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ABSTRACT

In this paper we develop a framework for analyzing patterns of a
disease or pandemic such as Covid. Given a dataset which records
information about the spread of a disease over a set of locations,
we consider the problem of identifying both the disease’s intrinsic
waves (temporal patterns) and their respective spatial epicenters. To
do so we introduce a newmethod of spatio-temporal decomposition
which we call diffusion NMF (d-NMF). Building upon classic matrix
factorization methods, d-NMF takes into consideration a spatial
structuring of locations (features) in the data and supports the
idea that locations which are spatially close are more likely to
experience the same set of waves. To illustrate the use of d-NMF,
we analyze Covid case data at various spatial granularities. Our
results demonstrate that d-NMF is very useful in separating the
waves of an epidemic and identifying a few centers for each wave.
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• Computing methodologies→ Non-negative matrix factor-
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1 INTRODUCTION

This paper is concerned with the analysis of data which is observed
over time and across spatially related locations (i.e. spatiotemporal
data). The questions that our methods address are the following:
(1) What are the waves (temporal patterns) that are intrinsic to the
data? and (2) What are the spatial epicenters of each wave? Where
did the waves have begin or have the most impact?
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Figure 1: .

(1a) Depicts a single wave of disease with varying levels of
intensity across locations; (1b) Shows a diffused pattern of spread
recovered by NMF; (1c) Highlights two distinct points of origin

recovered by d-NMF

Our study is motivated by Covid case data collected from the past
(roughly) two year period over a variety of spatial scales. Our goal
is to develop and deploy techniques that are able to identify waves
of a pandemic (as temporal patterns) along with their respective
spatial epicenter(s).

One may think to attack the two questions raised above via the
techniques of classical Non-NegativeMatrix Factorization (NMF) [12]
or one of its variants. This approach may find key temporal pat-
terns, but does not take into consideration their spatial structure:
one wave which is present in location j is more likely to also occur
in locations neighboring j than in locations that are further away
from j. There may be locations in the output which appear to be
strong sources of a particular wave, but are in fact only reflecting a
pattern that comes from an epicenter that is spatially close to them.

The challenge of teasing apart the locational aspect of Covid
waves is illustrated in Figure 1. The figure shows a hypothetical
scenario of a wave which occurs in the northeastern US region.
Figure 1a shows the temporal evolution of the wave in different
states; some states show a stronger intensity overall than do other
states. If we look at the heights of the peaks plotted as a geographical
heatmap, we get Figure 1b. From this figure, it is not clear what
the epicenter of the wave might be: it could be any combination
of states from the set containing New York, Pennsylvania, and
West Virginia. However, in this synthetic example, the epicenters
of this wave were pre-defined as New York and West Virginia. The
methods we develop in this paper are designed to identify those two
states as epicenters. In fact, Figure 1c shows the result of applying
our methods to the data in Figure 1a, demonstrating its ability to
extract the correct epicenters in this example.

https://doi.org/10.1145/3534678.3539136
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To address this challenge, we define and develop diffusion NMF
(d-NMF). d-NMF decomposes our data, D, into three matrices X ,V ,
and K . Similar to an output from NMF, the matrices X and V are
low-rank, non-negative matrices which respectively describe the
waves (temporal patterns) and their spatial coefficients. The matrix
K is the diffusion kernel: a square matrix provided as part of the
input which encodes our assumptions about the the similarity in
intensity between locations. Its purpose is to factor this similarity
out of the matrix of spatial coefficients, V . Objectively, our goal
is to find X and V such that ∥D − XVK ∥F is minimized. With the
inclusion of K the columns of X will still encode wave patterns,
but the columns of V will now sparsely encode the location-wise
intensity of a wave so as to highlight its epicenter(s).

To the best of our knowledge d-NMF is an idea that has not yet
been proposed for analyzing disease or pandemic data. We show
how one can construct an iterative algorithm for computing the d-
NMF decomposition and include extensive experiments with Covid
data collected from different locations over an observation period
of 630 days. Our experiments show that d-NMF is able to identify
interesting waves of the epidemic and, more importantly, distinct
epicenters for them.

