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Abstract| Prefetching has been shown to be an e�ective
technique for reducing user perceived latency in distributed
systems. In this paper we show that even when prefetch-
ing adds no extra tra�c to the network, it can have serious
negative performance e�ects. Straightforward approaches
to prefetching increase the burstiness of individual sources,
leading to increased average queue sizes in network switches.
However, we also show that applications can avoid the un-
desirable queueing e�ects of prefetching. In fact, we show
that applications employing prefetching can signi�cantly im-
prove network performance, to a level much better than that
obtained without any prefetching at all. This is because
prefetching o�ers increased opportunities for tra�c shaping
that are not available in the absence of prefetching. Using a
simple transport rate control mechanism, a prefetching ap-
plication can modify its behavior from a distinctly ON/OFF
entity to one whose data transfer rate changes less abruptly,
while still delivering all data in advance of the user's actual
requests.

I. Introduction

Prefetching is an important technique for reducing la-
tency in distributed systems. In distributed information
systems like the World Wide Web, prefetching techniques
attempt to predict the future requests of users based on
past history, as observed at the client, server, or proxy [2],
[11]. These techniques are speculative, in the sense that
if predictions are incorrect then additional useless tra�c
is added to the network. Considerable previous work has
evaluated the bene�ts of prefetching in various distributed
and parallel systems; most of that work has focused on the
addition of useless tra�c to the network as the principal
cost of prefetching.
In this paper we focus on a di�erent cost of prefetch-

ing: increases in network delays. We show that even
when prefetching adds no useless tra�c to the network,
it can have serious performance e�ects. This occurs be-
cause prefetching changes the pattern of demands that the
application places on the network, leading to increased vari-
ability in the demands placed by individual sources, and in
network tra�c as a whole. Increases in tra�c variability (or
\burstiness") directly results in increased average packet
delays, due to queueing e�ects. In general, the straight-
forward application of prefetching can be seen to increase
the coe�cient of variation of the arrival process of packets
from a single source. This is because prefetching will in-
crease the length of long packet interarrivals while increas-
ing the number of short packet interarrivals. Increasing the
coe�cient of variation naturally increases queueing delays.
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We focus on the World Wide Web as our application
of interest; prefetching for the Web is an active area of
study that has considerable practical value. Starting from
traces of Web client activity, we simulate the performance
of a simple network as it satis�es user requests, using a de-
tailed packet-level simulator that explicitly models the ow
control algorithms of TCP Reno. In the �rst part of this
paper we show that straighforward prefetching algorithms
for the Web, even if they add no additional tra�c to the
network, can increase packet delay considerably. Our sim-
ulations indicate that aggressive prefetching can increase
average packet delays by a factor of two to four, depending
on network con�guration.

For the case of the Web, these e�ects can be understood
more precisely using the analytic framework provided by
self-similar tra�c models [10]. Such models have shown
that if individual applications exhibit ON/OFF behavior
in generating tra�c, such that either ON or OFF periods
are drawn from a heavy-tailed distribution with � < 2,
then the aggregate tra�c can be expected to show self-
similar scaling properties with scaling parameter H > 1=2
[15]. Recent evidence indicates that the Web in particular
seems to exhibit heavy-tailed ON periods, and that this
may be due to the sizes of �les transferred via the Web
[3]. We show evidence that the e�ect of prefetching in dis-
tributed information systems with heavy-tailed ON times
is to lengthen the ON and OFF periods, resulting in in-
creased burstiness at a wide range of scales.

However, in the second part of this paper we show that
an application like the Web can avoid the undesirable
queueing e�ects of prefetching. In fact, we show that appli-
cations employing prefetching in combination with a sim-
ple transport rate limiting mechanism can signi�cantly im-

prove network performance, to a level much better than
that obtained without any prefetching at all. This tech-
nique is possible for the same reasons that prefetching is
useful: there is typically some \idle" time between the com-
pletion of one data transfer and the user's initiation of the
next transfer. This time corresponds to the OFF time of
the application in the ON/OFF framework.

