
Leveraging Website Popularity Differences to
Identify Performance Anomalies

Giulio Grassi
Inria

Paris, France
giulio.grassi@inria.fr

Renata Teixeira
Inria

Paris, France
renata.teixeira@inria.fr

Chadi Barakat
Université Côte d’Azur, Inria

Sophia Antipolis, France
chadi.barakat@inria.fr

Mark Crovella
Dept. of Computer Science

Boston University, USA
crovella@bu.edu

Abstract—Web performance anomalies (e.g. time periods
when metrics like page load time are abnormally high) have
significant impact on user experience and revenues of web
service providers. Existing methods to automatically detect web
performance anomalies focus on popular websites (e.g. with tens
of thousands of visits per minute). Across a wider diversity
of websites, however, the number of visits per hour varies
enormously, and some sites will only have few visits per hour.
Low rates of visits create measurement gaps and noise that
prevent the use of existing methods. This paper develops WMF,
a web performance anomaly detection method applicable across
a range of websites with highly variable measurement volume.
To demonstrate our method, we leverage data from a website
monitoring company, which allows us to leverage cross-site
measurements. WMF uses matrix factorization to mine patterns
that emerge from a subset of the websites to “fill in” missing
data on other websites. Our validation using both a controlled
website and synthetic anomalies shows that WMF’s F1-score is
more than double that of the state-of-the-art method. We then
apply WMF to three months of web performance measurements
to shed light on performance anomalies across a variety of 125
small to medium websites.

Index Terms—anomaly detection, data analysis, web perfor-
mance measurement, matrix factorization

I. INTRODUCTION

As more and more of our society and daily lives migrate
online (from shopping to entertainment and work to mostly
everything under the current pandemic), web performance
becomes ever more crucial. Slow web load times can have
significant impact on the revenues of online businesses, as
users give up on browsing due to temporary performance
degradations [1]. For example, Google reports that “increasing
web search latency from 100 ms to 400 ms reduces the daily
number of searches per user by 0.2% to 0.6%” [2] and a one
second delay in page load time would cost Amazon an estimate
of $1.6 billion in annual sales [3]. As such, website admin-
istrators spend significant effort to optimize the performance
of their webpages—a task that requires accurate and efficient
methods to detect and diagnose poor web performance.

Web performance monitoring and diagnosis have thus re-
ceived considerable attention from research and industry. A
number of efforts have focused on designing metrics to capture
webpage performance (for example, Page Load Time, Above-
The-Fold-Time [4], or SpeedIndex [5]) and understanding how
these metrics relate to the user quality of experience [6], [7],

[8]. Webpages are often instrumented to passively collect at
least some of these metrics. In some cases, websites contract
third-party companies such as Dynatrace [9], Pingdom [10],
IP-Label [11], or Akamai [12] to monitor the performance
of their websites on their behalf. An important task for
such services is detecting web performance anomalies —
abnormally high values of, for instance, page load time (PLT).

Unfortunately, however, both website administrators and
third-party monitoring services lack effective tools to automat-
ically detect the rare occurrences of web performance anoma-
lies within the many visits to a website. To date, methods for
web performance anomaly detection have focused on search
response times [13], [14]. Such methods are designed for
very popular websites (e.g. for Bing and Baidu, with tens to
hundreds of thousands of visits per minute). However, when
using passive measurement for more general-purpose websites,
a significant challenge arises due to the Zipfian distribution of
overall popularity. Across a collection of websites, usually a
small number of sites will account for most visits and a vast
majority of sites will be less popular [15]. This problem is
compounded by the fact that measurement of site performance
is expensive, and in many cases only a small sample of visits
to a site can be instrumented and measured.

This highly variable quantity of performance measurements
available across websites causes severe problems for tradi-
tional anomaly detection methods. First, anomaly detection
for general purpose websites must deal with measurement
gaps – time periods with no measurements. These gaps can
happen because when a less-popular website takes sampled
measurements, there can be periods where none of the visits
are sampled. Second, low numbers of measurements increase
the effect of measurement noise. For example, during a certain
period, page load time may increase simply because the lower
number of measurements happen to include many users who
have a poor cellular connection.

On the other hand, the performance of websites is often
measured by third parties. In this setting we observe that there
is an opportunity to overcome challenges due to variable data
volume by looking across websites. That is, we propose to
“borrow from strength” using measurements of many websites
simultaneously to overcome the challenges of spare per-
site data. In this paper, we use this insight to develop a
web performance anomaly detection method that overcomes

the challenges of highly variable measurement volume. To
demonstrate our method, we leverage data collected by a
web performance monitoring company (presented in Sec. III).
Our method can learn patterns from a subset of websites
to help “fill in” the missing data on other websites. The
method we develop in Sec. IV, called WMF for Web Matrix
Factorization, leverages matrix factorization and the dataset’s
low dimensionality to identify both normal web performance
and performance anomalies. We validate WMF in a controlled
live setting where we are able to induce network delay to
a server, as well as by injecting synthetic anomalies in the
dataset (Sec. V). Our results discussed in Sec. VI show that
WMF achieves a recall of about 0.9 and a precision of about
0.98 in controlled experiments. Precision and recall are lower
in the evaluation with synthetic anomalies, because the dataset
contains anomalies that we have not introduced, but WMF’s
F1 score is more than double that of state-of-the-art time series
methods for anomaly detection of web performance [13]. This
result confirms that it is non-trivial to adapt existing methods
developed for popular websites to work on less popular sites.

We then apply WMF to detect anomalies on three months
of web performance measurements across 125 websites
(Sec. VII). This analysis sheds light on web performance
anomalies in a heterogeneous set of small to medium web-
sites. Only 56 out of the 125 websites experience any web
performance anomaly during our study. Most anomalies are
short (lasting less than one hour), but we detect a few events
that last for more than ten hours. We also show that some
websites had at least one anomaly every five days on average.
We conclude that an automated web anomaly detection tool
such as WMF can assist web administrators or third-party
monitoring companies to quickly detect anomalous events
despite the challenges posed by heterogeneous measurement
volume across websites.

II. BACKGROUND

In this paper, we are concerned with web performance
anomalies, by which we mean abnormally poor (i.e. high)
values of one of the web performance metrics (for instance,
PLT). Because web and Internet measurements in general are
noisy, a single outlier measurement is usually not significant
enough to a website operator to merit a response. Hence, in
this paper we focus on anomalies that last tens of minutes and
that affect a considerable fraction of users.

