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Abstract—
The ability to estimate the geographic position of a network

host has a vast array of uses, and many measurement-based ge-
olocation methods have been proposed. Unfortunately, comparing
results across multiple studies is difficult. A key contributor to
that difficulty is network geometry – the spatial arrangement
of hosts and links. In this paper, we study the relationship
between network geometry and geolocation accuracy. We define
the notion of scaling dimension to characterize the geometry of
a wide array of different networks. We show that the scaling
dimension correlates with a number of aspects of geolocation
accuracy. In networks with low scaling dimension, geolocation
accuracy improves more rapidly with the addition of landmarks.
Further, we show that the scaling dimension of operator networks
varies considerably across different regions of the world. Our
results point to the complexity of, and suggest standards for, the
meaningful evaluation of geolocation algorithms.

I. INTRODUCTION

The ability to identify the geographic location (or geoloca-

tion) of Internet resources is valuable for advertisers, law en-

forcement, application developers, security analysts, and many

others. However, resolving precise geographic information of

Internet devices is limited by non-line of sight Internet routing,

the lack of a standard Internet protocol providing location, and

that non-mobile devices are generally not currently equipped

with location identification capability (e.g., GPS). Even mobile

devices equipped with location services may choose not to

report location information due to privacy concerns or mali-

cious activity. In response, many approaches to geolocation

have been proposed and developed. In particular, considerable

attention has been paid to techniques for measurement-based

geolocation, since it avoids problems of stale data and human

error that plague other methods [1].

In measurement-based geolocation, one seeks to find the

location of a target network resource represented by an IP

address, using network measurements such as traceroute

and ping from a set of hosts with known location, termed

landmarks. A wide variety of measurement-based methods

have been proposed [2], [3], [4], [5], [6], [7].

Evaluation of a geolocation method generally is performed

using measurements taken from some set of targets, landmarks,

and other hosts in the Internet. Unfortunately, comparing

evaluation results across multiple studies is difficult. Typically,

different studies will evaluate using hosts from different net-

works or regions, and using different numbers and choices

of landmarks. As a result, while there are many published

evaluations of geolocation methods, it can be unclear whether

differences in published results are due to algorithmic perfor-

mance, landmark selection, or network setting.

To illustrate this issue, Table I summarizes the test con-

ditions used in six previous studies of measurement-based

geolocation. The table shows the number of landmarks and

targets, and the geographic region of the targets, across 10

experiments. Strikingly, the table shows that 9 out of 10 studies

only use North American targets and 9 out of 10 studies use

only a fixed number of landmarks. It is not clear what the

accuracy of these prior studies would be given a different

number of landmarks, or targets in another part of the world.

Algorithm Target
Name Landmarks Targets Locations

GeoPing [2] 14 265 US

Octant [3] 10 to 50 104 N. Amer.

Topology-Based [4] {11,68} {11,22,128} N. Amer.

Constraint-Based [5] 42 42 Europe
95 95 N. Amer.

Naive Bayes [6] 225 13499 N. Amer.

Street Level [7] ∼76000 {72,88} N. Amer.

TABLE I
MEASUREMENT-BASED GEOLOCATION STUDIES

In this paper we take the first steps toward resolving

geolocation accuracy as the number of landmarks and the

geographic location of the targets change. We do so by

stepping back from the geolocation problem per se, and

asking what the role of network geometry is in measurement-

based geolocation. By network geometry we mean the specific

geographic location of each network node and the particular

set of connections between network nodes.

Our primary tool for studying the geometry of a network

is through analysis of its scaling dimension (closely tied to

the concept of a fractal dimension [8]). Scaling dimension

examines how the maximum delay to a landmark varies as a

function of the number of landmarks. We show that the scaling

dimension sheds considerable light on the properties of two

representative geolocation algorithms: Shortest Ping [4] and

Constraint-Based Geolocation [5]. We evaluate scaling dimen-

sion and geolocation accuracy (for both algorithms) for 24 real

network topologies. We also evaluate scaling dimension and

geolocation accuracy on two datasets consisting of measured



delays between nodes spanning multiple geographic regions.