Using a transport rate limiting mechanism, an applica-
tion (such as a Web browser) can prefetch in such a way so
as to still obtain all data in advance of user requests, but
in a manner that extends the data transfer over the en-
tire inter-request interval. When the accuracy of prefetch
prediction is high, this approach can radically decrease the
application's contribution to queueing delay. The reason
that this strategy works can again be understood in terms



of the ON/OFF model for self-similarity in Web tra�c.
Using rate-controlled prefetching, an intelligent application
can modify its behavior from a distinctly ON/OFF entity
to one whose data transfer rate changes less abruptly, lead-
ing to a smoother overall tra�c ow on the network, and
signi�cantly increased network performance.
We explore these ideas in the second half of the paper.

Using our simulations, we show that network performance
in terms of queueing delay could be much better than the
no prefetching case, without missing a signi�cant fraction
of deadlines, if browsers employ rate-controlled prefetch-
ing; such performance improvements are based on perfect
knowledge of the future sequence of requests to be made
by users. We then show more realistic strategies that cor-
respond to prefetching techniques that have been proposed
in the literature, and we show that they can achieve results
close to that of the ideal case. Finally, we evaluate the de-
gree to which prefetching must be e�ective in order for our
methods to succeed, and compare these with empirically
measured prefetching e�ectiveness for Web browsers.
Our results suggest that while simple prefetching (as is

likely to be implemented in Web browsers) can degrade
network performance, rate-controlled prefetching has the
potential to signi�cantly smooth tra�c due to the World
Wide Web. Since such tra�c appears to be quite bursty
without such controls [3], an understanding of the e�ects
of prefetching on burstiness is important, and in particu-
lar methods that allow Web applications to smooth their
network demand are of considerable interest.

II. Background and Related Work

The literature on prefetching is large; a good example
article is [14]. That article points out the performance
risks of prefetching due to increased data transfer tra�c.
More recent work on �le prefetching [9] presents a

method which uses access trees to represent �le usage pat-
terns. Using that approach, measurements show that fu-
ture �le accesses can be predicted with an accuracy of
around 90%. Although we do not propose a mechanism
for prefetching, one such as this could be used as a means
for prefetching in distributed information systems like the
Web. The high hit rate obtainable suggests that our rate-
contolled prefetching policies could have signi�cant payo�
in practice.
A number of authors have presented prefetching meth-

ods speci�cally for the Web. In [4] the notion of prefetch-
ing by Web clients is presented. In that work, Markov
chains are proposed as a mechanism for determining which
�les to prefetch. The Markov chains are constructed based
on prior access patterns of individual users. Simulations
suggest that this method can also provide relatively high
prefetching hit rates|between 80% and 90%.
In [2] the notion of speculative prefetching by Web

servers is presented in the context of replication services.
This work shows that server information can also be prof-
itably be used to increase prefetching hit rate. In addition,
[11] simulates prefetching for the Web and shows that it
can be e�ective in reducing latency.
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Fig. 1. Simulated Network Con�guration

However, none of these proposals for Web prefetching
consider the increase in burstiness of tra�c caused by
prefetching. Web tra�c has been shown to be bursty at
a wide range of scales (\self-similar") [3] and so this is an
important issue. A number of previous papers have shown
that the e�ects of self-similarity on network performance is
primarily to increase queueing delays [5], [12] and so that
is the network performance metric that we focus on in this
paper. In addition, there have also been a number of stud-
ies of smoothing techniques for video streams, which are
also bursty sources [7], [13].
The self-similarity of network tra�c has been attributed

to the behavior of individual sources. If sources follow an
ON/OFF behavior, in which they transmit packets during
an ON period and are silent during an OFF period, and
if either ON or OFF periods (or both) are drawn from a
heavy-tailed distribution (one whose tail follows a power-
law with exponent less than 2) then the aggregation of
many such sources will lead to self-similar tra�c [15]. This
model sheds light on why the rate-controlled prefetching
techniques we propose can be e�ective at smoothing self-
similar tra�c: under rate-controlled prefetching, sources
are no longer either ON or OFF but rather generate ows
in which data constantly \trickles" into the application.