A number of techniques have been proposed in the litera-
ture for anomaly detection of web measurements, and more
generally, network measurements. We divide existing methods
into temporal and spatio-temporal approaches.

Temporal methods. The most common way to study temporal
data is to build a time series model of measurements in
aggregated form (e.g. average or median of measurements
in a time bin). Deviations from model predictions can
then be used to identify anomalous time points. In this
category we find Seasonal-Trend Decomposition using Loess
(STL) [16] methods, which split the time series into three
signals: the trend, the seasonal, and the residual components.

The latter is normally analyzed to detect anomalies. In the
domain of web performance measurements, the Week-over-
Week (WoW) method relies on STL to detect anomalies on
Search Response Time measurements performed on a major
web search provider [13]. Other temporal approaches for
anomaly detection are based on Autoregressive Integrated
Moving Average (ARIMA) [17], [18], [19] and Exponential
Smoothing [20] (with Holt-Winters seasonal method [21]
being the most common), where historical values are used
to forecast the next value of a time series, and anomaly
detection is built on top of values far from the outcome of
the model. Finally, neural networks methods such as LSTM
Autoencoder [22], [23] can be used to detect anomalies, where
the model is trained with a set of ‘normal’ data and then tries to
reproduce the rest of the dataset. A degradation in the accuracy
of the reconstructed signal means an anomaly is present.

A key concern when using time series analysis methods is
the need for reliable values for every time bin. Whenever a
time bin has no data one generally must interpolate the missing
values. Errors in this estimation of the missing values will
compromise the accuracy of the anomaly detection process on
the known values. In our setting where many websites have
low measurement volumes and can have many missing values,
this becomes a critical issue.

Spatio-temporal methods. Spatio-temporal methods are
commonly adopted in case of high dimensional datasets with
timeseries measurements performed on different entities or at
different locations. These techniques not only analyze the
temporal relation of the signals in the datasets, but they also
exploit the correlation among the different signals. A popular
technique is Principal Component Analysis (PCA), which
performs a linear mapping of the data to a lower dimensional
space so as to represent the data using fewer components that
describe the majority of the variance of the entire dataset.
The low-rank representation of the dataset typically captures
the ‘normal’ behavior, and deviations (residuals) from the low-
rank representation allow identification of anomalies. PCA has
been broadly used for anomaly detection, for instance in wide-
area communication networks [24], [25], datacenter services
[26], and social network activity [27]. A generalization of
PCA to tensor factorization has been also adopted for anomaly
detection [28].

However, as a data analysis technique, PCA has a limitation
similar to time-series methods in that it cannot be used directly
on data with missing values. An alternative to PCA that can
build a model of data with missing values is low rank matrix
factorization, also termed matrix completion [29], [30], [31].
A number of efficient algorithms have been developed for
this problem [32], [33], [34]. Like PCA, matrix factorization
seeks to find linear relations among the different signals in
order to describe the majority of the data with a low rank
matrix. However, it is designed to operate on matrices with
missing data, and importantly, it can construct predictions of
the missing data based on the low-rank approximation.

As noted above, a central challenge of working with website

data is that there is an enormous variation in measurement
volume across sites, as well as time periods with no sampled
visits. This leads to many cases of missing data in our
measurement matrices. It is thus very hard to build either
time series or PCA models on such data (and such methods
perform poorly, as we show below). Hence in this paper we
adopt low-rank matrix factorization and adapt it to the problem
of anomaly detection (described in detail in Sec. IV). While
this general methodology has appeared in one prior work [35],
to our knowledge this is the first work to apply it to anomaly
detection problems in networking, and the first to recognize its
power for addressing the data challenges presented by highly-
variable website popularity.

III. DATASET

Overview. The primary dataset we use in this paper is
collected by ip-label, a company that sells both passive and
active website performance monitoring solutions. Ip-label
embeds Javascript code in the webpages of its customers to
measure web performance via the Navigation Timing API.
Measurements are collected within the user’s browser, then
exported to a database maintained by the company. Website
operators pay the monitoring service based on both the number
of requests monitored and the number of metrics logged.
To reduce costs, website operators often select a subset of
webpages and visits to monitor, and collect only a few of the
metrics available from the Navigation Timing API.

Our study relies on the dataset collected on 125 websites
from July 29 to October 27, 2019 (mostly websites of private
companies with few e-commerce and public institutions).
Users access these sites from 235 countries across all con-
tinents, but 78% of the accesses come from Europe and 18%
from Asia. We use the term visit to refer to a user accessing a
webpage (or URL) within a website. The passive monitoring
solution logs web performance of visits to a monitored website
together with meta-data about the client’s device.

The metrics captured are shown in Table 1. While space
does not permit detailed definition of these metrics, they
are for the most part standard or customized versions of
standard web performance metrics. We made a more detailed
descriptions available online [36].

Metric #Websites #Visits

Customized Page Load Time 94 233M
Time To Interactive 51 166M
DOM Completion Time 45 79M
Object Response Time 43 75M
Page Processing Time 43 74M
First Byte Received 43 63M
Connection Time 42 23M
DNS Response Time 39 16M

TABLE 1— Web performance metrics in the dataset. #Web-
sites indicates how many websites report measurements for the
given metric, while #Visits reports the number of visits that
trigger a measurement for a given metric.

Variability of measurement volume. As described in Sec. II,
prior methods for web anomaly detection were developed

0 10
0

10
1

10
2

10
3

10
4

10
5

10
6

of visits per hour

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

fra
ct

io
n

of

 U
R

L-
ho

ur
 a

nd
 w

eb
si

te
-h

ou
r

Website
URL

(a)— Number of measurements
per hour.

0 25 50 75 100
% of one-hour bins with no visit

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

fra
ct

io
n

of

 U
RL

s a
nd

 w
eb

sit
es

Website
URL

(b)— Percentage of one-hour
bins with no measurements.

Fig. 1— Aggregation by time (hourly representation) and
space (by URL or by website) of visits triggering web per-
formance measurements.

and evaluated for highly-popular websites such as Bing [13]
(∼270k visits per minute worldwide [37]) and Baidu [14]
(∼10k visits per minute). The websites in the dataset pre-
sented in the previous section, however, show a large range
of measurement intensities. Fig. 1(a) shows the cumulative
distribution function of the number of measurements per URL
and per website in one-hour bins. We see that a vast majority
of URLs have very few measurements per one-hour bin: over
50% of bins have no measurements, and less than 20% have
more than one measurement in a time bin.

