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ABSTRACT

The problem of Learning from Label Proportions (LLP) has received
considerable research attention and has numerous practical applica-
tions. In LLP, a hypothesis assigning labels to items is learned using
knowledge of only the proportion of labels found in predefined
groups, called bags. While a number of algorithmic approaches
to learning in this context have been proposed, very little work
has addressed the model selection problem for LLP. Nonetheless,
it is not obvious how to extend straightforward model selection
approaches to LLP, in part because of the lack of item labels. More
fundamentally, we argue that a careful approach to model selection
for LLP requires consideration of the dependence structure that
exists between bags, items, and labels. In this paper we formalize
this structure and show how it affects model selection. We show
how this leads to improved methods of model selection that we
demonstrate outperform the state of the art over a wide range of
datasets and LLP algorithms.

CCS CONCEPTS

« Computing methodologies — Cross-validation; Semi-supervised

learning settings.

KEYWORDS

Learning from Label Proportions; Hyperparameter Selection; Weakly
Supervised Learning

ACM Reference Format:

Gabriel Franco, Mark Crovella, and Giovanni Comarela. 2023. Dependence
and Model Selection in LLP: The Problem of Variants. In Proceedings of the
29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
(KDD °23), August 6—10, 2023, Long Beach, CA, USA. ACM, New York, NY,
USA, 12 pages. https://doi.org/10.1145/3580305.3599307

1 INTRODUCTION

The problem of Learning from Label Proportions (LLP) seeks to
build a classifier f : X +— Y that maps items X € X tolabels Y € Y.
However, unlike the standard supervised learning problem, in LLP
the data available for learning f does not consist of (X, Y) pairs.
Rather, what is available is an assignment of each item to a group
(called a ‘bag’), and knowledge of the proportion of positive labels
among the items in each bag.
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The LLP problem has received considerable research attention
and has numerous practical applications. For example, it has been
used to generate fine-grained predictions of public opinion [7], to
aid in embryo selection during assisted reproduction [13], as a tool
in industrial quality control [42], and to infer the demographics of
Twitter users [2].

However, although many algorithms for LLP have been proposed
(see §3), the problem of hyperparameter setting, ie model selection,
has rarely been addressed (to our knowledge, the only work de-
voted to hyperparameter selection in LLP is [12]). This is surprising,
because it is not obvious how to extend standard hyperparameter
selection strategies to use with LLP algorithms. In particular, stan-
dard approaches to hyperparameter selection involve holding out a
portion of the labeled data to test generalization ability. However,
in the LLP problem, data items are not individually labelled, and so
held-out data can have unknown properties.

In this paper we take a close look at the challenge of model
selection in LLP. We argue that to put model selection on firm
ground, it is necessary to consider aspects of the LLP problem that
have typically been overlooked in prior work. In particular, we show
that model selection is strongly affected by dependence relations
between bags (B), item features (X), and labels (Y). In other words,
while the standard supervised learning problem involves only the
dependence of labels on features, the LLP problem additionally
involves a large set of additional potential dependence relationships
between features, labels, and bags.

Hence, the first contribution of this work is to introduce a tax-
onomy of LLP problem variants. Our taxonomy is based on the
dependence and conditional dependence present between B, X, and
Y. We show that prior work has rarely considered the impacts of
such dependence relations in LLP, and no prior work has dealt
with LLP variants in a systematic way. This new taxonomy of LLP
variants provides a framework for classifying LLP problems, for
defining LLP benchmarking strategies, and for guiding model se-
lection when presented with a new LLP problem instance.

Our second contribution is to demonstrate the value of our LLP
taxonomy by using it to derive new LLP model selection strategies.
Understanding model selection in LLP is important, because all
algorithms proposed to date for solving LLP incorporate hyperpa-
rameters. However, very rarely in the literature has the method of
hyperparameter selection been precisely stated, which is problem-
atic. For example, we show through extensive experiments that a
given model on a given dataset will typically have radically different
generalization ability depending on the method used for holding
out data during model selection.

Finally, we evaluate our new model selection strategies and show
their superiority over the state of the art (ie, [12]). Our experiments
study performance across over 100 LLP test cases (encompassing 4
LLP problem variants) to which we apply 3 LLP algorithms, each
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using 4 model selection strategies. In all we report the results of
954 distinct experiments, which are each repeated several times
to enable comparisons with statistical significance. Our results
show that the new LLP model selection strategies derived from
our taxonomy are superior to the state of the art in 90% of the
statistically distinguishable cases. Furthermore, our results show
that understanding the LLP variant at hand provides direct insight
into the relative benefit of different model selection strategies, and
so guides their deployment in practice.