III. Experimental Environment

In this section we describe the simulation we used in our
experiments.

A. Simulated Network

In order to assess the network e�ects of document trans-
fers, we used the ns network simulator (version 1.0), devel-
oped at LBNL [6]. Ns is an event-driven simulator that sim-
ulates individual packets owing over a network of hosts,
links, and gateways. It provides endpoint agents that can
use any of several types of TCP as their transport pro-
tocols; we used TCP Reno. In particular, ns simulates
TCP Reno's ow control features: Slow Start, Congestion
Avoidance, and Fast Retransmit/Recovery. A test suite de-
scribing validation results from the simulator can be found
in [6].
This study used the simple network shown in Figure 1.

The network nodes consist of 64 clients (C0 through C63),
two routers (R0 and R1), and two servers (S0 and S1).
Links between the servers and clients are con�gured to ap-
proximate Ethernet characteristics while the central link is
con�gured to have less bandwidth, and therefore to be the
bottleneck in all our simulations. The Figure shows the



Hour Bytes Files Avg. No. of
Number Transferred Transferred Sessions Files/Session
Hour 1 48.9M 3007 48 63
Hour 2 47.5M 1304 43 30
Hour 3 39.2M 2011 89 23
Hour 4 25.1M 2126 46 46
Hour 5 24.1M 1799 80 23

TABLE I

Characteristics of Hourly Web Client Traces

baseline con�guration of the bottleneck, which is 1.5Mbps;
but some of the experiments we report used bandwidths of
750kps or 150kpbs for this link. Although this network is
simple, it allowed us to simulate the e�ects of interest: the
e�ects of ow control due to bandwidth limitations at the
bottleneck, and the queueing of packets in router bu�ers.
In our simulations, clients make requests for �les to be

delivered from servers. As a result, the vast majority of
tra�c in the simulation ows from the servers to the clients,
and therefore the bu�ers that exhibit important queueing
e�ects are those in router R1. In the baseline con�guration
R1 has 32KB of bu�er space; however some experiments
increase this bu�ering, up to a maximum of 512KB. We do
not simulate any resources internal to the servers; therefore
the only limitation on server performance is the bandwidth
of its outgoing link.
The default packet size is 1024 bytes, consisting of 1000

bytes of payload and 24 bytes of header. Some simulations
vary the payload size, but all packets have 24 byte headers.

B. Workload Characteristics

The workload used to simulate user requests from
the Web was a set of traces of Web sessions made at
Boston University and available from the Internet Tra�c
Archives [8]. Each line of a trace �le contains a session ID,
the size of the �le transferred, the start and �nish time of
transfer (measured to 10ms accuracy), and the URL of the
�le requested (which was not used in our simulation). We
will refer to each line from a trace �le as a request and to
the set of all requests made during one execution of the
browser as a session. Each trace �le consists of the all
the Web requests made in a local area network during the
span of one hour. We studied �ve such hours, which are
summarized in Table I.
To use these traces in our simulated network we assigned

each session to a particular client-server pair. Sessions were
distributed between servers to keep them in approximate
balance, and were distributed among clients to keep them
in approximate balance as well. Within each session, �le
transfers were initiated from the server to the client based
on the size and time recorded in the trace.
Statistics were gathered during each experiment to mea-

sure the performance of the network. The principal per-
formance metric of interest was mean queue size at the
bottleneck router (R1); however we also tracked the num-
ber of bytes transferred over the bottleneck link and packet
drops. In addition, the capability to track the completion

of transmission of individual �les was added to the system
so that deadlines for the transmission of �les could be es-
tablished. Our intent was not to compare deadlines that
were measured in the traces to those measured in the test
network, since the environments are di�erent, but simply
to use the trace deadlines for the arbitrary deadines neces-
sary when implementing rate controlled prefetching.