2 RELATEDWORK

To the best of our knowledge, we are the first to propose diffusion
NMF, the problem of capturing the spatiotemporal characteristics
of a phenomenon such as the Covid pandemic. However, from a
methodological point of view, our work is related to other works
that focus on identification of sources of diffusion, signal deconvo-
lution, and matrix decomposition. Since our application of focus
is to study the spread of Covid, our work is also related to other’s
that seek to identify the pandemic’s patterns. Below, we discuss the
connections between our work and existing work in these areas.

Identifying patterns in the spread of Covid: The Covid-19 pan-
demic that started in Dec. 2019 has given rise to many studies
which attempt to identify patterns of viral spread using a vari-
ety of techniques [1, 2, 7, 8, 10, 11, 16, 20, 26]. Pinpointing key
factors that have affected the evolution of the Covid has become
an important problem that is pushed forward by works such as
these. Some of them focus on predicting the presence of Covid
using NMF, timeseries analysis, or other machine learning meth-
ods [1, 8, 10, 11, 16, 20, 26], while others focus on understanding
spread patterns through the use of mobility data [2, 7, 10]. We do
not focus on predicting where or when the Covid will spread, but
rather on providing an a-posteriori insight of the spatio-temporal
characteristics seen in the data which is available to us. Related
to ours is the work of Chen and Zhang [8] who show how NMF
can be used to both uncover waves of spread and cluster locations
into disjoint groups that have seen similar patterns. Their methods,
however, do not make use of spatial similarity within the factoriza-
tion process itself and are not focused on identifying small sets of
epicenters.

Tracing the history of a spread:On a very high level, our work is
related to social network problems where the goal is to identify both
the backbone of a network and the most probable set initiators for
some observed spread [13, 17, 21, 22]. The connection between this

work and ours, however, is mostly high-level: in both cases obser-
vations are used to decouple the initiators and the observed spread.
But, the approaches these works consider are tailored towards par-
ticular information propagation models on graphs. They do not
consider the same variability in wave patterns which is picked out
by matrix factorization with the use of a diffusion kernel.

Signal deconvolution and matrix decompositions: Similarly,
our work is also abstractly related to work on image deconvolu-
tion [23], where the goal is to recover an image from a set of blurred
images in the presence of a known or unknown point spread func-
tion. In a way, our diffusion kernel corresponds to the point spread
function, which we assume is known. Our problem of recovering
waves of spread and their corresponding epicenters is a very spe-
cific way of decomposing the input data which fits our purposes,
but is not necessarily appropriate for image data. Therefore, our
specific methods of signal separation are novel.

The d-NMF problem separates signal by decomposing the input
data matrix D into a product of three matrices XVK , where X and
V are low-rank non-negative matrices and K is an a-priori known
matrix (the diffusion kernel). Since our goal is to find X and V
given D and K , our problem is very much inspired by classical
non-negative matrix factorization methods [12, 18, 19]. However,
the distinguishing factor of our work is that the kernel K forces
the non-negative factors X and V to take a particular form, and
allows us to translate the columns of X as the waves and the rows
ofV as information related to their epicenters. This is unique to our
problem, although similar approaches have been considered in other
application domains [5, 6, 14, 24, 27]. These approaches all focus
on finding a non-negative matrix factorization of the input data
subject to some application-specific constraints. Our constraints
are distinct in that they are specifically designed to to analyze the
spread of an endemic or a pandemic such as Covid. Therefore, the
similarity between our work and existing work in this area can
only be seen at a high level.

3 SPATIO-TEMPORAL DATA

DECOMPOSITION

Throughout the paper, wewill assume that the input data consists of
a matrix D ∈ Rn×m where the rows correspond to timestamps and
columns correspond to locations. Each entry D (i, j ) corresponds to
some measure of Covid intensity at time i for location j, for the n
timestamps andm locations.

