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ABSTRACT
A reasonable definition of intrusion is: entering a community
to which one does not belong. This suggests that in a network,
intrusion attempts may be detected by looking for communica-
tion that does not respect community boundaries. In this paper,
we examine the utility of this concept for identifying malicious
network sources. In particular, our goal is to explore whether
this concept allows a core-network operator using flow data
to augment signature-based systems located at network edges.
We show that simple measures of communities can be defined
for flow data that allow a remarkably effective level of intru-
sion detection simply by looking for flows that do not respect
those communities. We validate our approach using labeled
intrusion attempt data collected at a large number of edge net-
works. Our results suggest that community-based methods can
offer an important additional dimension for intrusion detection
systems.

Categories and Subject Descriptors:
C.2.3 [Network Operations]: Network Monitoring, C.4 [Per-
formance of Systems]: Modeling Techniques, E.1 [Data]:
Data Structures

General Terms:
Algorithms, Design, Experimentation, Measurement, Security

Keywords:
Intrusion detection, Social graphs

1. INTRODUCTION
Network-based intrusion detection and prevention systems

(IDS/IPS) play a significant role in protecting IT assets
from malicious attacks. Nonetheless, it has been known for
some time that attackers can often easily defeat IDS/IPS sys-
tems [19]. The difficulty of on-going identification of new vul-
nerabilities coupled with the explosion in diversity of malware
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makes it virtually impossible to keep standard signature-based
intrusion detection and prevention systems [16, 18] configured
with rule sets that protect against previously-unseen attacks.
This inherent challenge speaks directly to the need for com-
plementary methods for network-based attack detection.

Anomaly-based network attack detection offers a com-
pelling alternative to signature-based methods. The concep-
tual framework for network anomaly detection depends on
defining characteristics of traffic that are considered “normal,”
and labeling as anomalous the traffic that deviates significantly
from normality. In this way anomaly detectors have the poten-
tial to identify unanticipated or previously unseen attacks that
would otherwise be invisible to signature-based detectors.

Despite their appeal, there are significant barriers to the
practical use of anomaly-based detectors in IT security infras-
tructures. In particular, anomaly detection relies on formu-
lating a robust definition of normality that sharply separates
wanted from unwanted traffic. This has proven to be difficult
in the past, in particular for detection systems that consider
only simple features such as traffic volume [17]. Thus, we ar-
gue that new, creative methods for defining the “essence” of
normal behavior are required in order to begin to realize the
promise of anomaly detection. In this paper we examine the
utility of one such definition for the specific problem of intru-
sion detection.

We start from the hypothesis that intrusion is entering a
community to which one does not belong. The advantage of
this starting point for intrusion detection is that it is rooted
in a community-centric essence of normality. That is, rather
than defining intrusion in terms of locations in physical space
(where normality is harder to characterize), this hypothesis de-
fines intrusion in terms of locations in social space, where nor-
mality often has well-understood properties. In fact, different
network applications have clearly-identifiable communication
patterns (e.g., P2P systems), and these patterns can reflect the
social behavior of users [8].

To connect our hypothesis to network traffic, we consider
whether communication patterns between end hosts (identi-
fied by IP address) as evidenced in network flow data can
form the basis for community detection, and whether the re-
sulting communities form an effective basis for intrusion de-
tection. A standard representation of communication patterns
in network traffic is the bipartite graph, in which traffic sources
and traffic destinations form the two vertex sets, and directed
edges denote traffic flow from sources to destinations. In ad-



dition to this standard view, we explore the utility of a simpler
graph representation in which vertices correspond only to traf-
fic sources. This simpler representation admits a number of
variants that differ in their level of detail.

Armed with this range of representational choices, we ex-
amine the characteristics of graph nodes using netflow data
collected from a large European ISP. We use firewall and
IDS/IPS logs provided by Dshield.org [22] to identify mali-
cious nodes in our data corpus. We show that malicious nodes
do indeed exhibit distinctive properties across a range of graph
representations. We begin by considering the use of cardinal-
ity [9] as a tool to identify malicious nodes. We show that,
while cardinality can identify some malicious nodes, it misses
the majority of malicious nodes. Furthermore, it is clear that
a detector based on high cardinality is easily overcome by at-
tacks that keep the number of outgoing connections below a
normal-seeming threshold.