We can improve the per-bin counts by aggregating mea-
surements of all monitored URLs within the same website,
which helps somewhat reducing the fraction of bins with no
measurements to less than 40%. Even when we aggregate all
visits to different URLs of the same website, Fig. 1(b) shows
that for almost 50% of websites, at least half of their one-hour
bins still have no measurements.

The nature of this data illustrates the challenges of anomaly
detection across general-purpose websites. First, even when
aggregating measurements in fairly large, one-hour time bins,
a significant fraction of bins still have no data. Second,
the number of measurements per hour is often small, which
makes the statistics less stable. For example, the average PLT
may vary significantly between time bins because users visit
from poorer connections or devices. We note that previous
work [13] has actually filtered out users accessing from mobile
devices to eliminate some variation in metrics, but for our
problem such an approach would reduce even further the
number of data points for analysis.

Data representation choices. To address the challenges
just presented, we adopt a number of strategies. First, we
implement a binning strategy that aggregates measurements
in one-hour time bins, which trades off time granularity
for improved statistical properties. Second, we aggregate
measurements from multiple URLs in each bin. Because
content and page structure across URLs can vary considerably,
we normalize measurements at a per-URL level to zero-mean
and unit variance. Since normalization is performed across

all time bins, this means that anomalies still stand out, but
differences on the URL level are overcome.

Next, we consider how to summarize the samples in each
bin. Prior work has generally summarized samples using the
mean. However, due to the frequently limited measurement
volume, the mean can be heavily influenced by single measure-
ments. Further, our problem definition seeks to find anomalies
that affect a significant fraction of visits. Hence we instead
use percentile summaries; we find empirically that the 75th
percentile captures well fluctuations in web performance even
in bins with few measurements, so we adopt that metric. We
made the evaluation of other aggregation metrics available
online [36].

A final strategy we use to maximize the amount of data
available for anomaly detection is to combine samples of mul-
tiple web performance metrics within the same matrix. Had
we only considered a single metric, we would be discarding
a significant fraction of available data. For example, even
Customized Page Load Time, which is the most popular metric
in the dataset (Table 1), is measured in only approximately
80% of visits. In addition, different metrics help capture
different types of anomalies. For example, First Byte Received
is more sensitive to high delays, whereas Customized Page
Load Time is also going to increase under losses. This leads
to one time series per web performance metric collected for
each of the monitored website. Given that we normalize values
of individual metrics so that distributions per metric have zero-
mean and unit-variance, it is therefore reasonable to analyze
time series of multiple metrics together in the same matrix.

Notation. Summing up, for each website and performance
metric pair, we create a time series of the hourly 75th
percentile of measurements. We obtain 425 time series, which
we represent into an n×m matrix, M. A row, i, corresponds
to a time bin and a column, j, to a (website, performance
metric) pair. The element (i, j) is the 75th percentile of the
measurements of the (website, performance metric) pair, j,
during the time bin, i. The dimensions of M depend on
the dataset. In our case, m = 425 and n = 2184, which
corresponds to three months of measurements. In a long
running system, we expect to select n time bins in a sliding
window fashion. Note that for the methods we discuss in the
next section to work, we need to consider at least a few months
of data to capture any weekly patterns in the dataset.

IV. METHOD

Given web performance of multiple websites over time
represented in M, our goal is to identify web performance
anomalies – cells of M (i.e. a specific web performance metric
for a specific website at a specific time) with abnormally
high values. Note that the one-hour bins we use to aggregate
web performance samples ensure that we focus on significant
anomalies that affect a large fraction of visits during the hour.

Applying standard anomaly detection methods to M is
challenging given the large number of empty cells (46% of
the cells in M are empty). As described in Sec. II, matrix
factorization is capable of constructing a low-rank matrix

150 200 250 300
#bins per row with at least one visit

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

fra
ct

io
n

 o
f t

im
e

bi
ns

Fig. 2— Number of cells in M with at least one visit per
one-hour time bin.

approximation even when there are many missing values. If
a matrix has a low-rank approximation, ML, we can use this
approximation to describe the ‘normal’ component of the data.
The difference between the original matrix and the low-rank
approximation represents the residual component, MR, which
contains the anomalous part of the data. This section first
evaluates our assumptions, then it presents our method, which
we call WMF for Web Matrix Factorization, to compute ML

and to detect anomalies using MR.

A. Assumptions

Our method is fundamentally spatio-temporal, meaning that
we identify the normal website performance from patterns
found in the entire M. The intuition is that factors such as
the daily and weekly pattern of user access, common cloud
providers, or shared network paths create partial correlation
across websites. If we find these inter-dependencies (despite
the large amount of missing data) we can use measurements of
other websites to evaluate whether at a particular time bin the
performance measurements of a given website are anomalous
or not. This approach requires that in a given time when
one website has no visits (i.e. a cell in M is empty) other
websites have visits, and that there exist linear dependencies
between the performance of different websites (i.e. that we
can approximate M with a low rank representation). We
evaluate these two assumptions before presenting our method
to estimate the normal form of M.

Websites can learn from one another. In every time bin in
the dataset, there are at least 136 out of 425 website-metric
pairs with at least one visit. At the same time, each row
contains at least 125 empty cells (Fig. 2). Our method uses
the fact that websites with no measurements at a given time
can potentially rely on the data from other websites with visits
to help reconstruct their ‘normal’ signal.

Low-rank representation of M. The rank of a matrix
indicates the number of linearly independent columns of the
matrix. If M can be approximated with a matrix of rank
lower than the number of columns, it means that there are
linear dependencies among some of the columns of M. This
approximation allows to separate the normal pattern (captured
in the low-rank approximation) from the anomalous pattern.

For a partially observed matrix A, we denote the set of
known values in A as Ω. Given a matrix A in which only

0 100 200 300 400
Rank k approximation

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

F-
no

rm
 e

rro
r

Fig. 3— Rank reduction: relative F-norm error of rank k
approximations of M.

the entries Ω are observed, we denote the error of using B to
approximate A as

‖(A−B)Ω‖2F =
∑

(i,j)∈Ω

(aij − bij)2.