Our analyses in this paper focus on patterns within cumulative
Covid case data, but our methods are general and could be applied
to any phenomenon that occurs in spatially distinct waves over
time. Hence, in describing our methods, we will generally refer
to intensity as the cumulative incidence of Covid cases. In other
words, as a measure of a location’s cumulative case count relative
to its population – for example, each entry D (i, j ) corresponds to
the cumulative number of new cases seen by location j from time
0 to time i , divided by j’s population. In practice intensity could
also mean infection rates, hospitalization rates, or other measures
of spread relative to population.

Our goal is to discover waves of disease intensity, i.e., general
patterns of rising and falling intensity over time that are common
throughout locations in the data. At the same time, we want to
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identify locations that act as centers of the different waves, i.e.,
places where a particular wave might have begun or where it had
the most dramatic impact.

Although classical Non-negative Matrix Factorization (NMF)
might be used to identify waves (basis vectors), NMF does not
impose any geographical structure on the detected waves. In partic-
ular, it does not enable us to identify the epicenters of the different
waves. For that, we introduce a new decomposition that enables us
to do so, which we call diffusion NMF (d-NMF).

3.1 Modeling disease patterns using NMF

The idea behind NMF [19] is to describe the input data as a weighted
sum of a small number of additive latent patterns. In other words,
NMF assumes that the input data D can be approximated by two
low-rank factorsW and H such that

∥D −WH ∥F (1)

is minimized. In the above equation, matricesW and H are con-
strained to be non-negative (i.e., all their entries are greater or equal
to zero). Furthermore, the decomposition is generally low rank —
W is of size n × r and H is of size r ×m, with r ≪ min(n,m). We
refer to the problem of findingW and H given r and D as the NMF
problem.

In our setting, the columns ofW correspond to the latent patterns
that can be used to describe the data; these are the waves. Each
of the r columns describes how its wave changes over n units
of time. Similarly, each of the r rows of H is a length m vector
which stores non-negative coefficients that encode the strength
of the appearance of the r th wave at each of them locations. In
other words, NMF provides a low-rank temporal representation of
intensity.

3.2 Modeling disease patterns using d-NMF

Although using NMF enables us to extract patterns of the temporal
evolution, the NMF decomposition as described above does not
provide insight about spatial patterns of intensity. In particular,
because NMF determines the weights of H independently for each
location, it does not assist in determining where each wave was
initiated, i.e., what was the epicenter of the wave, and how the
waves diffused across the different locations.

In order to enforce geographical constraints upon our model,
we introduce a kernel function that captures similarity between
different geographic locations. This kernel function can be any
measure that captures how similar one location is expected to be to
another location in terms of disease intensity. In what follows, we
assume that the kernel function is generated by a diffusion process
(described below), but our algorithms work with whatever kernel
function is provided.

Hence, we introduce them ×m matrix K , with K (j, j ′) giving
the value of the kernel function relating location j to location j ′.
By incorporating this matrix in our decomposition, we define diffu-
sion NMF (d-NMF). In d-NMF, the initial observation matrix D is
decomposed into three matrices X ,V and K such that:

∥D − XVK ∥F (2)

is minimized.

In the above equation, X and V are analogous toW and H from
NMF, i.e., are rank r non-negative matrices of shape n × r and
r ×m respectively. The additional non-negativem×m matrix K is a
(diffusion) kernel that represents the expected similarity in intensity
from one location to another. We call the problem of finding X and
V , given the number of waves r , the diffusion matrix K and the
data matrix D the d-NMF problem.
The diffusionkernel:The above problem definition is general and
can, in principle, work with any non-negative matrix K . However,
to effectively identify the epicenters of waves, it is necessary that
the chosen kernel captures the some spatial aspect of the disease.

In this paper, we choose the simplest possible model of disease
spread to demonstrate our results, without attempting to precisely
model the epidemic properties of Covid. For that purpose, we treat
disease spread as a diffusion or random-walk process on the adja-
cency graph of the studied locations. For this, we use a diffusion
kernel [15]. More specifically, we adopt the Regularized Laplacian
kernel [3, 28] defined as :

K = (I + βL)−1, (3)

where L is the Laplacian of the unweighted, undirected graph de-
fined over the m studied locations. For our graphs, we connect
two locations by an edge if they are geographically adjacent; all
other locations are disconnected. Note that with this kernel any
Laplacian matrix corresponding to an appropriate graph may be
used, but we have chosen to restrict ourselves to the graph defined
by geographical adjacency for simplicity.