Our contributions are two-fold. First, we show that scaling

dimension informs us about how the number of landmarks

affects geolocation accuracy. We demonstrate that a network

with larger scaling dimension tends to show a smaller im-

provement in geolocation accuracy with additional landmarks,

compared to a network with smaller scaling dimension. Sec-

ond, we show that operator networks in different regions

of the world show markedly different scaling dimension, in

a way that is consistent across regions. This suggests that

geolocation accuracy is likely to behave differently in separate

geographic regions, but in a predictable way. Our results show

that operator networks in North America, Japan, and Europe

generally have high scaling dimension, while those in South

America and Oceania (i.e., Southeast Asia and Australia)

have smaller scaling dimension. This is consistent with our

related observation: North American, Japanese, and European

operator networks require more landmarks to obtain a fixed

percentage increase in geolocation accuracy than do South

American and Oceanic networks.

Besides providing insight into the fundamental way that

network geometry affects geolocation, our results also help

interpret existing geolocation studies, and suggest standards

for future studies.

II. RELATED WORK

Considerable prior work has been done on the subject of

measurement-based geolocation [2], [3], [4], [5], [6], [7]. We

are motivated by the fact that each of these cited works has

used a different geolocation data set to test their methodology,

and therefore an ‘apples-to-apples’ comparison across differ-

ent studies is not possible. Thus, rather than developing an

additional geolocation technique, here we try to bridge the

gap between incomparable studies using the tool of scaling

dimension.

In our experiments we focus on characterizing geolocation

accuracy using two different methods: Shortest Ping [4], and

Constraint-Based Geolocation (CBG) [5]. We chose these

two methods because they are very different, and represent

two general strategies for geolocation. In Shortest Ping, the

location assigned is the same as one of the landmarks, and a

single landmark ultimately determines the location assignment.

In contrast, in CBG, the location assigned is not that of

any single landmark, but is instead the intersection of a set

of feasible geographic regions with respect to all of the

landmarks.

Not only are these two methods representative, but they are

often incorporated in other geolocation methods. For example,

Shortest Ping is studied in [4], but it is also used as the final

step in [7]. The GeoPing method [2] assigns the target location

to the ‘nearest’ landmark (in a synthetic delay space). The

Octant algorithm relies on an augmented form of CBG to

determine a feasible geographic region for a given target [3].

Additionally, CBG is used as an early step in the “Street-

Level” geolocation framework in [7].

III. DATASETS

We first synthesize network distance measurements through

the use of 24 Internet core network topologies with geolocation

information courtesy of the Internet Topology Zoo [9] and the

disclosure of various tier-1 ISPs that are publicly available.

Network distances are synthesized via shortest-path routing

along the specified router-level network geography and con-

nectivity.

To demonstrate the power of our analysis methodology on

IP geolocation studies, we show how a collection of latency

measurements from landmarks can be used to further analyze

a network topology. The first dataset considered consists of

431 commercial hosts belonging to Akamai Technologies in

the continental United States with known geolocation (with

accuracy down to the GPS coordinates). During the weekend

of January 16-17, 2010, full mesh pairwise bidirectional

measurements of latency were performed between servers

belonging to Akamai Technologies hosted at 431 distinct

physical locations in the United States. The measurements

were conducted using a single latency measurement using the

MTR tool [10]. The second dataset is from a set of pairwise

latency courtesy of [11] from round-trip times between 87

worldwide Planetlab nodes [12] taken in January 2008.1

IV. NETWORK GEOMETRY AND GEOLOCATION

Our focus is on the typical measurement-based approach to

IP geolocation. Specifically, where there are a set of landmarks

in the network – hosts with known location – and there

are targets, which are to be geolocated. The user has the

ability to measure delays between any target and any landmark

which may be measured using ICMP ECHO, one-way probes,

or other techniques, and can be processed by taking many

measurements and using only the minimum. We use the

term delay to refer to the results of any of these techniques

regardless of the details.

Delay-based geolocation of a particular target t generally

consists of four steps:

1) Select a set of M landmarks, L;

2) Measure delay from target t to each landmark in L;

3) Convert delays to distances (or distance bounds);

4) Use distances and known landmark locations to form a

location estimate for target t.