Therefore, we go beyond the simple cardinality measure to
examine features that are more specific to communication that
disregards community boundaries – i.e., metrics of antisocial
behavior. This definition is critical in the security context be-
cause it significantly increases the difficulty of obviation by
an attacker whose connection behavior is inconsistent with the
community. We propose a simple proxy for a node that seems
to disregard communities in our graphs: the cut-vertex. We
show that, in our data, cut-vertices are very likely to be ma-
licious. Unfortunately, the condition of being a cut-vertex is
a fragile one, and depends strongly on the density of commu-
nication and the degree of sampling present in the underlying
data. As the volume of data analyzed increases, cut-vertices
become hidden.

This motivates us to generalize and make robust the concept
of a cut-vertex using concepts from the social networking liter-
ature. We hypothesize that natural extensions of the cut-vertex
concept can be based on local clustering coefficient and be-
tweenness centrality. In fact, we show that low local clustering
coeffecient and high betweenness centrality are strongly asso-
ciated with malicious sources in certain graph representations.
We explore these metrics by considering their application to
our set of different network representations, from simple to
detailed.

Our results evaluate the relative utility of different graph
representations, and of different metrics on those graphs, for
capturing antisocial behavior as it relates to network intrusion.
We show that clustering is a particularly useful metric in this
regard, while the proper choice of graph representation (simple
versus detailed) is less crucial. Our results show that the proper
choice of graph and metric allows us to detect a large frac-
tion of malicious sources, even among those sources that are
low-degree and therefore undetectable using traditional meth-
ods. Taken in total, these results are strongly suggestive that
community-based analysis can shed significant light on the na-
ture of malicious traffic sources.

2. DATA
In our study we use netflow data collected from a large

European ISP. We focus on traffic collected at one router over
a range of days from May 1, 2007 to May 14, 2007. For our
examples, results are often for a single day (May 1) only; for
the full evaluation of our methods, results are given for the
period spanning all 14 days.

An important aspect of our work is that all of our netflow
data is based on 1/1000 packet sampling. This level of packet
sampling is typical of a large ISP, and we consider it a require-
ment of practical intrusion detection methods to be effective
despite the information loss dictated by low sampling rates.
For example, a single day’s traffic (May 1) consists of 29,585
sources sending 2,033,520 flows to 185,145 destinations.

In any study of proposed intrusion detection methods, val-
idation is both crucial and problematic. Traffic containing
known, labeled intrusion attempts is rare or else severely out-
dated [12]. Hence we take a novel approach to identifying
intruders in our data. We obtain from the SANS Institute the
DShield logs for each day covered by our data [22]. DShield
collects firewall and intrusion detection system logs from over
1700 networks world wide. The logs provide a summary of
malicious and unwanted activity in each of the provider’s net-
works. Each log entry includes, among other information, the
unobfuscated source IP address of the packet that triggered the
entry. DShield logs have been used in a number of prior stud-
ies of global malicious activity [23, 2].

For each day’s traffic, we identify those traffic sources that
also attempted an intrusion as recorded by DShield (we call
these DShield sources). While not all of the traffic from
DShield sources is sure to be intrusion attempts, we show in
Section 4 that the vast majority shows characteristics sugges-
tive of intrusion. Thus we make the approximation that if a
source appears in DShield, its activity in our traffic data on the
same day is malicious. While this is far from a perfect form
of ground truth, we believe that inaccuracies are not likely
to strongly influence our final results. This is because our
primary results concern the comparison of detection methods
(rather than absolute detection rates).

For example, in our May 1 data, 329 sources recorded in
DShield logs also appear in our traffic. Note however that
these 329 sources sent out 392,723 distinct flows to 66,618
distinct destinations. This sort of activity is highly suggestive
of intrusion attempts. We provide more detailed evidence of
the malicious nature of DShield sources in Section 4.

3. NETWORK REPRESENTATIONS
To begin, we note that our motivating hypothesis – i.e., that

intrusion is entering a community to which one does not be-
long – requires us to identify when one ‘belongs’ (and when
one does not ‘belong’) to a ‘community.’ Both of these terms
are relational in nature, and so it is natural to employ network-
based representations of our data for our work. Generally
speaking, any choice of network representation needs to be
made carefully and can be expected to influence the level of
success one achieves with high-level tasks utilizing such net-
works (e.g., [13, Ch 3]). For that reason, one of the goals of
our study is to examine certain alternatives in choice of net-
work representation and understand the implications of this
choice on our ability to detect intrusions.