To approximate an n × m matrix A via a low rank matrix,
we seek to find factors U and V , such that U is n × k, V
is m × k, and the rank k approximation of A is UV T . This
leads to the following minimization objective:

min
U,V

∥∥(M− UV T
)

Ω

∥∥2

F
+ λ

(
‖U‖2F + ‖V ‖2F

)
, (1)

where Ω is the set of observable entries, U and V are the
factor matrices and λ is a regularization parameter for U and
V to avoid overfitting (with ‖X‖2F =

∑
ij x

2
ij).

To solve Eq. (1) for a given k and λ, we use an algorithm
based on alternating least squares (ALS) [34]. The algorithm
alternates between finding the best U and V in order to achieve
the minimization objective. In practice, the ALS algorithm is
fast and robust; it is known to typically converge quickly to a
good rank k matrix UV T for approximating M.

To illustrate that a low-rank approximation is appropriate
for our data, we plot in Fig. 3 the relative error of each rank
k estimate of M (i.e. ‖(M − UV T)Ω‖2F /‖MΩ‖2F). We see
that the error rapidly decreases with k and reaches zero at
approximately k = 250. This figure shows that we can indeed
approximate the full 425-column matrix M with only 20%
error using a matrix of rank between 70 and 100 (and that the
125 websites are not completely independent).

B. Estimation of the normal component

Different techniques exist in the literature for the estimation
of the normal low rank component of a matrix. We evaluate
ALS [34], SVD [38], PCA and LMaFit [32]. We do not report
results for lack of space, but we observe that ALS achieves the
highest F1 score; we hence apply ALS in WMF. We explore
different settings for ALS and finally set λ = 0.25 and k = 70
because they achieve the maximum F1 scores for anomaly
detection. We report the full evaluation online [36]. Note that
these settings are not chosen to find the smallest error when
representing M (as shown in Fig. 3), but rather to provide
the best representation of the normal form of M for anomaly
detection.

C. Anomaly detection

We next estimate the anomalous component, MR. Given
the original matrix M with the per-hour average of all the
web performance metrics for each website, and its low-rank
approximation, ML, we compute the difference between M
and ML. Note that ML has no missing values thanks to the
ALS method that fills in the missing values in such a way to
preserve the structure of the low-rank approximation. When
a cell in M is empty, however, we ignore it while calculating
the difference, because there were no measured visits to the
site at that time. The resulting matrix MR indicates the extent
of the anomalous component for each website-metric at every
one-hour time bin. We then use MR to detect anomalies.

Anomalies on a website appear in a single column of M, or
at most in few of them if the website collects measurements
for other metrics and the same inefficiency impacts more than
one metric. To detect such anomalies, we identify “large”
residual values in MR. Anomalies in M are by definition far
from the normal values and thus should not appear in ML, but
only in the residual component matrix, MR. We label cells in
MR as anomalous if they are larger than a threshold, τ . We
find that τ = 99.9th percentile of the values in MR achieves
the highest F1 score for our dataset.

D. Running time

We report here the running time of the analysis and break it
down at each step. With an Intel(R) Xeon(R) Gold 6150 with
8 cores at 2.70GHz and a 2184 x 425 matrix (corresponding
to three months of data), computing ML and MR takes on
average 2 min and 26 sec. The second step of the analysis,
detecting the anomaly given the residual matrix, requires
instead on average 0.6 sec. The entire analysis is implemented
in Python. An interesting avenue of future work is to optimize
the implementation for real-time anomaly detection.

V. VALIDATION SETUP

The evaluation of any anomaly detection method is chal-
lenging due to the lack of ground truth, i.e. time bins that
contain known anomalies and others that are known not to
contain any anomalies. We rely on two approaches to validate
WMF: controlled experiments and synthetic anomalies. This
section describes our validation method, evaluation metrics,
and the baseline method we compare against.

A. Controlled website

Monitored website. We host a website on a server in our lab
instrumented with the same web monitoring software used to
collect the dataset described in Sec. III. We instrument five
of the pages of the website. Three of the webpages have only
static content (with varying size). The other two pages have, in
addition, content retrieved by Javascript code from other web
services (e.g. Google maps, weather forecast widget, etc).
Normally the website experiences very light load, with on
average less than 2-3 visits per hour.

Injected anomalies. We introduce network delay, d, on the
server hosting the website to later verify whether our method

can detect the time bins with these issues as anomalies.1 We
use Linux tc to periodically increase the delay of the outgoing
traffic by either 500 ms or 1 s. We pick these values of
delay increase to reflect values previously found to affect user
experience [2], [39]. We introduce each network issue for 30
minutes, on average every 6 hours (with a Poisson process
determining the start time). Given that our time bins are one
hour long, we choose anomaly durations of 30 minutes to
challenge our method, since issues that last more than one
hour will be easier to detect (as they affect all samples in a
bin). At the same time, our goal is to detect anomalies that
last for sufficient time for human intervention, so 30 minutes
is reasonable in this respect. We repeat each experiment 100
times, from July 29 to September 20, 2019 (∼25 days for each
type of injected anomaly).
Visits. Normally, our website has a small number of visits as
it is mostly used for experimentation. To ensure that we have
measurements during injected anomalies, we use two laptops
connected to one residential and one lab WiFi to visit the
website every five minutes on average during the two-month
experiment. These automated visits bring the total number of
visits to the website to ∼30 per hour, which is still low. To
reduce the impact of browser caching, we use incognito-mode
navigation, and before every visit we restart the browser.

B. Synthetic anomalies
We introduce synthetic anomalies in M to evaluate the

method in a larger variety of settings. Our goal is to introduce
realistic synthetic anomalies, where a single underlying issue
(in our case, network delay) affects the web performance of
multiple visits. We rely on the controlled website discussed
in the previous section to build a regression model per web-
page that captures the relationship between increased network
delays and web performance degradation. We then apply this
model to insert web performance anomalies in M.
Injected anomalies. To introduce anomalies, we select a
website and time bin and then increase the web performance of
all samples in the corresponding cell of M. We then re-run the
per-url normalization process and recompute M (as described
in Sec. IV). In particular, we evaluate with additional network
delay, d, equal to 500ms, 1s, and 2s. For each d, we randomly
pick 0.1% of cells in M among those with measurements to
inject anomalies. To test the sensitivity of WMF to anomaly
duration, we also inject anomalies with different durations.