Various proposals for geolocation methods address one or

more of these steps. However, regardless of the algorithmic

and measurement techniques used to address each step, there

are fundamental limitations placed on each step by the network

geometry. The network geometry constrains each of the four

steps in standard geolocation: it restricts the locations that can

be used as landmarks, it determines the geographic routing

of the delay probes that can be measured, and it affects the

amount and nature of geolocation information that can be

extracted by algorithms.

1The authors would like to thank Cristian Lumezanu for making this data
set publicly available.



A. Geolocation and Covering

A particularly simple approach to geolocation is “Shortest

Ping.” In Shortest Ping geolocation, delay measurements are

taken between the target and landmarks, with the target

geolocation assigned as the location of the landmark with

the smallest delay. Given a set of M landmarks, one way to

assess the accuracy of Shortest Ping is by the largest delay,

denoted by r, between any node and its assigned landmark.

A placement of M landmarks is equivalent to a covering of

the network, meaning that all nodes are within r of one or

more landmarks. Loosely, we can think of this covering as

M “balls,” each centered at a particular landmark, and having

radius no larger than r (measured in units of delay in the

network). For any given r, we define a minimal covering

as a covering that uses the minimum number of landmarks

necessary to cover the network with balls of radius r. We

denote the number of landmarks in the minimal covering as

m(r). An example of a minimal network covering is shown

in Figure 1-(A).

A central theme in our work is to study the relationship

between the covering length r, the minimum number of

landmarks m(r), and the average geolocation error e(r).
Understanding this relationship will allow us to answer the

following key question: How does geolocation accuracy scale

as we increase the number of landmarks? And although in

this section these quantities will be derived from the Shortest

Ping geolocation method, we later show that they shed light

on more complex geolocation methods as well.

As we will show in Section V, we find that in empirical

network measurements, the relationship between m(r) and r
can in general be approximated by a power law over a set of

scales of interest (rmin, rmax):

m(r) ∝ r−β rmin ≤ r ≤ rmax, β ≥ 0 (1)

We will show that the exact decay of m(r) with r, given by

the parameter β, varies for different network topologies under

consideration. This decay parameter, β has a direct connection

to the notion of a fractal dimension [8]. Our network measure-

ments result in finite sets, which can only show scaling over

a finite range of r values. For these reasons we refer to β as

the scaling dimension of the network geometry, to distinguish

it from the traditional notion of fractal dimension.2

B. Graph Motif Example

To illustrate the significance of scaling dimension on ge-

olocation accuracy, consider the two simple graphs: a ring

graph and a grid graph. Both graphs are embedded in two-

dimensional space with the same surface area. The ring graph

has scaling dimension of approximately one, since all the

nodes lie on a one-dimensional line. Meanwhile, the grid graph

has scaling dimension of approximately two, as all the nodes

and connections are spread across two-dimensional space.

2Thus, while the fractal dimension is a mathematical construct pertaining
to infinite objects, the scaling dimension β allows us to characterize empirical
data (as discussed in [13]).

Figure 1-(B) shows the results for Shortest Ping geolocation

on these simple graphs, each with 100 nodes. The figure shows

a clear power law trend for each graph (indicated by a straight

line in a log-log plot). The figure illustrates two important

effects. First, for the lower-scaling-dimension ring graph, the

addition of more landmarks has a significantly larger impact

on geolocation error reduction than for the higher-scaling-

dimension grid. Second, for small numbers of landmarks, the

absolute accuracy is better for the grid graph, while for large

numbers of landmarks, absolute accuracy is better for the ring

graph.

We can explain these two effects intuitively in terms of

Figure 1-(C,D), which depicts two “network” objects that

both span a geography with area A with nodes scattered-at-

random across the geography. The figure shows that using the

same number of landmarks, M , in the network with scaling

dimension of β = 1 nodes will typically be on the order

of O (A/M) away from a landmark, while in the network

with scaling dimension of β = 2, nodes typically will be

on the order of O
(√

A/
√
M

)

away from a landmark. Thus,

when M is small, geolocation accuracy is better for β = 2,

because of the difference between A and
√
A in the numerator.

However, when M is large, the slower scaling of 1/
√
M as

opposed to 1/M means that geolocation accuracy is better

for β = 1. Generally, we would expect the performance of

geolocation to scale like O
(

M
−1

β

)

, the separation distance

between landmarks.