The Regularized Laplacian (RL) as defined in Equation (3) is
a symmetric, positive definite, and nonnegative matrix. Hence it
meets the requirements for use in d-NMF. Furthermore, it is appro-
priate for modeling an infectious disease because it has the natural
interpretation of a length-bounded random walk, as described in
[3]. The random walk associated with the RL is defined as follows:
consider a continuous-time random walk on a graph in which node
v has degree dv , and ajv = 1 if j and v are adjacent, and is 0 other-
wise. At time 0 the walker starts in a given node (sayv) and remains
in v for an exponentially distributed time with expected duration
1/dv . It then moves to a new node ℓ with probability avℓ/dv , and
repeats the process. The kernel function K (v,q) is then propor-
tional to the probability that a random walk that starts in node
v is found in node q after an exponentially distributed time with
expected duration β .

This parameter β found in the RL describes the ‘spread’ of the
resulting diffusion. We call this parameter the diffusion parameter. If
β is large, the walker moves far from the source before it is observed;
hence, a large β value describes a widely-spread similarity function,
i.e., a diffusion that has spread far from its source, covering many
locations along the way. It is clear that more highly parameterized
models, such as those that posit a different β for each wave, are
possible and could be used in place of the RL, but we leave this for
future work.

4 ALGORITHMS FOR D-NMF

We start this section by describing an iterative algorithm for the
NMF problem as described by Lee and Seung [18]. Then, we discuss
the relationship between the d-NMF problem and the original NMF
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problem and show how to modify the original algorithm for our
purposes.

An iterative algorithm for NMF As a starting point for solving
the d-NMF problem, we will first discuss a popular iterative algo-
rithm for the NMF problem which was first proposed by Lee and
Seung [18]. Given the number of waves r , this algorithm finds non-
negative low-rank matricesW and H that minimize Equation (1).
In each iteration the algorithm updates the estimates it has forW
and H following the update rules:

W ←W ·
DHT

WHHT , (4)

and

H ← H ·
WTD

WTWH
. (5)

Note that in the equations above · represents element-wise multi-
plication. This iterative algorithm, which we call iNMF, iteratively
updates the matricesW , H until convergence. In their paper, Lee
and Seung show that this algorithm converges to a local minimum
and also demonstrate that the algorithmworks very well in practice,
i.e., the number of iterations it requires is polynomial in the input
size.

An iterative algorithm for d-NMF: Recall that in the d-NMF
problem the input consists of the data matrix D, the number of
waves r , and the diffusion matrix K (computed given the graph
of locations and the diffusion parameter β). The goal is to find
rank-r matrices X and V such that Equation (2) is minimized. To
solve this problem, we will modify the iNMF algorithm and call this
modification diffusion-iNMF. Still being an iterative algorithm,
every iteration updates the current estimates of matrices X and V .
Following the ideas of Lee and Seung, we modify the update rules
for X andV so that they include the diffusion kernel matrix K . The
new update rules are as follows:

X ← X ·
DKTVT

XVKKTVT , (6)

and

V ← V ·
XTDKT

XTXVKKT . (7)

The derivation of these rules follow the ones done by Lee and
Seung which are described nicely in [4]. They will be provided in
an extended version of the paper.

Discussion: Since we assume that the diffusion matrix K is known,
it’s tempting to think the d-NMF problem is equivalent to the prob-
lem of approximating the matrix DK−1 with rank-r non-negative
matricesX andV i.e. solving anNMF problem for data matrixDK−1
(instead of D). However, such an approach would be problematic.
While K has positive values for each entry, the same is not neces-
sarily true for K−1 and therefore also DK−1. This poses a problem
for NMF which always assumes non-negative input. Therefore, the
optimal solution to the problem of minimizing ∥D − XVK ∥F is
different from the optimal solution to the problem of minimizing
∥DK−1 − XV ∥F (subject to X and V being non-negative in each
case).
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Figure 2: Experiments on synthetic data with true values for

r = 4 and β = 5; (2a) Grid-search to determine number of

waves (r ) used as input; (2b) Grid-search to determine extent

of diffusion parameter (β) for RL kernel K ; (2c) Grid search

jointly on (r , β ).