2 LLP AND ITS VARIANTS
2.1 Basic Definitions

We consider the LLP problem involving N items taken from feature
space X, and L < N bags. For simplicity, we consider a binary
classification problem, although the taxonomy we will develop
does not depend on this assumption. A problem instance is given
by a set of pairs D = {(x;,b;),i = 1,..., N} and a vector p € [0,1]%,
with x; € X and b; € {1,...,L}. To define p, we assume that each
x; is associated to an (unknown) label y; € {0, 1}. Then

Hilbi = t,yi =1}
Pe= T
H{ilbi =t}
In other words, py is the proportion of 1’s in bag ¢.

The challenge posed by LLP is that the vector p is known, but
the individual labels {y;} are not. Despite the lack of individual
labels, the goal of LLP is to accurately infer a classification function
assigning labels to items. We note that in the standard formulation
of LLP, the bag of an item b; is not an input to the classification
function.

We assume a general model for data generation. In particular, the
{(xi,yi, bi), i = 1,...,N} are i.i.d. observations of a random vec-
tor (X, Y, B) with distribution Px y g(x, y, b). We will be concerned
with independence relations between X, Y, and B; we denote inde-
pendence of random variables P and Q as P 1L Q, and independence
of Pand Q given W as PULQ | W.

We note that our generative model allows for any logically pos-
sible dependence relationships between X, Y, and B. However, in
what follows, we often assume that Y J X, as independence of X
and Y would make the learning problem uninteresting.

2.2 Taxonomizing LLP

Our starting point is to observe that when bags are brought into the
dependence picture, a large number of cases arise. We can consider
the variety of possible dependence structures using the following
tableau:

XAYy? X1 B? Y B?
XUY|B? XWUB|Y? YWUB|X?

One may answer these six dependence questions in 64 possible
ways. However, not all 64 are logically consistent; as it happens,
there are 18 logically consistent cases, which can be derived from
basic properties of conditional dependence [8].! Of the 18 consistent
cases, in 8 cases we have that X is independent of Y. As mentioned

ITwo facts serve to reduce the 64 combinations to the 18 logically possible: (a) X 1L
Y|Z, XULZ|Y —> XY, X1 Z (as long as joint distributions are everywhere
positive) and (b)) X WL Y |Z, X L Z|Y — X Y Z. Derivations are given in the
Appendix.
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above, we consider cases in which X 1L Y as uninteresting from a
learning perspective and so leave them outside the scope of our
subsequent analysis.

The remaining 10 cases represent consistent and potentially
interesting settings in which LLP problems may arise. To aid in
interpreting these cases, we seek generative models that can give
rise to the dependence structures. For this purpose, we turn to the
framework of directed graphical models (DGMs) [14]. A directed
graphical model expresses how a joint distribution may be factored
in terms of marginal and conditional probabilities. As such, a DGM
involving X, Y, and B implies a particular dependence structure
among the variables and can be used as a tool for understanding
how particular dependence structures may arise.

As an example, consider the tableau:

XULY X1 B YUB
XUY|B XWUB|Y YWUB|X
This dependence structure arises in two possible DGMs:

0,0/ OO,

Using these DGMs, it is easy to understand this case as the setting
in which items are assigned to bags at random. The fact that the two
DGMs are different illustrates that different generative processes
may give rise to the same dependence structure, and so aids in
analysis.

There exist dependence structures that are not implied by any
DGM. To see the reason for this, consider the DGM:

@

One implication of this DGM is that, in general, Y . B. However it
is possible for a DGM with this structure to result in Y 1L B in spe-
cial cases. For example, if Y and B are based on orthogonal features
of X, or depend on orthogonal regions of the support of X, then
Y will be independent of B.2 But because this is a special case, we
must in general conclude that Y J{ B. Hence the following depen-
dence structure, while logically consistent and therefore possible,
represents a special case that is not expected to occur in practice:

XUY  XUB Y1B
XUY|B X4B|Y YUB|X

Direct enumeration shows that there are 25 possible directed
graphical models involving X, Y, and B. These 25 DGMs imply (in
their general forms) 7 out of the 10 logically consistent dependence
structures.