We begin by defining a standard bipartite graph represen-
tation of communication patterns in computer network traffic.
Specifically, let GB = (V,U,EB), where vertices v ∈ V repre-
sent source IPs (srcIP), vertices u ∈ U represent destination
IPs (dstIP), and edges {v,u} ∈ EB represent data flows from
sources v to destinations u. In constructing such a graph GB
from data, we assign a vertex v ∈ V for every unique IP ad-
dress that played a role as a source, and a vertex u ∈ U for



Figure 1: Bipartite graph representation of network flow traffic.

every unique IP address that played a role as a destination. We
assign an edge {v,u} to EB if and only if there is a flow in
our data from v to u. In principle, multiple edges arise when
there are several flows between address pairs. However, we
find it convenient in what follows to simplify this structure by
assigning edge weights equal to the multiplicity of an edge.

Figure 1 shows an illustration of such a graph GB, consist-
ing of a small connected component extracted from our data.
There are 10 source nodes (i.e., nodes 1 through 10), 4 des-
tination nodes (i.e., nodes a through d), and 13 edges, corre-
sponding to 25 flows, with weights ranging from 1 to 4. Note
that sources share destinations to varying extents. For exam-
ple, sources 1,2,3, and 10 all talk only to destination a, while
sources 4 and 6 talk only to destination c. This pattern sug-
gests some common purpose to the traffic in each of the two
subsets of corresponding flows, and hence suggests in turn that
some notion of ‘community’ may apply to these two sets of
sources. In contrast, while source 9 also talks to destination a
and source 7 also talks to destination c, they each talk as well
to destination b. This observation suggests that, while sources
7 and 9 participate in the communities defined around desti-
nations a and c, they do not necessarily belong to those com-
munities. Hence, we say that their role is both ‘social’ and
‘anti-social’ in nature. It is this behavior that we hypothesize
may usefully be associated with intrusion.

While GB is a standard representation of network traffic, it
is difficult to analyze for antisocial behavior because nodes
in GB are not all of the same type: some are traffic sources,
and some are traffic destinations. Since our focus is on iden-
tifying sources of malicious traffic, a natural way to simplify
the problem is to consider graphs in which vertices correspond
only to sources. These networks are essentially reductions of
the bipartite graph GB. These reductions may be defined in
a number of alternative ways, and the alternatives can vary in
detail. We consider two such alternatives in this study.

The first is a standard one-mode projection of GB, in the
form of an undirected graph GP = (V,EP), where nodes vi
and v j are connected if and only if they share at least one
common destination. The one-mode projection of the bipar-
tite graph in Figure 1 is shown in Figure 2. Note that under
this representation the types of ‘communities’ we identified,
i.e., source nodes that all communicate with a common des-
tination, exhibit a distinct topological structure in GP, in the
form of cliques. For example, nodes 1,2,3,9, and 10 form a
five-clique, while nodes 4,6, and 7 form a three-clique. Note
too that nodes 7 and 9, which we identified as exhibiting an
example of antisocial behavior, stand out clearly as being both
members of their respective cliques and, at the same time, con-
nected by a single edge to each other’s cliques.

Figure 2: One-mode projection.

This edge is an example of a bridge, in that its removal in-
creases the number of components in the graph. Similarly,
these two vertices are examples of a cut-vertex. These two
complementary notions are popular in the social network lit-
erature (e.g., [6, Sec 7.3]), where they are used, among other
things in the study of diffusion of information. Here we main-
tain that, if cliques in our network GP capture the traffic com-
mon to Internet communities sufficiently well, and if bridges
and cut-vertices capture antisocial behavior on the fringe of
these communities, then this illustration suggests that identi-
fication of communities and the bridges/cut-vertices between
them may be used to detect source IPs sending intrusive traffic.