C. Evaluation metrics
We rely on precision, recall, and F1-score to evaluate the

accuracy of our anomaly detection method. These metrics are
standard for detection problems with class imbalance (in our
case, the number of anomalous cells is significantly smaller
than that of normal cells).
Definition of true and false positives. The challenge in our
case is to define what we consider as true positive (TP) and

1We also evaluated the effect of packet loss, but our experiments show that
even 30% packet loss had minimal impact on web performance. Hence, we
omit the results based on packet loss.

false positive (FP). Even when we inject anomalies in the
controlled website scenario or synthetically in M, we still have
no complete ground truth. Visits to our controlled website may
have suffered real issues that we have not introduced, and the
dataset we use for introducing synthetic anomalies may likely
contain real anomalies as well. These real anomalies appear as
FP in our results. We consider a TP when our method correctly
identifies a cell with an injected anomaly as anomalous. In the
controlled website scenario, an injected anomaly may span two
time bins. We consider a TP if the method detects at least one
of the two time bins as anomalous. We are conservative and
consider all other detected anomalies as FP.
Manual inspection of false positives. To evaluate the effect
of real anomalies on the results we present, we manually
inspect each website-metric time series and report cells that
look anomalous, i.e., a single large spike in the time series, or
a group of consecutive bins with unusually high values. We
then report additional values for precision and recall, which we
label M.I. for Manual Inspection. In this case, if the method
detects any of the manually reported anomalies, we do not
count it as FP nor as TP. Note that we select only the cells
that look the most anomalous. There are still cells that may be
rightfully detected by the method but are not manually labeled
as anomalous. Out of ∼500k non empty cells, we only label
1,849 as anomalous (less than 0.4% of the entire dataset).
Controlled website. One issue with the controlled experi-
ments is that we regularly introduce anomalies, and hence
the anomalies may become part of the normal behavior. To
avoid this bias, we conduct the evaluation in multiple steps
each considering only few anomalies at a time (ignoring visits
performed when the other anomalies we introduce occur).

D. Baseline
We compare our method with the state of the art time series

method for anomaly detection of web performance, Week-
over-Week (WoW) [13] (Section II). WoW assumes that there
are no empty time bins. To apply it to our dataset, we use
linear interpolation on each per-column time series whenever
there are no measurements during a one-hour bin. Given an
empty bin at row i and column j of M, we estimate M[i, j] as
M[a, j] + (M[b, j]−M[a, j])× (i−a)

(b−a) , where a and b indicate
the closest non empty bins to i for column j, respectively
before and after i. WoW is designed for high volume of
measurements and the authors filter out visits from mobile
devices to reduce the variability of the measurements. In our
already sparse dataset, mobile devices represents 52% of the
visits. Thus, we keep these measurements.

VI. VALIDATION RESULTS

To evaluate the accuracy of WMF, we use both the con-
trolled experiments and the synthetic anomalies described in
the previous section. We run WMF against the three-month
dataset. Although we omit results for shorter time windows,
F1 score stabilizes for time windows of least two months.
Detection accuracy depends on anomaly duration and
severity. We first evaluate the effect of anomaly duration and

0.5 1.0 1.5 2.0
Additional network delay [sec]

0.0

0.2

0.4

0.6
M

ax
 F

1
sc

or
e

Anomaly duration
10m
20m
30m
40m
50m
1 hour

Fig. 4— Effect of anomaly duration and severity on WMF’s
maximum F1 score.

severity on the accuracy of our method. For this we rely on
injecting synthetic anomalies. Intuitively, anomalies that last
for a long time and that significantly increase performance
metrics should be easier to detect.

Fig. 4 shows that WMF’s performance increases with the
severity of the anomaly, i.e., additional network delay, as well
as with the duration of the anomaly (in minutes). Note that
these numbers would be higher in practice, because our dataset
contains true anomalies that our evaluation process is forced
to treat as false alarms. Anomalies of short duration (30-
40 minutes or less) are hard to detect because our measurement
time bins are 60 minutes in length. When the added network
delay is less than about 500 ms, detection is difficult overall;
on the other hand, when the additional network delay is 1 s and
more, F1 scores improve even for relatively short anomalies.
We conclude that an additional network delay of 1 s represents
an interesting performance region, and we focus on that next.

Precision and recall of WMF versus WoW. Focusing on the
case of one-second network delay, we study the accuracy of
WMF in more detail, and further compare it to that of WoW.
In this case, we also use results from the controlled setting,
and manually correct some of the false alarms in the analysis.

Fig. 5(a) presents the precision-recall curve of WMF and
WoW for controlled anomalies, and Fig. 5(b) presents corre-
sponding results for synthetic anomalies. The results show that
WMF considerably outperforms WoW, for both controlled and
synthetic anomalies. Even without manually correcting for the
anomalies already present in the dataset (blue curve), WMF
is capable of achieving impressive precision and recall (above
80% for both metrics at the same time). When we manually
inspect and remove anomalies that are already present in the
data, WMF performs even better and can achieve above 90%
in precision and recall at the same time.

In Fig. 5(b), results span many different websites, which
affects detection performance. Comparing the two plots, we
see that synthetically injected delays appear to be more diffi-
cult to detect, but that WMF still strongly outperforms WoW.
Further, we see that even across many diverse websites, WMF
can achieve a good level of accuracy, with operating points that
are above 50% in both precision and recall simultaneously.

Detection accuracy depends on the number of empty cells.
One of the motivations behind the design of WMF is the

0.00 0.25 0.50 0.75 1.00
Precision

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

WMF
WMF (M.I.)
WoW

(a)— Controlled website with
1 s extra delay.

0.0 0.2 0.4 0.6 0.8 1.0
Precision

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

WMF
WMF (M.I.)
WoW

(b)— Synthetic anomaly
equivalent to 1 s extra delay.

Fig. 5— Comparison of WMF and WoW.

0 20 40 60 80 100
Max % of tolerable empty bins per column

0.2

0.4

0.6

M
ax

 F
1

sc
or

e

WMF
WoW

Fig. 6— Effect of percentage of empty bins on the detection
accuracy.

need to handle websites with many empty measurement bins.
Hence, we examine the effect of the number of empty bins
on WMF’s accuracy. We consider the synthetic anomalies
scenario with 1 s additional network delay and we filter out
columns based on the number of empty bins. Fig. 6 shows the
maximum F1 score of WMF and WoW, when the maximum
tolerated percentage of empty bins varies between 0% (only
columns with no empty bins) and 100% (all the columns of
matrix M). The figure shows that, while F1 scores decrease
as sites have more empty measurement bins, the performance
of WoW is consistently lower than that of WMF. Further, the
figure shows that even when considering columns with many
empty bins (right side of the figure), WMF still achieves a high
F1 score (around 0.6). Finally, the presence in the dataset of
real anomalies not synthetically generated prevents achieving
an F1 score closer to one.