This illustrates two key ideas that are important in the rest

of the paper. Consider two networks N1 and N2, such that N1

has larger scaling dimension than N2. First, N1 requires the

addition of more landmarks to improve geolocation accuracy

by a given factor than does N2. And second, N1 may have

better accuracy for a small number of landmarks, and poorer

accuracy for a large number of landmarks, than N2.

V. EXPERIMENTS

Our results are obtained by applying the methods described

in the last section on two kinds of data. We first analyze known

topologies, annotated with geolocation information, courtesy

of the Internet Topology Zoo Project [9]. Each known topology

consists of a single provider’s network lying within a particular

geographic region (North America, South America, Japan,

Europe, or Far East/Australia). Using known topologies allows

us to restrict our attention to specific geographic regions,

and to obtain many sample topologies from each region.

We synthesize delay measurements based on the geographic

length of shortest-paths. We believe that shortest-paths are

a reasonable approximation for actual paths when paths are

wholly contained within a single provider network, as is the

case here.

Next, we demonstrate that our results hold as well when

using actual measured delays over observed Internet paths.

Hence, these delays are the result of true Internet routing, and

the paths used extend over multiple provider networks. For this

purpose, we use measurements taken from full-mesh latency
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Fig. 1. (A) - Example of a minimal network covering where m (r) = 4, with the landmark nodes denoted in white, (B) - Log-log plot of geolocation
accuracy of Shortest Ping on both a ring and grid graph, each containing 100 nodes, (C) - Covering of an object with scaling dimension β ≈ 1 and (D) -
Covering of an object with scaling dimension β ≈ 2.

probing between a set of nodes, each in a known location. We

demonstrate that our results hold for two different datasets: one

collected from the Akamai network, and one from Planetlab.

A. Characterizing Geometry and Geolocation

Resolving the connection between network geometry and

geolocation performance is dependent on our ability to pre-

cisely characterize the scaling dimension and geolocation

accuracy from observed network measurements.

While estimating the scaling dimension is clear for abstract

spaces like those in Figure 1-(C,D), we require a methodology

for estimating the scaling dimension from observed distances

in non-uniform networks. When analyzing network geometry,

standard approaches such as box counting [14] present a

number of limitations with respect to observed network delays.

To avoid these limitations, we make use of the CLUSTER-

SCALING algorithm described in [15].

To measure geolocation accuracy, we need to determine the

best placement of M landmarks. For a given network, this is

combinatorial in the number of possible landmark points and

hence computationally infeasible. Using complete knowledge

of the network geometry (i.e., connectivity and geolocation),

we approximate the best case geolocation performance using

a greedy choice of M landmarks. The data generally exhibits

a power law decay, where for M landmarks the geolocation

accuracy decays approximately as M−γ . For Shortest Ping-

based Geolocation we find the mean geolocation error decay

with respect to M landmarks to be proportional to, esp (M) ∝
M−γsp . Likewise, for Constraint-Based Geolocation and M
landmarks we can similarly state, ecbg (M) ∝ M−γcbg .

B. Scaling Dimension and Geolocation

In order to investigate the effect of scaling dimension on

geolocation accuracy over a wide range of networks, we

studied 24 core networks from the Topology Zoo Project [9].

We estimate the scaling dimension (β) and geolocation scaling

(γ) for both geolocation algorithms for networks in varying

parts of the world.

In Figure 2-(A,B) we show a scatterplot of each network’s

scaling dimension (β) versus the exponent of geolocation

decay (γ) for the Topology Zoo networks. This strong rela-

tionship can be measure using the coefficient of determination

[16], R2, which measures the amount of variation in γ that

can be explained by the variation in the expected behavior of

1

β
. For Shortest Ping-based geolocation, we find R2 = 0.855

(where 85.5% of the variation in geolocation accuracy can

be explained by the estimated scaling dimension), while Con-

straint Based Geolocation shows R2 = 0.787. This demon-

strates that the estimated scaling dimension can resolve a

significant amount of information about the effectiveness of

IP geolocation on a particular network topology.