5 EXPERIMENTS

In this section, we experimentally evaluate our approach using both
synthetic and real datasets. The code, data, and examples with more
detail are all available on github1.

5.1 Experiments with synthetic data

Before demonstrating the efficacy of our methodology on real
datasets we first evaluate it on synthetic data. In doing so, we
demonstrate that our grid-search methodology allows us to ade-
quately recover accurate values for r (i.e., number of waves or rank)
and β for the RL Kernel (see Equation (3)).
Synthetic datasets: To generate the observation matrix D of the
synthetic data we proceed as follows: first, we generate an n × r
matrix for X where each column follows the pattern of a sine wave
with a fixed frequency and amplitude. Then we generate a random

1https://github.com/KevinQ152/diffusion_nmf

https://github.com/KevinQ152/diffusion_nmf
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Figure 3: Relative Error (RE) of NMF and d-NMF for DNE, DCA, DUS and DEU.

sparse r ×m matrix for V in which only 7% of the entries are non-
zero. The nonzero entries are positive values that represent points
of origin in the diffusion process. Our chosen level of sparseness
simulates the case in which a few locations are responsible for the
majority of the spread. Finally, we construct a random geometric
graph [25] – usingm nodes and a distance threshold of 0.3 – and
compute its Laplacian, L. Given this L and a chosen value of β , we
then form matrix K as per Equation (3). We construct the data, D,
per the formula D = XVK and, to simulate random noise, we add a
sample from a Gaussian distribution with zero mean and a standard
deviation of 0.001 to every element Di, j . Note that if the addition
of noise resulted in a negative value we set this value equal to 0.

In this report we used n = 250, m = 50, but our experiments
suggest that the size of the dataset does not have much impact on
the ability of grid search to pick the right parameters r and β .
Grid search: Given a synthetically-generated matrix D, and for
fixed hyperparameters (r , β ), we use iNMF to estimate X̂ and V̂ .
Then, for these values of (r , β ) we compute the relative error of our
solution as follows:

RE(X̂ , V̂ | D, r , β ) =
∥D − X̂V̂K ∥

∥D∥
. (8)

Note that in order to avoid overfitting we randomly select 80% of
the entries in D, use them to estimate X̂ and V̂ , and compute the
relative error on the unseen 20% of the data.

Our grid-search methodology for finding hyperparameters con-
siders all combinations within a range of values for r and β , and
chooses values that are minimal in error while also preferring
smaller r and larger β . More details for hyperparameter selection
and our train-test procedures are provided within our example
notebooks1.
Results: Figure 2 demonstrates the ability of the grid-searchmethod
described above to accurately recover the values of r and β that
were used for generating the synthetic data. In this experiment we
generated data using r = 4 and β = 5. The results in Figure 2a
correspond to keeping β = 5 and running diffusion-iNMF for
different values of r ranging from 1 to 14. The y-axis shows the
relative error and the x-axis the different values of r tested. The
results show that the relative error drops sharply when r = 4 and
then continues to slightly increase as the rank rises. We consider
this increase as evidence of overfitting.

In the plot we also show the relative error which is due to the
added noise; it is important to observe that unless the parameters r
or β we provide as part of the input are very different from the ones

used for generating the data, the error of the solution output by
diffusion-iNMF is smaller than the error due to noise. Given that
the error caused by noise was very small on its own, this implies
that our algorithm finds solutions that are very close to the optimal
ones.

For the same dataset, Figure 2b shows the relative error (y-axis)
achieved by running the diffusion-iNMF algorithm for fixed r = 4
and different values of β ∈ (0, 10] (x-axis). The results show that for
values of β in the interval (0, 5] the error is very low; however as β
increases past the true value of 5 the error immediately increases
almost linearly. Also note that, as before, the relative error of our
algorithm is less than the error that came from adding noise onto
our input data. This suggests that our algorithm is cutting through
the noise and picking up on the important trends in the data.