Putting all the facts above together, we can form a complete
taxonomy of LLP problems. This taxonomy is shown in Table 1.
The Table shows all the logically consistent dependence structures
that may arise in LLP problems, which we call LLP variants. For
interpretive purposes, it additionally exhibits any directed graphical
models that can give rise to each variant. The variants that can arise

2See, eg., https://terrytao.wordpress.com/2014/06/05/when-is-correlation-transitive/
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Table 1: Taxonomy of LLP Variants.

Dependence Structure ] DGMs l
Uninteresting 6
X 1LY (8 Cases) (not shown)
Naive LLP <:). .<>

XULY X1UB YLB @ @
XUY|B XUB|Y YWB|X @
XULY X1UB YLB
XJLY|B XUB|Y YUB|X
X4y X1UB YUB
XULY|B XUB|Y YYB|X

Label Collider GO >
X4y X1UB YUB
XUY|B XUB|Y YUB|X
XULY XUB YLB

XUY|B XUB|Y YLUB|X

Feature Collider
XULY XUB YLB

XLY|B XUB|Y YUB|X ©

Cross-Bag LLP
xuy Cnnt s @)8@ G)b@ 6%@
XLY|B XUB|Y YLB|X &) ) ©
Simple LLP
XUy XUB

v in @g) D ®é@

XULY|B XWLB|Y YLB|X ©)
Intermediate LLP C : D )

XULY XUB YUB

XLY|B XULB|Y YUB|X @

R

Hard LLP
Xyy XyYB YUB
XULY|B XUB|Y YYB|X

from a directed graphical model (in the most general interpretation)
are given names that we use for discussion in what follows. As
mentioned in the previous paragraphs, the cases where no DGM
(in its most general interpretation) implies a particular dependence
structure are special cases that are not expected to occur often in
practice; as a result we do not name them nor treat them further
in the following. For example, the special case discussed above
appears as the sixth row in the Table.

3 PRIOR WORK

We now examine prior work on LLP in light of the problem tax-
onomy laid out in the previous section. We make two main obser-
vations. First, we observe that prior work has rarely considered
the existence or nature of dependence relationships between X, Y,
and B. However, much prior work has involved settings in which
non-trivial dependence relationships are nonetheless present in
experimental data. Second, we observe that prior work has rarely
discussed specifics of model selection for the LLP problem. In those
cases where model selection procedures are clearly specified, we
find that those procedures seem to be based on critical, unstated
assumptions about the dependence structure of the problem. These
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two observations are important because, as we will show in sub-
sequent sections, the dependence structure of the LLP variant at
hand has a significant impact on the relative success of different
model selection procedures.

3.1 Data Used in Prior Studies

We can distinguish three classes of data used in prior studies. First,
synthetic data is data generated manually or by sampling standard
distributions. Data features X, labels Y, and assignments to bags B
are manually determined. Second, semi-synthetic data is real-world
data (typically a standard machine learning dataset) that starts with
pre-existing data items (X, Y) and assigns them to bags B via some
synthetic, deterministic, or probabilistic process. Third, organic
datasets are data in which data items and bag proportions both arise
through the measurement of some real-world properties. In the
organic case, true labels Y may not be known. For example, a typical
organic dataset consists of individual-level demographic data (for
features X) combined with opinion polling which defines bags B
(geographic regions) and proportions p (poll results). Note that in
the papers reviewed below, there is rarely, if ever, any discussion
of dependence or correlation between data items, labels, and bags.
Synthetic. A few studies use purely synthetic datasets; these are
usually small, and are usually used along with other kinds of
datasets [21, 24, 26, 28, 45]. Bags and proportions in these datasets
are defined by the authors in order to highlight what they would
like to show. As such, a wide range of dependence structures exists
in these datasets.

Semi-synthetic. The vast majority of studies use semi-synthetic
data. These approaches start with pre-existing data without bag
assignments; often, these are from the UCI® or LibSVM?* collec-
tions [4-6, 12, 24, 28, 29, 31, 32, 34-36, 38, 40, 45, 47, 48], other
pre-existing collections [1, 19, 22, 26, 27, 30, 35, 44], or from image
classification datasets [3, 4, 9, 16, 18—21, 28, 39-41, 43, 46, 47]. By
assigning bags to these pre-existing items a classification dataset is
turned into an LLP problem instance.