IV. Prefetching

In this section our goal is to show the general e�ects of
prefetching on network performance as measured by mean
queue size in the bottleneck router, and to explore the rea-
sons behind the e�ects we observe.
Since our goal is to demonstrate the general e�ects of

prefetching on network performance, we assume an ideal-
ized form of prefetching. At the start of each Web browser
session, all �les to be requested during the session are
prefetched. This results in a transfer of a large number of
�les; the average number of �les per session for each hour
is shown in Table I and varies between 23 and 63. This
type of prefetching is unrealistic in at least two aspects:
�rst, it assumes that all �les to be requested by a user can
be predicted with perfect accuracy, and second, it assumes
that all requests can be predicted based on the �rst request
made by the user. The �rst aspect causes our assessment of
network e�ects of prefetching to appear overly optimistic,
because any incorrect predictions will add tra�c to the net-
work. The second aspect causes our assessment of network
e�ects of prefetching to be pessimistic, since a more realis-
tic policy would spread trasnsfers more evenly through the
session. As a result, the absolute performance impacts of
this policy are not our main focus in this section; rather we
are concerned with demonstrating the e�ect and exploring
the reasons behind it. In the next section we explore more
realistic policies that 1) do not assume that more than one
�le is prefetched at a time and 2) do not assume perfect
prediction of user behavior.
Our �rst results compare prefetching with the baseline

request pattern for a typical con�guration (bottleneck link
speed = 1.5 Mbps, router bu�er = 32 KB). We compare the
average queue length in the router (R1) for all �ve of the
trace hours, for both prefetching and for the baseline re-
quest pattern, as measured in bytes. The results are shown
in Figure 2 (left). This �gure shows that over a range of
utilizations, and for all the sample traces we measured, that
prefetching signi�cantly increases the mean queue size, and
thus the average delay experienced by a packet in transit.
To examine whether our results were particularly sensi-

tive to network con�guration, we varied network con�gu-
ration along two dimensions: bandwidth and bu�ering.
First, we adjusted the speed of the bottleneck (central)

link in the network. The results are shown in Figure 2
(middle), which plots the increase in mean queue size due
to prefetching for a single hour (Hour 1), as the bandwidth
of the the bottleneck link is varied.
Figure 2 (middle) shows that as the bottleneck band-

width decreases, the relative e�ects of prefetching on queue
size appear to moderate somewhat. This seems to occur
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Fig. 2. E�ect of Prefetching on Mean Queue Size for all hours (left), Varying Bottleneck Speeds (middle), and Varying Bu�er Sizes (right)
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Fig. 3. Distributions of ON Times (upper) and OFF Times (lower)
For Baseline and Prefetching

because router bu�ers are kept more uniformly full at a
higher average level. Note that in the case of the 150kbps,
average queue length is about half of the total amount of
bu�er space available (32KB); as a result when a burst of
packets arrives, instead of being stored, packets must be
dropped and so do not contribute to average queue length.
Second, using a 150kpbs bottleneck link, we adjusted the

amount of bu�ering at the bottleneck link from 32KB up to
512KB. The results are shown in Figure 2 (right). This �g-
ure shows that the detrimental e�ects of prefetching return
as we increase the bu�er size at the bottleneck router, even
with a relatively slow link. Thus, both the network modi-
�cation experiments support the notion that the e�ects of
prefetching will be greatest for network con�gurations with
either relatively low utilization or relatively large amounts
of bu�ering.
To understand the reasons behind the increased queueing

delays when prefetching is in e�ect we examined the indi-
vidual sessions as ON/OFF sources. Previous work has
suggested that the sessions present in these traces show

heavy-tailed ON/OFF behavior [3]. Figure 3, shows evi-
dence of long, power-law tails in the distributions for both
ON and OFF times. Durations of transfers of �les or sets
of �les (when prefetching) correspond to ON times in the
ON/OFF framework, idle periods when no transfers are
taking place correspond to OFF times. Figure 3 shows
how strongly aggressive prefetching a�ects the distribution
of ON and OFF times of the browser. In both cases the
distributions are shifted strongly toward larger values. The
median ON time changes from 0.12 seconds for the baseline
case to 4.2 seconds for prefetching; while the median OFF
time increases from 2.48 seconds to 755 seconds.