These results demonstrate that by using grid search for one of
the hyperparameters (i.e., r or β) we can recover its true value. We
also explore the ability of the grid-search methodology to recover
the true values of r and β by searching jointly over (r , β ) pairs. The
result of this experiment is shown in Figure 2c. For this plot we
use the same dataset with true values of (r , β ) being (4, 5). The
relative error of diffusion-iNMF achieved for the different values
of (r , β ) is shown on the z-axis of this 3-d plot. Again, our results
are consistent: we can recover the true values of (r , β ) using our
procedure.

5.2 Experiments with real Covid data

Having shown that diffusion-iNMF can accurately recover the
wave and diffusion structure in synthetic data, we now use it to
characterize wave and diffusion structures of Covid. Using cumu-
lative covid case counts (i.e., infections) reported daily by Johns
Hopkins [9], we demonstrate the ability of d-NMF to analyze data
at a range of spatial scales: at the US county, US state, and country
levels (focusing on European countries). At each level, our experi-
ments demonstrate the ability of d-NMF to discover both distinct
waves in the spread of Covid and their spatial epicenters. Whenever
we useNMF and d-NMF for our analyses we recover the correspond-
ing matrix decompositions using the iNMF and diffusion-iNMF
algorithms respectively.

5.2.1 Datasets. For all of the following datasets, we collected daily
data for the period starting April 12, 2020 and ending January 1,
2022. Therefore, all of our datasets consider 630 timestamps.

County-level datasets: Our county-level datasets are DNE and
DCA. The first (DNE) contains as locations 127 counties in the New
England Region (including New York, Massachusetts, Connecticut,
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(a) Wave matrixW recovered with NMF.

2020-04-12
2020-07-21

2020-10-29
2021-02-06

2021-05-17
2021-08-25

2021-12-03
0.0

0.5

1.0

N
or

m
al

iz
ed

 In
te

ns
ity Wave 0

Wave 1
Wave 2
Wave 3
Wave 4

(b) Wave matrix X recovered with d-NMF.

Figure 4: County-level Covid waves for New England recovered with NMF and d-NMF.

(a) Each row (0-4) of recovered H matrix of NMF corresponding to waves (0-4) inW .

(b) Each row (0-4) of recovered V matrix of d-NMF corresponding to waves (0-4) in X .

Figure 5: County-level coefficient matrices H , V for New England as recovered with NMF and d-NMF; large coefficients (i.e.,

darker colors) correspond to locations with high intensity for a given wave.

Maine, Vermont, New Hampshire, and Rhode Island). The second
dataset (DCA) covers all 58 counties in California. In both, two
counties are considered adjacent if they have a shared border, as
determined by the US Census.2 Every entry corresponds to a cumu-
lative case count (since the beginning of the observation period) and
the case counts are normalized by the corresponding 2010 census
population of the county.3

State-level dataset: Our state level dataset, DUS, considers the
48 contiguous US states that form a connected adjacency graph
(excluding other locations not connected by a land border). Each
entry corresponds to a normalized cumulative case count, where
normalization is done with the state’s 2010 US census population.4
In this dataset an edge is added between two states if they share a
border.5

European-countries dataset: Our European-country dataset
DEU has as locations 49 countries in and around the region of
Europe. Cumulative case counts are normalized using the corre-
sponding country’s population as reported in by the World Bank.6

2https://www.census.gov/geographies/reference-files/2010/geo/county-
adjacency.html
3https://www.census.gov/data/datasets/time-series/demo/popest/2010s-counties-
total.html
4https://www.census.gov/data/datasets/time-series/demo/popest/2010s-counties-
total.html
5Adjacencies obtained from https://data.world/bryon/state-adjacency
6https://data.worldbank.org/indicator/SP.POP.TOTL

In this dataset, there is an edge between two countries if they share
a land border (roughly).7

5.2.2 Error analyses for Covid data: We start our analysis of real
data by comparing the relative error of the solutions to d-NMF and
NMF (as produced by diffusion-iNMF and iNMF respectively) as a
function of the number of waves r . The results for all four Covid
datasets are shown in Figure 3. The error bars shown correspond to
different repetitions of the algorithmwhen hiding different portions
of the data for training and testing; as before, we use 80% for training
and 20% for testing.