The most common approach to create bags from pre-existing
data is to partition the data items into bags. It is also common that
the sizes of bags in a dataset constructed this way are all equal or
nearly equal. This is how bags are constructed in [3-6, 9, 16, 18—
21, 27-32, 34, 36, 38—41, 43-48]. Often assignments are made to
bags so as to achieve a particular set of bag proportions, e.g. as in
[26, 27]. Partitioning data creates dependence between B and (X, Y).
When partitions are purely random, the variation of P(X, Y) across
bags may be small; but in many cases the partitions are chosen to
achieve some properties (eg, a particular proportion profile p) in
which case there is likely a strong dependence between X and B,
and between Y and B.

An exception to the partition approach is taken in [47], which
generates bags in a manner that makes the instances conditionally
independent given the bag. In this approach, a feature is used as
the bag attribute, but items are placed into bags by sampling with
replacement from the set of items having a specific feature value.
However, dependence is still likely to exist between bags and items,
and bags and labels.

3https://archive.ics.uci.edu/ml/datasets.php
*https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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Another approach used to create bags from a pre-existing dataset
is to choose a feature as a bag, and then remove this feature from
the dataset [4, 22, 24, 47]. Alternatively, the clustering algorithm k-
means was used to assign items to bags in [24, 35, 43]. In both cases
we expect a strong dependence between X and B, and between Y
and B.

As can be seen, in most or all of the semi-synthetic datasets, we

expect that Xy B and Y | B. It follows that the problem variants
represented lie in the bottom four rows of Table 1, and in many
cases will fall into the ‘Hard’ problem variant.
Organic. Finally, some papers used datasets that fit in the LLP setup
directly. The authors in [7] studied the candidate preference in the
US using Web browsing activity data. Furthermore, [13] studied the
embryo implantation prediction problem using a dataset collected
by the Unit of Assisted Reproduction of the Hospital Donostia, in
Spain. Organic datasets are also standard in the ecological inference
literature, eg, [10]. A more complicated process that also relies on
empirically observed proportions is described in [2].

In all these cases, data is equipped a priori with bags, i.e., these
are natural instances of the LLP problem. As mentioned in [47], in
such cases we expect that (X, Y) will not be independent of B.

3.2 Prior Approaches to LLP Model Selection

As we will show below, different LLP variants suggest differences in
model selection strategies. However, prior work does not in general
discuss model selection in detail.

First, a number of papers do not describe their model selection
methods at all [2, 39], perform no model selection [7, 21, 41], make
an analysis of the relationship between performance and hyperpa-
rameters [16, 18, 19, 22], or state only that they used ‘grid search’
[3, 26, 27], or ‘cross-validation’ [46, 47]. A majority of papers simply
state that they use ‘k-fold” cross validation [5, 6, 24, 28-30, 32, 34—
36, 38, 40, 44, 45, 48]. However, as we discuss in § 5, in the LLP
setting it is not obvious what is meant by ‘k-fold’ cross validation,
and there are a number of qualitatively different approaches, yield-
ing different results, that fall under the general rubric of ‘k-fold’
cross validation.

As mentioned above, the only previous study that compares
model selection methods for LLP is [12]. That paper considered a
number of strategies for holding out validation data during model
selection. The authors in [12] identified the best performing ap-
proach, in which full bags are allocated among folds to maintain as
well as possible the overall proportion of positive instances in the
entire dataset (P(Y = 1)). They show that this outperforms a num-
ber of other methods [13, 43] that involve holding out whole bags
as validation data. Accordingly, we compare against this approach
as state of the art in our experiments, where we term it the full bag
k-fold model selection strategy.

In summary, we conclude that the vast majority of prior LLP
studies, in addition to not considering data dependence structure,
also do not provide detail on the model selection strategies used;
and those that do provide detail form validation data using full
bags. In the next section, we will look at the dependence structures
of LLP variants in detail and note the implications of variants for
model selection and for learning strategies.
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4 CHARACTERISTICS OF VARIANTS

In this section we examine LLP variants and discuss how their
properties impact learning approaches. For purposes of discussion,
in each case we assume that a problem instance consists of data
that has been drawn from a distribution Px y p that follows the
dependence structure of the variant. When we make reference to
the Bayes optimal classifier for a given bag ¢, we mean

C?ayes(x) ZargmaxP(Y =r|X =x,B=1).
re{0,1}

In what follows, due to space constraints, we do not discuss all
the variants listed in Table 1. Instead, we focus on the four variants
that have strong implications in terms of learning: Naive, Simple,
Intermediate, and Hard. These are the variants that we explore in
our experimental results (§ 6). We provide a brief discussion of the
other variants in the Supplemental Material (SM).