These figures illustrates a number of important points. First,

there is a consistent relationship between scaling dimension

and geolocation – in general, when scaling dimension is

large, geolocation accuracy tends to decline more slowly with

increasing landmarks (i.e., γ tends to be small). This confirms

a central result, namely, that network geometry has a strong

impact on geolocation accuracy, and that scaling dimension

captures this impact.

Another striking characteristic of these experiments is the

similarity of metrics for networks in the same continental

region. This is summarized in the aggregated results in Ta-

ble II. As the table shows, North American, Japanese, and

European networks exhibit high estimated scaling dimension,

and relatively slow decay of geolocation error with increasing

numbers of landmarks. In contrast, the Oceanic and South

American networks both have very low estimated scaling

dimension, and much faster improvement of geolocation error

as additional landmarks are employed. This suggests that

geolocation algorithms are likely to show very different per-

formance in different parts of the world.

C. Measured Delays in the Internet

We show that our results are still valid when we eliminate

shortest-path assumptions. In particular, we shift to analyzing

measurements taken from the Internet, in which paths cross

many providers’ networks, and which use actual measured

delays. We note that the measurements we use here may

well show triangle inequality violations. To estimate scaling

dimension, we hold out a randomly chosen subset of 30 nodes

as landmarks for each real world network. We then examine

how the scaling dimension estimated from a full mesh probing

of the 30 landmarks correlates with scaling of geolocation

accuracy with respect to the remaining nodes, considering

both Shortest Ping and Constraint-Based Geolocation. The

results on real world networks are shown in Figure 2-(C,D).

The figure shows that the inverse relationship between β and

γ also holds in our measurement data for both geolocation
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Fig. 2. Comparisons between estimated scaling dimension and greedy power law decay of the geolocation techniques. (A) - Shortest Ping results from
Topology Zoo networks, (B) - CBG results from Topology Zoo networks, (C) - Shortest Ping results from real-world (Planetlab/Akamai) networks (each point
represents results from a randomly selected set of landmarks), (D) - CBG results from real-world (Planetlab/Akamai) networks.

TABLE II
SCALING DIMENSION AND GEOLOCATION DECAY RATE, AGGREGATED BY GEOGRAPHIC AREA.

Scaling Dimension Greedy Shortest Greedy CBG
Dimension (β) Exponent (γsp) Exponent (γcbg )

Geographic Area # Networks Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Japan 2 1.104 0.083 0.780 0.021 0.880 0.204
Europe 7 1.148 0.320 0.993 0.190 1.064 0.228
North America 8 0.924 0.223 1.439 0.361 1.477 0.516
South America 3 0.681 0.053 1.620 0.420 1.547 0.524
Oceania 4 0.617 0.069 2.047 0.269 2.143 0.440

algorithms, just as it did for the topologies previously studied.

The figure also shows that the two data sets have sharply

different scaling dimension. We note that the Planetlab data

spans multiple continental regions while the Akamai hosts are

located only in the continental United States.

VI. CONCLUSIONS AND FUTURE WORK

Despite considerable efforts, accurate measurement-based

geolocation remains an open problem. Many proposals have

been put forward for, but it is difficult to ascertain which

method is best – or even, under what conditions a given

method is best. In this paper we take a step toward identi-

fying the aspects of network geometry that affect geolocation

accuracy, and in so doing attempt to provide insights that help

in comparing and evaluating geolocation methods. We define

a property of a network which we call the network’s scaling

dimension. We show that the scaling dimension correlates with

the degree to which adding landmarks improves geolocation,

and the scaling dimension uncovers consistent differences

between networks in different regions of the world.

Our analyses lead to a number of conclusions that speak

to the study of measurement-based geolocation broadly. First,

our results suggest that the relationship between the number of

landmarks and the accuracy of geolocation varies considerably

in different parts of the world. Hence, prior geolocation study

results (e.g., from only North America or Europe hosts) may

not carry over to other parts of the world. Second, our results

highlight the importance that the number of landmarks used

has on geolocation accuracy.

In future work we look to examine larger topologies and

how multi-region/multi-provider topologies behave with re-

spect to scaling. We believe that further study of the scaling

properties of network delays may ultimately allow a better

understanding of geolocation studies, and a better basis for

comparing and evaluating new geolocation methods.
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