These results show that individual sources are becom-
ing much burstier as a result of prefetching: typical ON
and OFF times are drastically increasing. Since ON and
OFF times show heavy-tailed distributions the increase in
burstiness is evident at a wide range of scales, and a�ects
queueing in the router in a signi�cant way.

V. Rate Controlled Prefetching

The preceding section showed that the e�ect of prefetch-
ing on network performance is to increase queueing in
routers, and thus average packet delays. This may seem
to decrease the incentive to use prefetching in distributed
information systems like the Web. However, in this sec-
tion we show that prefetching o�ers opportunities to im-
prove network performance to a level much better than
that obtained without prefetching, by using rate-controlled

prefetching. In particular, our results suggest that rate-
controlled prefetching might pro�tably be added to Web
browsers to signi�cantly smooth the burstiness of Web traf-
�c.

The feasibility of rate-controlled prefetching is based on
the observation that when prefetching a data object, it is
not necessary to transfer the object at the maximum rate
supported by the network; rather, it is only necessary to
transfer it at a rate su�cient to deliver it in advance of

the user's request. Thus the central idea of rate-controlled
prefetching is to lower the transfer rate during prefetching
to a level such that (ideally) the prefetch is initiated as
early as possible, while the last byte of the data object is
delivered just before the object is requested.

The success of rate-controlled prefetching is based on the
fact that in distributed information systems like the Web,



user-induced delays are common between document trans-
fers. User-induced delays will be typically be quite long
relative to document transfer times; as a result, prefetching
rates can be drastically reduced below the network's max-
imum. For example, in Hour 1 of the traces we used, the
aggregate ON time of all sessions was 651 seconds, while
the aggegate OFF time was 46886 seconds. The goal of
rate-controlled prefetching is to spread the 651 seconds of
data transfers as smoothly as possible over the much larger
span of 46886 seconds without missing any deadlines for
document delivery to the user.
Rate-controlled prefetching adds a new requirement to

the prefetching algorithm: in addition to a prediction of the
next document to be requested, the algorithm must make
some estimate of the time until the next request will be
made (OFF time duration). We think this is feasible; pre-
vious research on prefetching has focused on predicting the
identity of the next transfer, with reasonable success. We
expect that such algorithms could be likewise reasonably
successful at addressing the related problem of predicting
OFF time duration. Explicitly evaluating the potential
for predicting OFF time duration is treated in Section VI.
We also show later in this section that our results are not
dependent on exact prediction of OFF time duration; ap-
proximate predictions (within a factor of 2, for example)
are quite su�cient to achieve signi�cant performance gains
using rate-controlled prefetching.
In this section we assume a prefetching algorithm that is

more realistic than was used in the previous section. First,
in all of the results in this section, documents are prefetched
one at a time | that is, all available knowledge of prior
user requests is assumed to be used before deciding on a
document to prefetch. Thus, after each document is de-
livered to the user, the system attempts to prefetch only
the single next document that the user will request. Sec-
ond, we do not assume that the prefetching algorithm can
predict future requests with perfect accuracy. Instead we
evaluate all of our results as a function of varying hit rate of
the prefetching algorithm. The hit rate of the prefetching
algorithm is the percent of predictions that the algorithm
makes correctly. If a prediction is incorrect, then at the
point the user makes the next request the correct document
is transferred without applying any rate controls (that is,
at the maximum rate the network can deliver at the time).
Evaluating varying hit rates means that network perfor-

mance (as measured by mean queue size) can degrade for
two reasons: increased burstiness of the tra�c process (as
before), and increased network utilization due to wasted
tra�c|caused by incorrect prefetch predictions. In our
simulations, incorrect predictions are made in the same way
regardless of whether rate control is in e�ect. Thus, in com-
paring rate-controlled prefetching with simple prefetching,
the increase in network tra�c due to hit rates less than
100% is the same in both cases.