A potential drawback of the one-mode projection GP as a
source-based view of the communication underlying our net-
work flow data is the loss of certain information. For example,
regardless of whether two source nodes send traffic to a single
common destination or 100 common destinations, only a sin-
gle edge will be placed between them in GP. Furthermore, it
can be argued that the notion of communication in a commu-
nity being determined solely by sending traffic to a common
destination is rather limited, and that real communication is
decidedly more nuanced. For example, if sources v1 and v2
both send traffic to destination a, and v2 and another source
v3 both send traffic to a different destination b, it may be that
all of v1,v2 and v3 belong to the same community. In other
words, what is important in determining source-based com-
munities may be a sense of how similar a set of sources are to
each other in the bipartite communication graph GB.



4. CHARACTERIZING MALICIOUS
SOURCES

A number of previous studies have examined how the prop-
erties of communication graphs can be used to identify ma-
licious sources. The main approach taken to date has been
to simply observe that malicious sources often send traffic to
many other nodes, and so candidates for detection are ‘high
cardinality’ nodes – in the language of the previous section,
those with high out-degree in GB [9, 11, 3, 8].

Unfortunately, attackers now routinely seek to scan or probe
without raising cardinality alerts, and detection based on
source out-degree has to be tuned quite carefully [10]. We can
observe this effect in our data. Figure 3 shows the histogram
of the base-10 log of out-degree for all of the Dshield sources
in our May 1 dataset. The figure shows that malicious sources
have out-degrees spanning a vast range; while some sources
send to thousands of destinations, many send to only hundreds
or tens of destinations.

To illustrate the problem this causes for degree-based detec-
tors, we evaluated the performance of a degree-based detector
on our data. Such a detector is configured by choosing the
false alarm rate that is considered tolerable by the operator.
We chose false alarm rates of 5% and 2.5%; these are in prac-
tice quite high, but doing so presents the detection ability of
the degree-based method in the best possible light.

Nonetheless, even when high false alarm rates are tolerated,
the degree-based detector fails to detect a significant fraction
of the malicous sources. The thresholds for degree-based de-
tection at false alarm rates of 5% and 2.5% are shown in Figure
3. For each threshold, sources to the right of the line are those
that would be detected. The figure shows that much more than
half (64% and 79%) of the malicious sources go undetected
using the degree-based method.

This observation motivates our interest in developing de-
tection methods that complement pure cardinality-based ap-
proaches. That is, we seek methods that can identify potential
attackers despite the fact that the attacker does not send a large
number of probes in the observation period (and so does not
have high out-degree).

To that end, we turn to the notion of antisocial communica-
tion as a potentially more sophisticated indicator of network
intrusion. To do so, we need to define metrics that can identify
antisocial nodes within the graphs GP and GW defined in the
previous section. In the remainder of this section we present
such metrics. Then, in the next section, we will show simple
detection algorithms based on these metrics that are remark-
ably accurate in identifying malicious sources among those
sources that are not high-cardinality hosts.

To illustrate the metrics we define, in this section we use
flow data from just the first of our 14 days (i.e., May 1st,
2007). In addition, for reasons of computational efficiency,
we use a subset of the network flow data for that day, based
on the set of all flows sent from a simple random sample of
size 10K selected from those source IP addresses active that
day in our dataset. The flows obtained in this manner induced
a corresponding sampling of destination IP addresses. Com-
pleting our sampled source and destination lists with those
destinations and sources obtained in the original stage that
also acted as sources and destinations, respectively, we are
left with a subset of the data whose bipartite graph represen-
tation GB = (V,U,EB) has |V | = 10,897, |U | = 53,877, and

|EB| = 879,010. From this we then created the binary and
weighted one-mode projections of GB, i.e., GP = (V,EP) and
GW = (V,EW ), respectively; where |V | = 10,897 (being the
same set V defining GB) and |EP| = |EW | = 766,680. The
results below for these graphs are representative of what we
observed over multiple simulation trials, over multiple days,
as we discuss later, in Section 5.

Importantly, for our purposes, among the 10,897 sources in
our networks GB, GP, and GW , 182 were identified as mali-
cious by examination of the DShield logs of that day. In what
follows in this section, we focus on the challenge of charac-
terizing these malicious source IPs given only the basic infor-
mation on which IPs sent flows to which others. We explore
three classes of techniques, based on ideas of community de-
tection, cut-vertices, and local graph structure, respectively.
The lessons we learn from this characterization study then lead
naturally to the detection algorithms we present later in Sec-
tion 5.