VII. WEB ANOMALIES IN THE WILD

In this section, we characterize the anomalies WMF detects
on the three-month dataset described in Sec. III (without any
controlled or synthetic anomalies). We first present the overall
characteristics of these anomalies, then we conduct a more
detailed analysis of a few anomalous events.

A. Overview

WMF detects a total of 502 anomalies during the three-
month measurement period, when using a threshold τ equal
to the 99.9th percentile of MR.

Anomaly frequency. Fig. 7(a) presents the average number
of anomalies per week on each website. Approximately 60%

0.0 0.5 1.0 1.5 2.0
#anomalies per website each week

0.0

0.2

0.4

0.6

0.8

1.0
Cu

m
ul

at
iv

e
fra

ct
io

n
 o

f w
eb

sit
es

(a)— Frequency of the
anomalies: average number of
anomalies on each website per
week.

100 101 102 103
Inter-arrival time of anomalies

 on a website [hour]

0.0
0.2
0.4
0.6
0.8
1.0

Cu
m

ul
at

iv
e

fra
ct

io
n

 o
f a

no
m

al
ie

s

(b)— Inter-arrival time of
anomalies on a website. 20% of
the anomalies are consecutive or
within 10 hours of each other.

2 4
Anomaly duration [hour]

100

101

102

#a
no

m
al

ie
s

(c)— Anomaly duration (in
hours).

10−4 10−3 10−2 10−1 100
#visits in anomalous bin

 (normalized by #visit in the column)

0.0
0.2
0.4
0.6
0.8
1.0

Cu
m

ul
at

iv
e

fra
ct

io
n

 o
f a

no
m

al
ie

s

(d)— Normalized number of
visits in the anomalous bin. The
number of visits decreases when
there is an anomaly.

Fig. 7— Anomalies over a 3-months period among 125 websites.

of websites experience no anomaly during the three months of
our study. In fact, the 502 anomalies we detect concentrate on
only 56 out of the 125 websites. In particular, three websites
experience at least one anomaly every five days. We also
study the inter-arrival time of anomalies on a given website
in Fig. 7(b). We see that 20% of anomalies happen within
ten hours or less of the previous anomaly. In those cases, it
is likely that a single underlying issue lasts for several hours,
but WMF may have only detected anomalies in a few of the
bins (we will show one such example anomaly in the next
section). Overall, this result suggests that the majority of
anomalies in the dataset are isolated and short-term events –
for instance, transient network congestion, a misconfiguration
of the internal routing of a CDN, or a server overload caused
by a spike in requests.

We compare the characteristics of the websites with and
without anomalies, but found no particular factor that explains
why a given website in the dataset experiences more anoma-
lies. We analyze the number of empty bins in a website’s
data and the average number of visits, but neither has an
effect. Other factors may have an impact on the frequency
of anomalies on a website, such as the complexity of the
pages, as well as the optimization and the distribution of the
resources across different servers. Unfortunately, we have no
information about the back-end of the web services and part of
the URL’s are hidden, which prevents us from accessing all the
webpages and develop further our analysis in this direction.

Anomaly duration. We group consecutive anomalous bins
together into individual anomalous events to infer anomaly
duration in Fig. 7(c). Consistent with the results in Fig. 7(b),
the large majority of anomalies has a duration of one hour,
which is the minimum size we can identify due to our bins.
A few anomalous events, however, last for four or five hours.

Website load and anomalies. One possible cause of anoma-
lies can be website overload. We study the relationship
between website load in terms of number of visits during
the anomaly versus typical number of visits in Fig. 7(d). We
use min-max normalization to bring the number of visits in
the anomalous bins between 0 (minimum number of visits
reported in the column) and 1 (maximum number of visits).
We see that in the majority of the cases, the anomalous

bins have a smaller number of visits compared to the normal
trend for the website. This result indicates that users may
momentarily leave the website when performance degrades.

B. Analysis of anomalous events
Among the 502 anomalies WMF detects, we select four

example events to study in more detail. We pick the most
severe anomalies to allow analyzing their possible causes
without the need for feedback from the operators of the
websites.
Anomalous event#1, 13 hours of anomalous visits. On
the 8th of October 2019, WMF detects two anomalies on a
Chinese website within a five-hour time interval. We report
in Fig. 8(a) the Time To Interactive of visits to this website
over the two days that include the detections. For a period of
13 hours, a fraction of the visits reports TTI values higher
than 60 seconds, which increases by a factor of ten the
number of visits that normally reach such a high value. This
behavior does not correspond to any daily or weekly pattern.
Furthermore, we noticed that the majority of these anomalous
TTI values fall within a relatively small time interval, between
62 and 70 seconds, which could be a symptom of timeouts
expiring. We do not have any information about the back-
end of the website, but we speculate that a problem affecting
one of the servers hosting the website (or managing a specific
resource) is behind this decrease in performance and possibly
timeouts on some of the visits.
Anomalous event #2, national holiday. Fig. 8(b) shows the
time series of the Customized Page Load Time of a Spanish
website, overlaid with the per-hour number of visits to the
website. WMF detects three anomalies within 22 hours, on
the 11th of October (highlighted with red dots in the figure).
A sudden drop in the number of visits appears at the beginning
of the detection period and lasts for 27 hours. While this shift
corresponds to no daily or weekly pattern, the 11th of October
is a national holiday’s eve in Spain, thus most likely the drop
in visits is related to this festivity. We believe that the drop
is caused by either a change in people’s behavior during the
holiday, or, by a maintenance scheduled on that day on the
infrastructure of the webserver.
Anomalous event #3, WMF detects an anomaly on website
likely to be down. Fig. 8(c) shows the time series of the

'19-10-08
'19-10-08

'19-10-08
'19-10-08

'19-10-09
'19-10-09

'19-10-09
'19-10-09

Time

101

102

103

104

105
TT

I [
m

se
c]

(a)— Anomalous event #1: TTI reported by
each visit over two days, with green dots
indicating the visits labeled as anomalous
by WMF.