4.1 Naive LLP

In a Naive LLP problem instance (Table 1, 2 row), the bag of an
item does not depend on the item itself, its label, or any function of
these two. A number of implications follow. First, the Bayes optimal
classifier for a given bag does not depend on the bag. Second, the
proportions py across all bags ¢ should be similar (i.e., variations
in pp should not be statistically significant). Finally, given the last
two points, a model selection strategy that trains the model in one
set of bags and validates using other bags can be appropriate for
selecting proper hyperparameters. That is, full-bag strategies such
as used in [12, 13, 43] could be effective model selection methods.
For example, many prior studies use Naive problem instances
[3-6,9, 16, 18-21, 27-32, 34, 36, 38—41, 43-48], in which items are
randomly assigned to bags. Using random assignment, we expect
bags (B) to be independent of both features (X) and labels (Y).

4.2 Simple LLP

As can be seen in the DGMs (Table 1, gth row), the Simple LLP case
can be thought of as a non-independent assignment of labels to
bags, in which items are correlated with bags, but only through
the labels Y. For example, among the positive instances there is no
correlation between bag and item, and likewise for the negative
instances.

This has implications for learning and model selection. Unlike
the Naive variant, the proportions p, may vary significantly across
bags, allowing for additional information that can be used in the
learning process. Additionally, methods that use full bags in model
selection may be ineffective, as the Bayes optimal classifier may be
affected by bag proportions. To see that, consider, for instance, a
case where py is close to 1, then the best choice for Cfayes may be
assigning label 1 to every instance in the bag ¢ regardless of the
instances’ feature values.

An example of Simple LLP occurs when items are assigned to
bags so as to achieve specific proportions in each bag, without any
other consideration. This strategy is used, for example, in [26, 27].

4.3 Intermediate LLP

In Intermediate LLP (Table 1, 10th row), items are associated with
bags in a non-independent fashion. In this variant, the correlation
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between bags and labels is only through the assignment of items
to bags. As such, different bags will ‘see’ significantly different
samples of X - ie, P(X | B = b;) # P(X). This implies that models
trained on data taken from a subset of bags may not generalize well
to the entire distribution of X.

As a result, Intermediate LLP is the second case we have con-
sidered so far in which model selection procedures that train on
whole bags are undesirable.

An example of an Intermediate LLP instances occurs when items
are assigned to bags based on features (X), without any other consid-
eration. As an example, [24] uses k-means clusters as bags, creating
a dependence relationship between the features (X) and the bags

(B).

4.4 Hard LLP

Like Intermediate LLP, in Hard LLP (Table 1, 11} row) item-bag
associations are not independent. As a result, models trained on
data from a subset of bags may not generalize well to the entire
distribution of X.

More generally, Hard LLP represents the only case (other than
Label Collider) in which labels are correlated directly with both
X and B. This variant therefore implies that the Bayes optimal
classifier for items in one bag is different than the Bayes optimal
classifier for items in another bag.

Thus Hard LLP is challenging because, as discussed in § 2.1,
the standard LLP problem seeks to find a single hypothesis that
accurately assigns a label to an item without knowledge of the
bag of the item. However, in the Hard LLP setting, the best that
can be hoped is to learn a function that interpolates in some sense
between the various classifiers that are optimal for each bag. Put
another way, in the Hard setting it would be desirable to change
the problem definition to include the bag of an item as a feature
input to the classification function — but of course this would no
longer be (standard) LLP.

For example, in a political science study like [7], we expect that
the distribution of types of voters (X) to regions (B) will not be
random, and furthermore that the type of voter (X) that supports a
given candidate (Y) can vary across regions (B). these relationships
result in an instance of the Hard LLP variant.

4.5 Identifying the LLP Variant

The taxonomy we detail here can be used in a number of ways.

As detailed in § 3.1, the great majority of algorithmic studies of
the LLP problem make use of datasets in which the labels {y;} are
known. Access to labels is important in validating an LLP learning
method, since accurate prediction of individual labels is the goal in
LLP (§ 2.1). In those settings, the dependence relations between X,
Y and B can be empirically tested, and the LLP variant at hand can
be determined. We believe it is important to perform such tests in
studies that use datasets to validate new LLP methods, because of
the implications of dependence structure in data on the information
available to the LLP method. Further, as we show in the next section,
the choice of strategies for model selection depends on the LLP
variant at hand.