4.1 Community Detection
Our notion of (anti)social behavior in the source-based so-

cial networks defined in the previous section, and the re-
liance of this notion on ‘communities’ in those networks, sug-
gests the relevance of so-called community detection methods
from the social network literature in developing detection al-
gorithms. There are many such methods of this sort. All of
them essentially take as input a graph topology and they out-
put a partitioning of the graph into subsets of nodes, for which
nodes within subsets are more heavily linked than nodes be-
tween subsets. See [13, Ch 4.3.3] and references therein, for
example.

A popular method in this area is that of Newman, Clauset
and Moore [4], based on the concept of modularity. This
method, as with others like it, attempts to optimize a certain
complexity score (called the ‘modularity’) to produce as par-
simonious a partition of the graph as possible. For illustra-
tion, we applied this algorithm to the largest connected com-
ponent of the one-mode projection source graph GP, consist-
ing of 8480 source nodes (out of the 10,897 sources in the
full graph) and the edges among them. Among these 8480
nodes, 161 of those are DShield sources (the other 24 DShield
sources are represented as singleton nodes in the full graph).
The algorithm found an optimal clustering with a total of 68
clusters (or ‘communities’), the size and number of which are
summarized in Table 1.

Table 1: Summary of clusters produced by standard com-
munity detection, as applied to the largest connected com-
ponent of GP.

Size of Cluster # of Clusters # of DShields
6784 1 158
986 1 1
8 to 243 10 0
≤ 7 56 2
Total 68 161

Unfortunately, the partitioning of our subgraph into these
communities, relative to the distribution of the 161 malicious
DShield source nodes, does little to reveal the latter in any
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Figure 3: Distribution of base-10 log of Dshield source out-degrees.

obvious fashion, since 158 of these DShield source IPs are
contained within the largest cluster. See Table 1. Hence, this
particular method of defining ‘communities’ does little to dis-
tinguish the DShield sources from those communities upon
which they intrude. In fact, this result is not entirely surpris-
ing, since it has been found that the maximum modularity par-
tition suffers from a so-called ‘resolution limit’, in which it
tends to fail to extract clusters smaller than a certain size, due
to the particular manner in which the degree distribution of
the underlying graph enters into the criterion function being
optimized. See [7], for example.

4.2 Cut-Vertices
The problem with the standard community detection ap-

proach in this setting is that, in seeking a highly parsimo-
nious partitioning, it is not operating at a sufficiently fine scale.
While we could, of course, choose to explore partitions of
the graph resulting from non-optimal choices of the objective
function (i.e., modularity), it is not clear how best to do so
once optimality is left behind. Alternatively, therefore, we im-
plemented a type of simple, bottom-up iterative pruning algo-
rithm, which proved to be decidedly more powerful in isolat-
ing malicious nodes.

Specifically, and recalling the importance of cut-vertices
in our illustrations of Section 3, as prototypical examples of
how a node might participate in communication in (anti)social
ways, we implemented a simple recursive seach-and-prune
strategy for greedily finding such cut-vertices. Starting again
with the largest connected component of the one-mode pro-
jection source graph GP, we used a standard max-flow/min-
cut algorithm to identify all cut-vertices in that component.
These vertices were then removed, the act of which, by defini-
tion, broke the component into at least two separate connected
components. We then took the larger of these connected com-
ponents and repeated the process just described. This series of
steps was iterated until we reached a largest connected com-
ponent in which no further cut-vertices are found. This com-
ponent had 4633 nodes, just over 50% the size of that in the
first stage of the algorithm (i.e., 8480).

Note that at each stage of the algorithm, until convergence,
the act of pruning induces additional cut-vertices, which in

some sense therefore were ‘nearly’ cut-vertices at the previ-
ous iteration. So our algorithm can be viewed as a ‘quick-and-
dirty’ way of discovering nodes where the notion of cut-vertex
is applied in an increasingly robust manner. The output of our
algorithm is a list of 1303 nodes. In examining this list, we
find that 86 are DShield sources, i.e., the proportion of Dshield
sources among cut-vertices is about 6.6% . While this percent-
age may not seem large in itself, this is likely due in no small
part to the greedy nature of our algorithm (i.e., recall that at
each iteration we work only on the largest connected compo-
nent emerging from the component analyzed at the previous it-
eration). Importantly, however, a cross-validation study shows
that this number is highly significant. Specifically, using the
same network GP, we randomly assigned the 161 labels of
‘DShield’ to arbitrary nodes in this graph and applied our al-
gorithm. This process was repeated 100 times. The average
proportion of pseudo-DShield nodes discovered over the 100
trials of this simulation was 1.66%, with a 95% confidence in-
terval of (1.06%, 2.27%). These results suggest that DShield
source IPs are highly enriched among cut-vertices.