We observe that, in all cases, the error for d-NMF is larger than
that of NMF. This is expected as d-NMF is a more constrained
version of NMF. For all datasets we see that the error for NMF de-
creases steadily as r increases. This is because NMF is not restricted
by a diffusion process and so can increase r freely. d-NMF, how-
ever, does tend to increase in error after finding a minimum point.
Unlike NMF it is constructed around a diffusion process in which
waves are spread and shared amongst locations in a pre-defined
way. For this reason, it is not always beneficial to add new waves.
The introduction of a new wave may decrease the error for one
location but increase the error for others.

7Adjacencies obtained from https://github.com/geodatasource/country-borders.

https://www.census.gov/geographies/reference-files/2010/geo/county-adjacency.html
https://www.census.gov/geographies/reference-files/2010/geo/county-adjacency.html
https://www.census.gov/data/datasets/time-series/demo/popest/2010s-counties-total.html
https://www.census.gov/data/datasets/time-series/demo/popest/2010s-counties-total.html
https://www.census.gov/data/datasets/time-series/demo/popest/2010s-counties-total.html
https://www.census.gov/data/datasets/time-series/demo/popest/2010s-counties-total.html
https://data.world/bryon/state-adjacency
https://data.worldbank.org/indicator/SP.POP.TOTL
https://github.com/geodatasource/country-borders
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(a) Wave matrixW recovered with NMF.
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(b) Wave matrix X recovered with d-NMF.

Figure 6: County-level Covid waves for CA recovered with NMF and d-NMF.

(a) Each row (0-2) of recovered H matrix of NMF corresponding

to waves (0-2) inW .

(b) Each row (0-2) of recovered V matrix of d-NMF correspond-

ing to waves (0-2) in X .

Figure 7: County-level coefficientmatricesH ,V for CA as recoveredwithNMF andd-NMF; large coefficients (i.e., darker colors)

correspond to locations with high intensity for a given wave.

5.2.3 Qualitative analyses for county-level Covid data. Figures 4
and 5 summarize the results of our analysis for DNE using d-NMF;
the results for NMF are also shown for comparison. For these plots
we use (r , β ) = (5, 1), which are found using the grid-search pro-
cedure described in Section 5.1. Figure 4a shows the waves as re-
covered by NMF and Figure 4b shows the corresponding waves
as recovered by d-NMF (both re-scaled to fit exactly in the range
of [0,1]). The spatial maps in Figure 5 show the corresponding co-
efficients of every NMF wave (Figure 5a) and every d-NMF wave
(Figure 5b). In the map, darker colors correspond to larger coeffi-
cients and therefore are locations with high intensity for a given
wave. Note that there are five waves (labeled 0 to 4) and the labeling
is consistent across figures.

In Figure 4 we observe that there are clear waves corresponding
to spring/summer of 2020 (wave 0), fall/winter of 2020-21 (waves
1-2), mid 2021 (wave 3), and late 2021 (wave 4). The influence of
the Omicron variant is clear in the late 2021 wave. Moreover, the
New England example shows that d-NMF isolates waves more
distinctly than NMF – in NMF wave "peaks" are harder to distinctly
determine.

The spatial maps of NMF (Figure 5a) show how the NMF-defined
waves are spread very broadly across the region. However the spa-
tial maps of d-NMF (Figure 5b) allow us to see that there are clearer
epicenters for each wave. For example, wave 0 (spring/summer
2020) is centred in Manhattan, wave 1 had epicenters in western
Massachusetts and the southern tier of New York State, and wave 2
had epicenters in Long Island and central New York. In the corre-
sponding NMF waves, however, the spatial maps show much more
dispersion and do not clearly identify a epicenter for each wave.

Figures 6 and 7 summarize the results of our analysis forDCA and
they have the same semantics as the figures for New England. The

only difference being that our grid search identified (r , β ) = (3, 1)
meaning that only three waves were identified in California during
this time period.