KDD ’23, August 6-10, 2023, Long Beach, CA, USA.

Complete dataset full-bag full-bag
Training Set Validation Set

split-bag
Training Set

split-bag
Validation Set

Figure 1: Left: An instance of the LLP problem with N = 500
(250 elements per bag) and p = [0.6, 0.4]T. Right: Comparison
of possible training and validation sets when using full-bag
and split-bag strategies.

In studies using ‘organic’ datasets (see § 3.1), where labels are
not available, we still believe that the LLP taxonomy may be fruit-
fully used to understand the nature of an LLP variant at hand. It is
common to reason about potential correlations in data in advance
of analyzing the data (eg, in political science and economics). Fur-
ther, one may posit the existence of causal relationships between
variables that lead to dependence structures among X, B, and Y. For
example, as noted above, in the case of a study using polling, one
would expect certain dependence relationships to exist between
voters (X), regions (B) and preference for a given candidate (Y).

5 NEW APPROACHES TO LLP MODEL
SELECTION

To motivate the new approaches we develop for model selection,
in Figure 1 (left) we show an instance of a difficult LLP problem. In
this example, we have 500 items in two bags, and the dependence
structure is that of Hard LLP (as detailed in § 4.3).

Standard model selection methods dictate that we must obtain
several pairs of training and validation sets from the data, and
use these sets to perform hyperparameter tuning, thus avoiding
overfitting [33]. However, in the LLP problem setting, the question
of how to construct training and validation sets is more complex
than in traditional supervised learning, because of the absence of
labels on items. As discussed in §3, prior work (when it specifies a
strategy) makes use of full-bag strategies. Full-bag strategies retain
some bags to train the classifier and use the others as validation
data. Figure 1 (right) shows why a full-bag strategy may not be a
good idea, in general. More specifically, the Bayes optimal classifier
for bag 0 will not be suitable for bag 1.

Based on the above arguments, we propose a new family of
strategies for model selection in LLP, which we term split-bag.
These strategies allow information from all bags to be present in
both training and validation sets, and we argue they are more
appropriate for general LLP settings. An example of this strategy is
shown in Figure 1 (right) as well.

To make our suggestion concrete, we start from a general strat-
egy for model selection in LLP, (details in Algorithm 1), which
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Algorithm 1: LLP-Model-Selection

Algorithm 2: Split-Bag-Shuffle

Data: Integer K; LLP problem instance, i.e., D = {(x;, b;) }f\il and
p; LLP algorithm M, which depends on hyperparameters
vector 6; and set of candidate hyperparameters vectors ©

Result: Best hyperparameters vector

(D1r1,Dv1), - .., (Drrk, Dvx) < Train-Validation(D, K)

-

2 for 0 € © do

3 for k < 1to K do

4 Cy,p «Train a model with M on Dry, p, and 0

5 Vk,0 < Use Cy g to predict labels from instances in Dy v
6 Pk,o < Compute the predicted bags proportions from yx ¢
7 Errorg g < Error(px.e,p)

8 Errorg « % Zle Errorg g

9 return arg mingecg Errorg

follows the strategy for model selection commonly used in stan-
dard supervised learning. The first step is to build from the input
data K (training, validation) pairs of sets. The next step is, for each
combination of (training, validation) pairs and candidate hyperpa-
rameter settings, to train a classifier using the training data, use
the classifier to predict the labels from instances in the validation
set, and compute the proportion of positive predictions in each bag.
The next step is to compare the estimated and real proportions in
order to measure the classifier’s error. Finally, errors are averaged
across all training-validation pairs to determine the hyperparame-
ters yielding the best model.

It is important to note that splitting bags between training and
validation sets can introduce sampling error. Because per-item
labels are not available, the label proportions in split bags are not
known exactly. Sampling error is a concern when the proportions in
the training or validation sets differ significantly from those of the
original data enough to jeopardize the hyperparameter selection
process. Sampling error probability is reduced as bag sizes grow,
(lessening with the square root of the number of items per bag)
but can not be completely avoided. We return to the question of
sampling error at the end of the paper.

The split-bag strategy raises two important questions. In order
to fully specify model selection methods, one must first determine
how to form training and validation sets from the data (Line 1 in
Algorithm 1), and second determine how to compare the real and
predicted bags proportions (Line 7 in Algorithm 1).