5. DETECTING MALICIOUS
SOURCES

With an ability to distinguish between DShield and non-
DShield nodes, we now demonstrate the use of clustering and
betweenness on our source graphs for detection. We present
first the results for the analysis of a single day of traffic, in de-
tail, and then a summary of results for the same analysis over
fourteen consecutive days of traffic.

The previous section showed that a sizeable fraction of ma-
licious hosts can not be detected by simple degree-based meth-
ods. Hence, in all our analyses below, we focus only on detec-
tion of those nodes that can not be detected by degree-based
methods. That is, we eliminate from our validation sets all
those nodes having degree greater than the threshold shown in
Figure 3 for the 5% false alarm rate.

It is important to recognize that high-degree malicious
sources are easily detected using the antisocial metrics, be-
cause they communicate with so many unrelated communi-
ties. Hence, restricting our attention only to low-degree nodes
makes our detection problem much harder, and focuses on a
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Figure 4: Detection accuracy for Day 1.

set of sources that are not detectable using standard (degree-
based) methods.

5.1 Analysis of Day 1 Traffic
Our proposed intrusion detection system is simple and in-

tuitive, in that it entails just the thresholding of the cluster-
ing and betweenness metrics introduced in the previous sec-
tion in our characterization of malicious sources. To evaluate
this approach, we do the following. Given a graph GP or GW ,
constructed from a set of network flow data as described in
Section 3, we calculate the clustering and betweenness values
for all vertices in our validation set (i.e., those not detected
by a standard degree-based method, at 5% false alarm rate).
These values are then compared to a threshold, across the ap-
propriate range of thresholds, with a node being declared ma-
licious if its clustering coefficient (betweenness centrality) is
below (above) that threshold. Receiver operating characteris-
tic (ROC) curves and the area under the curve (AUC) are used
summarize performance.

To begin to understand the relative power of the two met-
rics (clustering and betweenness) and the two graph represen-
tations (the projection GP and the weighted projection GW ),
we present detection results in Figure 4. This receiver operat-
ing characteristic (ROC) plot shows the tradeoff between false
alarm rate (on the x axis) and detection rate (on the y axis) for
the four combinations of metric and graph representation.

Overall, the figure shows that detection ability of the antiso-
cial method for these difficult-to-detect sources is quite good.
It also highlights distinctions among the approaches. The area
under the curve (AUC) for these ROC curves, a single-number
summary of accuracy, is higher for clustering than between-
ness in both the binary graph GP (i.e., 0.75 versus 0.724) and
the weighted graph GW (i.e., 0.787 versus 0.581). These num-
bers – particularly the AUC of 0.787 for clustering on the
weighted projection source graph GW – are quite encouraging,
and point strongly to the utility of our use of social structures
here.

To illustrate the nature of the antisocial communication de-
tectable using these methods, we chose an arbitrary DShield
source. We then extracted from the source graph GP the so-
called ‘ego-centric’ subgraph associated with this source, con-
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Figure 6: Average ROC curves summarizing detection ac-
curacy over 14 days.

sisting of the source node, its 62 neighboring nodes, and those
edges to and among these neighbors. Figure 5 shows a rep-
resentation of the subgraph thus obtained. The Dshield node
is depicted in the middle of what can be seen to be five nat-
ural clusters, indicated by different colors, identified using a
standard community detection algorithm. The Dshield node
was placed in its own cluster by the algorithm. The over-
all structure of the subgraph is consistent with our notion of
(anti)social behaviour in the source-based social networks: the
malicious source node is clearly ‘entering’ communities to
which it does not ‘belong.’