A. Window Based Rate-Controlled Prefetching

To bound the rate at which transfers take place during
prefetching we employed a simple method: limiting the

maximum window size that can be used by TCP. More
sophisticated methods are possible, but were not needed
to demonstrate our results. This is a method that could be
implemented in practice by causing the client to advertize
a limited window at connection establishment.
We used a simple rule for moderating transfer rate via

window size. We wish to approximate a transfer rate deter-
mined by P=T where P is the number of packets necessary
to transfer the document, and T is the time between the
end of the previous document request and the initiation of
the next document request. The window size W is then
determined by

W = dP � R=T e (1)

where R is the round-trip time of the path between client
and server. In general, R is unknown at the start of the con-
nection, but can be estimated quickly once the connection
is established. In practice we did not model such an adap-
tive approach; instead we used a simpler method of setting
R based on the product of the known path round-trip de-
lay and a factor that corrects for congestion e�ects. Use of
this factor also allowed us to test the method's senstitiv-
ity to accurate prediction of OFF time, because increasing
the congestion factor caused transfers to terminate more
quickly, simulating increased burstiness due to an inaccu-
rate OFF time prediction.
Thus, in our simulation, rate-controlled prefetching

works as follows. At the completion of each document
transfer, the next document transfer is started, with max-
imum TCP window size W determined by Equation 1.
At the time when the next request is made by the user,
the simulation determines probabilistically whether that
request will be considered a prefetch hit. That is, the most
recently prefetched document is considered to be the cor-
rect document with probability equal to a predetermined
prefetch hit rate. If the prediction is incorrect, the correct
document is then transferred at maximum rate as would
be the case in the absence of prefetching. If the predic-
tion is correct, the simulation begins prefetching the next
document.
The e�ects of rate-controlled prefetching on mean queue

length can be seen in Figure 4. In each plot we have shown
the e�ects of three policies: Baseline (no prefetching at
all), Simple Prefetching (prefetching at unlimited rate),
and Rate-Controlled Prefetching. The �gure shows that
rate-controlled prefetching is always better than simple
prefetching. Interestingly, it also shows that rate-controlled
prefetching is usually better than no prefetching at all,
even though rate-controlled prefetching generally adds ad-
ditional tra�c to the network (that is, when prefetching
hit rate is less than 100%). Note that the minimum value
for the simple prefetching case corresponds to the baseline
case: when prediction accuracy is 100%, simple prefetch-
ing adds no additional tra�c to the network and does not
change tra�c burstiness signi�cantly.1 In fact, over all
the hours we studied, if prefetching hit rate is above 80%

1Unlike the previous section, in which multiple �les were prefetched,
which increased the burstiness of individual sources as well as overall
tra�c.
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Fig. 4. E�ect of Rate-Controlled Prefetching on Mean Queue Length for all �ve Hours
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then queueing delay is lower for rate-controlled prefetching
than for no prefetching at all. In addition, for three out
of the �ve hours we studied, queueing delay is lower for
rate-controlled prefetching even for very low prefetching
hit rates|as low as 10-30%.

In general, the simple rate-controlled prefetching scheme
we describe here seems to be able to reduce mean queue
size signi�cantly. In Figure 5 we plot the ratio of mean
queue size without rate control to mean queue size with
rate control, as a function of prefetching hit rate, for all
�ve hours. The �gure shows that rate control seems to
always improve the performance of prefetching, usually by
a factor of at least two, and usually fairly consistently over
a range of prefetching hit rates.