We address the first question in the next three sections, where
we present a family of split-bag strategies for generating training
and validation sets: split-bag K-fold, split-bag shuffle, and split-bag
bootstrap. With regard to the second question, in this work, we use
the mean absolute error, i.e., given vectors p and p’,

L
! l !
Error(p’,p) = ZZ|p[—p5|, (1)
=1

Equation (1) exposes a fundamental challenge when approaching
LLP. Since instances’ labels are unknown, cross-validation tech-
niques commonly used for model selection in supervised learning
cannot be used. This is because one cannot compute standard eval-
uation metrics (e.g., accuracy and F-score) over the validation sets.

Data: The set of instances and associated bags, D = {(x;, b;) }f\il;
an integer K; and f € (0, 1), the ratio between validation
and traning sets sizes

1 for ¢ «— 1to L do

2 | Bee—{(xb)eD|b=1¢}

3 for k < 1to K do
4 for ¢ «— 1to L do

5 By < random sample, without replacement, of size
P|B¢| from By

6 B:’,k «— B¢\ By

7 Dreie — Urcesr By g

8 Dy < Ui<e<r Bek
9 return (Drr1,Dvi), ..., (Dmk, Dvk)

Therefore, we follow related work and propose to evaluate mod-
els based on the bags proportions that their predictions yield. Even
though this approach seems a natural choice, it is important to
recognize its limitations. In particular, the correct label assignment
will match the bags proportions, but there may be (many) incorrect
label assignments that nearly match the proportions as well.

Finally, we recognize that there may be more sophisticated ways
to compare the vectors p and p’ than by using Equation (1). For
instance, one may consider for each bag its size, as well as how
far from % its proportion is. We leave this investigation for future
work.

5.1 Split-bag K-fold

The idea of split-bag K-fold is similar to the usual K-fold for su-
pervised learning [33]. However, instead of partitioning the whole
dataset, the partition is conducted over each bag.

Let By be the subset of instances belonging to bag ¢, i.e., By =
{(x,b) € D|b = ¢} and let’s assume that |B;| > K. First, split-bag
K-fold partitions each bag, B, into K equal-sized subsets (prior
shuffle is recommended), By 1, . .., By k. Then

DTr,k = U B[,j and DV,k = U Bt’,k’
1<e<L 1<e<L
Jj#k
for k = 1,..., K. Hence, a usual K-fold is applied to each bag, and
then, the bag-folds are aggregated in order to create the training
and validation sets.

5.2 Split-bag Shuffle

Similarly to split-bag K-fold, we propose split-bag shuffle inspired
by the usual shuffle-split method used for model selection in super-
vised learning. The procedure is described in Algorithm 2. Again,
the main idea is to apply the usual shuffle-split in a per-bag fashion
in order to create training and validation sets. However, instead of
partitioning each bag and rotating over each partition (i.e., fold),
we draw a random sample from the bag with fraction § of elements
for validation, and we leave the remaining for training.
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5.3 Split-Bag Bootstrap

Our third method is a natural extension of the split-bag shuffle
method. The idea is to draw random samples with replacement in
order to create the per-bag training and validation subsets. More
specifically, Line 5 of Algorithm 2 is modified so that the random
sample is drawn with replacement, and in Line 6, we define B:, k
as a random sample, with replacement as well, of size (1 — f§) |B}|
from By.

The motivation for incorporating bootstrap into the LLP model
selection problem is to counter sampling effects on the per-bag pro-
portions of positives instances in the training and validation sets.
Consider, for instance, the split-bag shuffle procedure presented in
Algorithm 2. If the proportion of positive instances in By ;. deviates
significantly from py, the same will happen to B;,’ &> since the com-
position of the latter depends on the former. Considering that such
an effect can propagate to D, ;. and Dy j (for some values of k),
one may end up with training and validation sets having per-bag
proportions far from p. This deviation will incorrectly inform the
learning and model selection algorithms with vector p, making the
overall LLP problem even harder.

When we use bootstrap in Lines 5 and 6 of Algorithm 2, we en-
sure that the composition of B} ,_is independent of By ;.. Hence, the
chances of having both sets (i.é., training and validation) with bag
proportions far from p are lessened, which is particularly important
for LLP problem instances having (many) small bags.