5.2 Analysis of 14-day Traffic
In order to verify the robustness of the 1-day results in Sec-

tion 5.1 for our proposed intrusion detection system, we an-
alyzed all fourteen days of the data described in Section 2.
For each day, we repeated 10 times the process described in
Section 4, wherein each time we generated a random bipar-
tite graph GB from 10K randomly sampled source vertices and
constructed the corresponding source projections GP and GW .
For each such pair of projection graphs, we calculated the lo-
cal clustering and betweenness values for all sources in com-
ponents of size at least three (i.e., we dropped all singletons
and dyads from our analysis).

In Figure 6 we show the average of the resulting ROC
curves, over the 140 samples drawn over the 14 days. And in
Table 2 we show the average corresponding AUC values, and
their associated standard errors. We see that for clustering and
betweenness on both GP and GW , the average AUC over 14
days is nearly identical to what we saw for the first day. Par-
ticularly, on GP, the average is essentially the same for both
clustering (i.e., 0.75 for Day 1 versus 0.744 for 14 days) and
betweenness (i.e., 0.724 for Day 1 versus 0.718 for 14 days);
and on GW , the average clustering (i.e., 0.787 versus 0.7625)
and betweenness (i.e., 0.581 versus 0.562) are also compara-
ble. This suggests a good level of robustness of our results, on
average, to the choice of day.

These results also lend support to the conclusion that the
clustering metric provides much better discriminatory power
than the betweenness metric. On the other hand, the emerging
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Figure 5: Visualization of DShield neighborhood comprised of 62 nodes.

picture is that the weighted graph GW , despite its more nu-
anced view of antisocial communication (i.e., through the in-
corporation of information on multiple flows between source-
destination pairs), does not offer a significant improvement in
detection accuracy over the simpler, unweighed GP.

Table 2: Summary of AUC for Detection over 14 Days.
Mean(AUC) SE(AUC)

Clustering on GP 0.7440 0.0103
Betweenness on GP 0.7180 0.0084
Clustering on GW 0.7625 0.0080
Betweenness on GW 0.5621 0.0034

A slightly more refined picture emerges in examining Fig-
ure 7, where we show the daily average AUC for each of the
four detection methods, with the averages here computed over
the 10 sampled flow datasets each day. The associated stan-
dard errors (not shown) are on the order of at most 0.03 in
all cases. We see that the relative performance of each of the
four methods is quite stable with respect to each other over this
two-week period. Somewhat interestingly, the performance of
the topmost scoring method, based on clustering on GP,while
largely constant over the two weeks, clearly degrades slightly
in two places, which correspond to weekends (i.e., May 5-6
and 12-13). The other three methods appear to be affected to
much lesser extents, or not at all, by the weekend. It is un-
clear what may be causing this differentiation in relative per-
formance.

6. RELATED WORK
As mentioned already, our work is informed by recent stud-

ies showing that distinctive, community-based graph struc-
tures are evident in normal network traffic [8]. We use these
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Figure 7: AUC as a function of day, over 14 days.

structures to motivate our search for intruders as hosts that do
not respect such community boundaries.

A number of other efforts have used properties of the graphs
induced by flow records to detect malicious traffic. The no-
tion that malicious hosts have high degree in the bipartite flow
graph has motivated algorithms for identifying such “high car-
dinality” or “superspreader” nodes [9, 11]. However, these
approaches rely only on node degree and do not incorporate
any notion of graph structures reflecting social properties (e.g.,
clustering or betweenness). The significant number of mali-
cious hosts in our data that are not “superspreaders” was illus-
trated in Section 4. The authors in [3] also investigate a graph-
based method for intrusion detection. However, their focus
is on identifying large scale patterns such as worm outbreaks
and their approach is rule-based. Likewise, the authors in [21]



consider the same problem and apply simple rules to identify
intrusion between clusters of nodes. As with the high-degree
heuristic, these methods are not based on social properties

In our work we start from a definition of normality that in-
corporates social interactions. Other work has considered in-
trusion detection based on a simpler definition of normality:
namely, normality is simply what is common or frequent. This
leads to the problem of identifying unusual substructures in
graphs [15, 5]. The drawback to this approach is that attacks
must be rare in order to be recognized as anomalous. Fur-
ther, the particular methods used are highly sensitive to noise,
which is a significant drawback when applied to sampled flow
data.

The work in [14] is focused on worm detection, but has
some similarity to our work in that historical communication
patterns are used to define communities for each host. How-
ever the approach taken is rigid and not based on known prop-
erties of social networks, but rather on defining normal com-
munication as that which has happened in the past.