The results for CA are similar to those of New England. Figure 6
shows that d-NMF separates the three waves in the data more
clearly thanNMF. Furthermore the spatial maps forNMF (Figure 7a)
show that the NMF waves are more widespread across the state
compared to the corresponding d-NMFwaves (Figure 7b); the latter
have significantly less dispersion and more clearly identify the
epicenters associated with every wave. Using d-NMF, we can more
clearly identify that the second and third waves each had a epicenter
in Northern California as well as a epicenter in Southern California.

5.2.4 Qualitative analysis of state-level Covid data. Figures 8 and 9
summarize the results of our analysis for DUS. Figure 8 shows the
waves discovered by NMF and d-NMF (both re-scaled to the range
of [0,1]), and the spatial maps shown in Figure 9 show the value
of the coefficient associated with each of the US States for every
wave. After performing a grid search with input DUS, we used the
values (r , β ) = (5, 1) meaning that five waves were identified at the
national level in the US.

The main take-away is again that d-NMF isolates specific states
as the epicenters of Covid waves more distinctly than NMF does.
For example, d-NMF identifies Arizona as a epicenter for wave 0
more clearly than NMF. d-NMF also shows more clearly that Wave
1 is centered on New York, Florida, Louisiana, and Arizona/Nevada.
Likewise, wave 2 is very sharply centered in North and South
Dakota in Figure 9b, but is much more spread out among states in
Figure 9a. Similar observations apply to Waves 3 and 4.

5.2.5 Qualitative analysis of European country-level Covid data. Fi-
nally, we conclude by turning to the European country-level dataset,
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(a) Wave matrixW recovered with NMF.
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(b) Wave matrix X recovered with d-NMF.

Figure 8: USA state-level Covid waves recovered with NMF and d-NMF.

(a) Each row (0-4) of the recovered H matrix of NMF corresponding to waves (0-4) inW .

(b) Each row (0-4) of the recovered V matrix of d-NMF corresponding to waves (0-4) in X .

Figure 9: USA state-level coefficient matrices H , V recovered with NMF and d-NMF; large coefficients (i.e., darker colors) cor-

respond to locations with high intensity for a given wave.

DEU. Figures 10 and 11 show the waves and their corresponding
spatial extent in different European countries. For this dataset, using
grid search, we picked (r , β ) = (4, 0.5). Again, waves were re-scaled
to the range of [0,1].

Here, as before, we find that d-NMF isolates specific countries
as the epicenters of Covid waves in a sharper way than NMF. For
example, d-NMF shows wave 0 as being highly concentrated in
Montenegro, The Czech Republic, Sweden, and Spain, but these
epicenters of intensity are harder to distinguish in the results from
NMF. For other waves, central European countries are also more
sharply associated with epicenters in d-NMF as compared to NMF.
As before, this effect is also reflected in the appearance of the waves
themselves. Wave 0 in NMF has two peaks, but the first of which
that occurs in the fall of 2020 is small and unpronounced. In d-NMF,
however, this peak becomes more distinguished and recognizable
as a key event in the data.

6 CONCLUSIONS

In this paper we have shown how to decompose pandemic or dis-
ease related data in a way that simultaneously identifies temporal
patterns (waves), as well as spatial locations – epicenters – that
describe where each wave is located. To do so, we defined the dif-
fusion NMF matrix decomposition problem, d-NMF, and developed
an algorithm that attempts to solve it. We then applied d-NMF to
the analysis of 630 days of Covid case data at three different spatial
scales, and showed its advantages over classical NMF. Particularly,

it shows an ability to identify spatial locations as epicenters for
Covid waves.

While this first step is encouraging, we believe that it suggests
a number of intriguing directions for future work. For example,
the form of the diffusion matrix K used affects the results that we
find. For our analyses, we chose the simplest possible such matrix:
the Regularized Laplacian Kernel computed using the geographical
adjacency graph. However, we believe that moving forward it will
be worthwhile to consider different diffusion kernels, different
graph structures, or even more complex spread parameters.
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