'19-10-06
'19-10-07

'19-10-09
'19-10-10

'19-10-12
'19-10-13

'19-10-15
Time

0

10000

20000

30000

Cu
st

. P
LT

 [m
se

c]

Average Cust. PLT
Anomaly
#visits

0

1000

2000

3000

4000

5000

6000

#v
isi

ts
 p

er
 h

ou
r

(b)— Anomalous event #2: sudden drop of
visits during a national holiday.

'19-10-10
'19-10-13

'19-10-15
'19-10-18

'19-10-20
'19-10-23

'19-10-25
'19-10-28

Time

0
5000

10000
15000
20000
25000
30000

Cu
st

. P
LT

 [m
se

c]

Average Cust. PLT
Anomaly
#visits

0

500

1000

1500

2000

2500

3000

#v
isi

ts
 p

er
 h

ou
r

(c)— Anomalous event #3: website is likely
do be down for one day.

Fig. 8— Examples of major anomalies WMF detects.

Customized Page Load Time reported by a commercial Italian
website, overlaid with the number of visits. WMF reports an
anomaly on the 20th of October on this website. Looking at
the number of visits in that period, we see that the website
experienced a significant problem and had the number of visits
reducing to almost zero for 24 hours. Not having direct
information from the administrators of the web service, we
can only speculate that the website was most likely down
for most of the day and the few users may have hit caches
on the Internet or on their own devices, executing thus the
Javascript code that performs the measurements even if the
main website was not accessible. Note that measurement
results are uploaded directly to the monitoring company, not
to the website.

Anomalous event #4, WMF detects a problem on a specific
page. WMF detects on a Chinese website two consecutive
anomalous bins with Object Response Time (ORT) bins higher
than 5 seconds on the 28th of August. Among visits with
high ORT, 98% are to a single page, which normally has
an average ORT of 0.9 seconds. Considering all the visits
within the two anomalous hours, the page covers 50% of the
visits, while normally it covers about ∼9%. We do not have
access to the webpage, but we speculate that the page contains
objects not present in other pages of the website and that users
experienced problems in accessing these specific objects of the
page, likely caused by the spike in the requests to the page
itself. The company providing us with the dataset performs
active measurements targeting the website and confirms a
partial problem with the same website on the same day.
Unfortunately, they store logs for limited period of time so
we do not have further details.

VIII. CONCLUSION

We presented WMF, a web performance anomaly detection
method that addresses the challenge raised by passive mea-
surement across a wide range of general-purpose websites. Al-
though individual websites may have few or no measurements
at certain times, WMF leverages data from other websites
to identify normal behavior (for example, daily and weekly
patterns) and to detect abnormal web performance. WMF
relies on normalization and aggregation of measurements of
different webpages of a given website to increase the number

of samples in individual time bins. WMF further leverages
matrix factorization and a low rank representation of the sparse
dataset of web performance measurements to estimate the
anomalous component of the performance of a website.

We validated WMF on a dataset of web performance meas-
urements performed on 125 websites over a period of three
months, with more than 290 million visits. In the controlled
experiments on a single website, WMF achieved over 90%
precision and recall. In the analysis of synthetic anomalies
introduced in the dataset, the precision and recall were lower
(as the dataset contains additional, unidentified anomalies);
however WMF’s F1 score was double that of state-of-the-art
time series method. Finally, we characterized the anomalies
in the dataset and showed that anomalies are often short, but
that some anomalies can last for up to five hours and that
some websites suffer from at least one anomaly every five
days on average. Our case studies of four anomalous events
illustrated that WMF can identify anomalous events with di-
verse characteristics. We conclude that WMF offers a valuable
strategy that may be used by website administrators and third-
party web monitoring companies to detect anomalies across
the heterogeneous landscape of general-purpose websites.

Acknowledgements

This work was supported by the French National Research
Agency under grant BottleNet no. ANR-15-CE25-0013 and
by Inria within the Project Lab BetterNet. Mark Crovella was
supported by NSF grant CNS-1618207, and by grants from
Inria Paris, U. Sorbonne-Pierre et Marie Curie LIP6, and the
Laboratory of Information, Networking and Communication
Sciences (LINCS). We thank ip-label for providing us with
the dataset and Benoit Boireau for his help in understanding
ip-label’s measurement methods and the collected dataset.

REFERENCES

[1] “State of online retail performance, 2017 holiday retrospective,”
https://www.akamai.com/us/en/multimedia/documents/report/
akamai-state-of-online-retail-performance-2017-holiday.pdf, 2009,
[Online; accessed 15-Nov-2019].

[2] J. Brutlag, “Speed matters for google web search,” 2009.
[3] “How One Second Could Cost Amazon $1.6 Billion In Sales,”

https://www.fastcompany.com/1825005/
how-one-second-could-cost-amazon-16-billion-sales, 2012, [Online;
accessed 17-Jan-2020].

[4] A. J., Brutlag Z and M. P., “Above the fold time: Measuring Web
page performance visually Measuring webpage performance visually.
,” http://conferences.oreilly.com/velocity/velocity-mar2011/public/
schedule/detail/18692.

[5] “Speed Index,” https://sites.google.com/a/webpagetest.org/docs/
using-webpagetest/metrics/speed-index, 2012, [Online; accessed
11-Oct-2019].

[6] D. N. da Hora, A. S. Asrese, V. Christophides, R. Teixeira, and
D. Rossi, “Narrowing the gap between qos metrics and web qoe using
above-the-fold metrics,” in International Conference on Passive and
Active Network Measurement. Springer, 2018, pp. 31–43.

[7] Q. Gao, P. Dey, and P. Ahammad, “Perceived performance of top retail
webpages in the wild: Insights from large-scale crowdsourcing of
above-the-fold qoe,” in Proceedings of the Workshop on QoE-based
Analysis and Management of Data Communication Networks, 2017,
pp. 13–18.

[8] T. Hoβfeld, F. Metzger, and D. Rossi, “Speed index: Relating the
industrial standard for user perceived web performance to web qoe,” in
2018 Tenth International Conference on Quality of Multimedia
Experience (QoMEX). IEEE, 2018, pp. 1–6.

[9] “Dynatrace,” https://www.dynatrace.com/, [Online; accessed
17-Jan-2020].

[10] “Solarwinds Pingdom,” https://www.pingdom.com/, [Online; accessed
17-Jan-2020].