In this paper we build our most detailed view of community-
based similarity using the cosine similarity measure. Other
work has looked at different definitions of community-based
similarity for bipartite graphs. For example, [20] defines a
similarity-based neighborhood of a particular node by using a
random walk with restarts at the node. Our work required a
similarity measure between pairs of nodes.

7. DISCUSSION
As discussed in the Introduction, signature-based intrusion

detection systems are quickly outdated, which has spurred in-
terest on identifying characteristics of normal traffic that are
violated by intrusions. Of course, no single characteristic is
sufficient for this purpose. While attention has focused on high
cardinality hosts, we show that this characteristic alone cannot
reliably detect intrusions.

Accordingly, our focus is on new characteristics that can
be exploited in the context of a multi-faceted or multi-filter
intrusion detection system, to augment approaches based on
cardinality and other metrics. Our hypothesis is that commu-
nities are exposed in communication graphs, and that commu-
nity structure can be exploited for intrusion detection. Our
results (in particular, showing high AUC values – as high
as 79%) show that indeed, communication that consistently
crosses community boundaries is often evidence of intrusion.
Another point discussed in the Introduction is that validated
intrusion data is rare and quickly outdated. In this study we
have used logs from the DShield database to identify hosts
that are malicious, which is of course only an approximation
to ground truth. However, one result of this approximation is
that our stated results may be somewhat pessimistic — there
may be many malicious sources that are in fact detected by our
methods but are not labeled as such because they do not ap-
pear in DShield logs. Indeed, there is some evidence that this
is the case. For example, in our single-day dataset, we find
that 3.1% of detections that are labelled as DShield sources
send to destination port 0. This is not surprising, as port 0 is a
common attack target. However, we also find that 1.6% of the
detections that are not labelled as DShield sources also send
to port 0. This is in contrast to the negatives (sources that are
not detections), in which only 0.6% send to port 0. The fact
that there is a higher tendency to exhibit this characteristic of

malicious behavior among even the non-DShield detections as
compared to the negatives suggests that our methods may in
fact be performing better than our results indicate.

The limitation of DShield data as a definition of ground
truth led us to explore other ways of identifying malicious
sources. To this end, we also analyzed a corpus of honeynet
logs provided by the Internet Motion Sensor (IMS) project at
the University of Michigan [1] collected over the same period
in 2007 as the flow logs. The IMS honeynet monitors a large
portion of a /8 address space, and report non-spoofed source IP
addresses that sent packets to the honeynet. Similar to Dshield,
those sources are typically considered to be malicious, but the
nature of the data is complementary: DShield is based on sig-
nature detection, while the IMS data collects traffic to dark
space. Our results using this data were consistent with our
DShield results. In particular, the clustering metric applied
to GP showed best performance overall, with a relatively high
AUC value (0.63) suggesting that socially-based analysis is ef-
fective for detecting these sorts of malicious sources as well.

8. CONCLUSION
This paper evaluates a variety of ways of representing and

measuring the social information contained in network flow
data, and shows how to identify traffic sources that engage in
(anti)social behavior — that is, communication that does not
respect community structure.

We find that traditional approaches to community identifi-
cation (e.g., based on modularity) operate at too coarse a level
to be useful for this problem. In contrast, a more useful ap-
proach is a local one, based on the idea of a cut-vertex. We
show that one can make the notion of cut-vertex more robust,
in our context of intrusion detection, by using metrics from the
social network literature: clustering and betweenness. We find
that clustering provides a more effective detector of antisocial
behavior than does betweenness, but that the added complex-
ity of the weighted graph GW does not deliver a corresponding
improvement in detection ability over its simpler cousin GP.
We also show that the use of social properties is more pow-
erful than the use of source degree (cardinality), in the sense
that it allows detection of malicious low-degree sources that
can not be detected by the degree-based detector.

Having identified appropriate graph representations and ap-
propriate socially-oriented metrics, we form and evaluate a de-
tection system for malicious sources. Despite the fact that the
resulting system operates on flow data (without signature in-
spection), we show that the resulting system effectively detects
the vast majority of sources that the DShield logs identify (us-
ing signatures). This holds promise for the use of socially-
based methods on data from core networks where many more
flows are visible than at network edges (where most intrusion
detection systems operate).
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