These results suggest that even relatively inaccurate
prefetching, if rate-controlled, may be a desirable feature
of an application that is interested in reducing network in-
duced delays, and reducing the variability of such delays.
In addition, these results suggest that if prefetching is to
be implemented in an application like a Web browser, then

rate-control is a very desirable feature.

B. Payload Based Rate-Controlled Prefetching

One observation that can be made about the window-
based rate control described in the last subsection is that
there is a minimum transfer rate for prefetching that is
determined by D=R whereD is the data payload of a single
packet. That is, transmission rate cannot easily be reduced
below that of one packet per round trip. However it may be
the case that ideal smoothing of prefetched data requires a
transfer rate less than this minimum.
To test whether even slower transfer rates are helpful,

we implemented an alternative rate-control scheme, based
on modifying the size of each packet's payload. In this
scheme, we do not limit window sizes, but the payload of
each packet is scaled to reduce throughput. Just as in the
window-based case, the scaling is performed based on the
estimated time until the next user request. This method
provides the opportunity for �ner control of transport rate,
and for reducing transport rate to a level much lower than
the window-based method.
The results of this approach are shown in Figure 6. Note

in this �gure that the hit rates studied have been restricted
to the range 80% to 100%. The �gure shows that for high
prefetching hit rates, payload based rate control has the po-
tential to signi�cantly improve network queueing delay|to
an almost negligible level. This occurs because the packets
being queued are quite small and occupy much less bu�er
space per packet. However the �gure also shows that for
slightly lower hit rates|in many cases, less than about
90%, that payload based rate control performs worse than
the window based approach.
The reason that the queueing characteristics of payload

based rate control degrade so quickly is that the payload
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Fig. 6. Comparison of Payload and Window Based Rate Control in Prefetching for Hours 1 (left), 3 (middle) and 5 (right)

method adds signi�cant additional tra�c to the network,
even when prediction is perfect. This is because the ratio of
header data to payload data increases drastically for trans-
fers with highly limited rates. In our simulations, payload
based rate control can as much as double the total byte traf-
�c on the network; as a result, network queues can build up
quickly when predictions are not perfectly accurate. Thus
we conclude that while payload based rate control can re-
sult in better queueing performance at high prefetching hit
rates, the additional tra�c added by the technique makes
its use undesirable.

VI. Estimating Transfer Rates

The keys to being able to use our rate throttling ideas
is the implementation of: 1) a document prediction mech-
anism within a Web browser, and 2) a transfer rate pre-
diction mechanism within a Web browser. A number of
mechanisms for document prediction have been proposed;
see Section II for examples. Therefore in this section we
concentrate on determining the feasibility of predicting nec-
essary transfer rates. The best transfer rate for the purpose
of prefetching is dependent on the predicted time between
document requests (OFF times). OFF times in network
tra�c have been analyzed in [3], [15], [1]; however these
studies have not related OFF times to an independent vari-
able which can be used for predictive purposes.
Our approach to the transfer rate prediction problem is

to attempt to relate OFF times to the size of the �le trans-
fered immediately before the start of an OFF period. The
document prediction mechanism could be used to extract
�le size information; once it is known we could then predict
the length of the ensuing OFF period. Using the �ve busy
hours studied in this work, we generated a data set consist-
ing of �le sizes and the OFF periods which followed their
accesses. A simple least squares regression on this data set
results in the following model:

OFF = 9:78� 10�5 � size+ 24:9 (2)

This formula gives an OFF time prediction in seconds based
on �le size in bytes. The regression yielded an R2 of 0.14
so clearly there is very low correlation between OFF times
and �le sizes. However, since there is some correlation,
there may be an opportunity for prediction. Therefore, we
tested the e�ectiveness of this method for the purpose of
throttling data in simulation. Since our goal is to trans-

fer documents with minimal network impact, we evaluate
how well we can reduce queue sizes using this formula for
OFF time prediction without missing document transfer
deadlines.