[11] “IP-label,” https://www.ip-label.co.uk/, [Online; accessed 17-Jan-2020].
[12] “Akamai,” https://www.akamai.com/, [Online; accessed 17-Jan-2020].
[13] Y. Chen, R. Mahajan, B. Sridharan, and Z.-L. Zhang, “A provider-side

view of web search response time,” in ACM SIGCOMM Computer
Communication Review, vol. 43, no. 4. ACM, 2013, pp. 243–254.

[14] D. Liu, Y. Zhao, K. Sui, L. Zou, D. Pei, Q. Tao, X. Chen, and D. Tan,
“Focus: Shedding light on the high search response time in the wild,”
in Computer Communications, IEEE INFOCOM 2016-The 35th
Annual IEEE International Conference on. IEEE, 2016, pp. 1–9.

[15] S. A. Krashakov, A. B. Teslyuk, and L. N. Shchur, “On the
universality of rank distributions of website popularity,” Computer
Networks, vol. 50, no. 11, pp. 1769–1780, 2006.

[16] R. B. Cleveland et al., “Stl: A seasonal-trend decomposition procedure
based on loess. 1990,” DOI: citeulike-article-id, vol. 1435502.

[17] G. E. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, Time
series analysis: forecasting and control. John Wiley & Sons, 2015.

[18] H. Z. Moayedi and M. Masnadi-Shirazi, “Arima model for network
traffic prediction and anomaly detection,” in 2008 International
Symposium on Information Technology, vol. 4. IEEE, 2008, pp. 1–6.

[19] A. H. Yaacob, I. K. Tan, S. F. Chien, and H. K. Tan, “Arima based
network anomaly detection,” in 2010 Second International Conference
on Communication Software and Networks. IEEE, 2010, pp. 205–209.

[20] R. Jašek, A. Szmit, and M. Szmit, “Usage of modern
exponential-smoothing models in network traffic modelling,” in
Nostradamus 2013: Prediction, Modeling and Analysis of Complex
Systems. Springer, 2013, pp. 435–444.

[21] J. D. Brutlag, “Aberrant behavior detection in time series for network
monitoring.” in LISA, vol. 14, no. 2000, 2000, pp. 139–146.

[22] T.-Y. Kim and S.-B. Cho, “Web traffic anomaly detection using c-lstm
neural networks,” Expert Systems with Applications, vol. 106, pp.
66–76, 2018.

[23] M. Zhu, K. Ye, Y. Wang, and C.-Z. Xu, “A deep learning approach for
network anomaly detection based on amf-lstm,” in IFIP International
Conference on Network and Parallel Computing. Springer, 2018, pp.
137–141.

[27] B. Viswanath, M. A. Bashir, M. Crovella, S. Guha, K. Gummadi,
B. Krishnamurthy, and A. Mislove, “Towards detecting anomalous user

[24] L. Huang, X. Nguyen, M. Garofalakis, M. I. Jordan, A. Joseph, and
N. Taft, “In-network pca and anomaly detection,” in Advances in
Neural Information Processing Systems, 2007, pp. 617–624.

[25] A. Lakhina, M. Crovella, and C. Diot, “Diagnosing network-wide
traffic anomalies,” ACM SIGCOMM computer communication review,
vol. 34, no. 4, pp. 219–230, 2004.

[26] W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan, “Detecting
large-scale system problems by mining console logs,” in Proceedings
of the ACM SIGOPS 22nd Symposium on Operating Systems
Principles, ser. SOSP ’09. New York, NY, USA: Association for
Computing Machinery, 2009, pp. 117–132. [Online]. Available:
https://doi.org/10.1145/1629575.1629587
behavior in online social networks,” in Proceedings of USENIX
Security, San Diego, CA, 2014.

[28] M.-R. Fida, E. Acar, and A. Elmokashfi, “Multiway reliability analysis
of mobile broadband networks,” in Proceedings of the Internet
Measurement Conference, 2019, pp. 358–364.

[29] R. Salakhutdinov and A. Mnih, “Probabilistic matrix factorization,” in
Advances in Neural Information Processing Systems, vol. 20, 2008.

[30] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques
for recommender systems,” Computer, vol. 42, no. 8, pp. 30–37, Aug
2009.

[31] E. J. Candès and B. Recht, “Exact matrix completion via convex
optimization,” Foundations of Computational Mathematics, vol. 9,
no. 6, p. 717, Apr 2009. [Online]. Available:
https://doi.org/10.1007/s10208-009-9045-5

[32] Z. Wen, W. Yin, and Y. Zhang, “Solving a low-rank factorization
model for matrix completion by a nonlinear successive over-relaxation
algorithm,” Mathematical Programming Computation, vol. 4, no. 4,
pp. 333–361, 2012.

[33] P. Jain, P. Netrapalli, and S. Sanghavi, “Low-rank matrix completion
using alternating minimization,” in Proceedings of the forty-fifth
annual ACM symposium on Theory of computing, 2013, pp. 665–674.

[34] Y. Zhang, M. Roughan, W. Willinger, and L. Qiu, “Spatio-temporal
compressive sensing and internet traffic matrices,” in Proceedings of
the ACM SIGCOMM 2009 Conference on Data Communication, ser.
SIGCOMM ’09. New York, NY, USA: Association for Computing
Machinery, 2009, pp. 267–278. [Online]. Available:
https://doi.org/10.1145/1592568.1592600

[35] L. Zhu, G. Wen, and S. Qiu, “Low-rank and sparse matrix
decomposition with cluster weighting for hyperspectral anomaly
detection,” Remote Sensing, vol. 10, no. 5, p. 707, 2018.

[36] G. Grassi, R. Teixeira, C. Barakat, and M. Crovella, “Leveraging
website popularity differences to identify performance anomalies -
extended version,” https://hal.inria.fr/hal-03109717, 2021.

[37] J. Clement, “Monthly search volume of bing as august 2017,” https:
//www.statista.com/statistics/271640/bing-search-requests-by-country/,
2017, [Online; accessed 02-Dec-2019].

[38] N. Halko, P.-G. Martinsson, and J. A. Tropp, “Finding structure with
randomness: Probabilistic algorithms for constructing approximate
matrix decompositions,” SIAM review, vol. 53, no. 2, pp. 217–288,
2011.

[39] P. Dixon, “Shopzilla Site Redesign – We get what we measure.
Velocity 2009,” http://assets.en.oreilly.com/1/event/29/Shopzilla\%27s\
%20Site\%20Redo\%20-\%20You\%20Get\%20What\%20You\
%20Measure\%20Presentation.ppt, 2009, [Online; accessed
15-Nov-2019].

