quickly when it halves
its window unnecessarily on a reordering event. For
larger RTT values, however, the detector is effective,
and avoids unecessary retransmissions due to reordering,
achieving better throughput. Varying the timeout timer
exposes a similar tradeoff. Since the detector may miss
a genuine packet loss, when it has less than 3 dupacks,
it will have to pay the price of a timeout. If this price
is small (small timeout value) it will achieve higher
throughput than TCP with dupack = 1 because, as
we said before, the latter still has to pay the price of
unnecessary retransmissions due to reordering.

VI. CONCLUSION

In this paper we start from the basic observation that
TCP’s packet loss detection mechanism is in fact solving
an inferencing problem. We then ask whether a more
effective inferencing procedure is possible, and what the
impact of using such a procedure might be.

We develop a packet loss detector using a Bayesian
framework. We show that such a detector can profitably
make use of round trip time to guide the inferencing
process. Using traces taken from a variety of locations,
we show that a Bayes detector can achieve a probability
of detection above 80% and probability of false alarm
below 20%. We evaluate three potential realizations of
such a detector and find that one based on Bayesian
statistical estimation performs quite well, and has the

appealing property that it can be used for each duplicate
ACK received, including the first one.

These results encourage us to investigate the improve-
ments to TCP’s performance that can be possible using
such a detector. We construct an analytical model of TCP
that incorporates a probabilistic loss detector mechanism
on top of the existing TCP loss detection mechanisms.
Using this model we show that TCP performance can
be improved by as much as 25% with realistic detection
and false alarm probabilities.

Our results suggest that the loss detection problem
faced by TCP can in fact be addressed in a formal
way, and that the result of doing so can be a significant
improvement to TCP’s performance.
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