In this set of simulations, instead of considering each
�le independently (as was done in prior simulations) we
consider transfers of �les in terms of groups as follows. If
the measured OFF times between consecutive transfers was
less than a threshold value (one second in our case), then
we consider the aggregate of bytes as a single transfer. A
deadline is the actual time at which the next �le trans-
fer was requested (preceded by an OFF time greater than
the threshold). This was done in order to more accurately
model OFF times as the time that users \think" between
�le accesses (an attempt to exclude latency between in-
line document transfers). Since the R2 for the regression
was so low, we decided to evaluated the e�ectiveness of the
OFF time prediction model by including scaling factors in
the analysis. Each OFF time predicted by the model is
simply divided by the scaling factor. The e�ect of scaling
is as follows: when the scaling factor is increased, it will
result in a shorter projected OFF time and thus would in-
crease the TCP window (or payload) size for prefetching
(see equation 1). We would expect the e�ect of compress-
ing the time for transfer as the scaling factor is increased
would be to increase queue sizes. However, the bene�t of
the higher scaling factor should be to reduce the number
of transfer deadlines missed. Simulations were run test-
ing 1-ahead prefetching using projected OFF times with
a 90% document hit rate accuracy. We compare these re-
sults with those for 1-ahead prefetching with a 90% hit rate
when using measured OFF times as a baselines for these
simulations.

Figure 7 shows the e�ect of varying scaling factor for
predicted OFF times versus mean queue size. Note that in
this �gure, \Baseline" refers to the case in which o� times
are known exactly, as in Section V. For all �ve hours there
is still a signi�cant reduction in mean queue size using pre-
dictive values for OFF times regardless of scaling factor
used. As might be anticipated, when the scaling factor is
increased, the mean queue size generally increases since the
TCP window size is also increased. The scaling factor has
an inverse e�ect on missed deadlines as can be seen in Fig-
ure 7. The baseline case shows what might be expected
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Fig. 7. E�ect of Predicted OFF times on Mean Queue Size (top)
and Missed Deadlines (bottom)

as the best case in terms of percentage of missed deadlines
when actual OFF times are used to set the TCP window
size. In all of the predictive model experiments, the per-
centage of missed deadlines declines as the scaling factor
is increased (which again would be anticipated given our
formula for setting TCP window size). In absolute terms,
the number of deadlines missed when using the predictive
model for OFF times is still a very small percentage of the
overall number of �les transferred.

Based on these results, we feel that a routine which pre-
dicts OFF times based on �le sizes could be easily imple-
mented in a browser and using a scaling factor of 2 and
an o� time threshold of 1 second. This would provide the
best queue reduction e�ect while only missing a minimal
number of deadlines. This along with a mechanism for pre-
dicting document requests could then e�ectively be used to
implement rate throttling.

VII. Conclusions

In this paper we've shown how prefetching in a dis-
tributed information system like the World Wide Web
can a�ect the queueing behavior of the network it uses.
We started by showing that prefetching as it is usually
implemented|that is, the transfer of multiple �les together
in advance of request|can create an undesirable increase
in burstiness of individual sources. Because such sources in
a distributed information system like the World Wide Web
may exhibit heavy-tailed ON/OFF behavior, increases in
source burstiness result in increases in variability of aggre-
gate tra�c at a wide range of scales. This makes straight-
foward approaches to prefetching, even when their predic-
tions are quite accurate, less attractive from the standpoint
of network performance.

However, we have also shown that prefetching o�ers an
opportunity for tra�c shaping that can improve network
performance. The periods between document transfers at
individual sources may often be very long compared to
the durations of transfers themselves. By prefetching doc-
uments at a controlled rate during the in-between time,
applications can exploit an opportunity to decrease their
individual burstiness as compared to the non-prefetching
case. As a result, applications employing rate-controlled
prefetching can have the best of both worlds: data transfer
in advance of user request, and better network performance
than is possible without prefetching.
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