6 EVALUATION

In this section, we provide empirical evidence showing the practi-
cal importance of understanding LLP variants. More specifically,
our experiments show that previously proposed model selection
methods can work well for some LLP variants (e.g., Naive LLP), but
they are unable to adapt to more complicated scenarios (e.g., Hard

LLP).>

6.1 Datasets

In contrast to most previous work (as discussed in §3) in this study
we pay close attention to the dependence relationships among bags,
items, and labels in our test data. In particular, we generate test
data in which the dependence structure follows either the Naive,
Simple, Intermediate, or Hard LLP variants. To do so, we start
from a base dataset which is a standard classification dataset. We
then allocate items to bags according to a procedure that induces
the desired dependence relation as given in Table 1. Details of
the bag generation process are given in SM §A 4. Note that when
we generate different LLP variants for a given base dataset, we
keep the number of bags, sizes of bags, and bag label proportions
approximately equal across the different variants.

We consider three classes of base datasets: tabular, object images,
and digit images. The tabular class consists of datasets designated
Adult, Default Credit Card, Covertype, and Census KDD (sources
and properties shown in Table 2 in SM § A.3). The object images
class consists of pairs of object comparisons from the CIFAR-10
repository; we consider 12 pairs of comparisons such as ‘Airplane’

SAll datasets and code to reproduce our results are available at https://github.com/
gaabrielfranco/llp-variants-kdd
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vs ‘Automobile.’ Likewise the digit images class consists of 12 pairs
of handwritten digit comparisons from the MNIST repository. From
each base dataset we generate four variants (Naive, Simple, Inter-
mediate and Hard) resulting in a total of 4 x 28 = 112 datasets which
we refer to as fest cases.

6.2 Experimental Setup

To explore whether algorithmic complexity plays a role in the choice
of model selection methods, we choose three algorithms from the
literature that have differing numbers of hyperparameters. First,
we consider the algorithm used in [7] which is an EM-like method
based on logistic regression, which we denote EM/LR; it has only
a single hyperparameter C. Next, we consider alter-«SVM with
Linear Kernel from [47], which has two hyperparameters C and Cp.
Finally, we consider the Laplacian Mean Map (LMMg s) algorithm
from [24], which we denote LMM,; it has three hyperparameters o,
A, and y.

For each of the 112 test cases, we apply the three algorithms; and
for each of those combinations we perform model selection using
each of the four approaches: split-bag k-fold, split-bag bootstrap,
split-bag shuffle, and the baseline approach full-bag k-fold. However,
we found alter-ocSVM has a very high runtime (an average of 15
hours for a single run on our smallest test cases using a 28 core
CPU) and hence we were unable to run it on large test cases; as a
result we ran alter-«<SVM on a subset of 24 test cases, also omitting
the split-bag k-fold model selection strategy for alter-o<SVM. Each
combination of (test case, algorithm, model selection method) con-
stitutes a experiment. Our results span 968 experiments of which 720
experiments employed one of our new model selection approaches,
and the remaining 248 experiments used the full-bag approach as a
baseline for comparison.

For each experiment, we randomly hold out 25% of the data for
testing and use the other 75% for training and validation. After
removing the testing data, we recompute the bag proportions (pr)
for the remaining data. In this way, we emulate the real-world
setting in which one has the true bag proportions for the input data.
The remaining data is then divided into training and validation data
according to the model selection strategy. Note however, that after
splitting into training and validation sets, bag proportions in those
sets are no longer known exactly. Each such experiment is run 30
times with different random seeds, and we ensure apples-to-apples
comparisons by ensuring the train/test splits are identical across
the four model selection approaches.

For EM/LR, the parameter C is tuned from the set
{10_2, 107 L., 103}. For the alter-«SVM parameters, C
and Cp, we use grid search over values in {10_2, o 103}.
For LMM, the parameters are tuned using grid search over
A e {0,10%10%,10%},y € {1072,1071,10%}, and o € {272,271, 2%},
Once hyperparameter(s) are chosen, we refit the model using the
whole training data making use of the best hyperparameter(s).
Then, we compute the accuracy of the resulting classifier on the
test set.

The above strategy results in 27,600 trained models, each of
which yields a value for accuracy on the test data (10 replications
were performed for alter-cSVM). We compare each new model se-
lection strategy against the baseline, and test statistical significance
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Figure 2: Fraction of experiments comparing new vs baseline,
for LLP variant and model selection method. Blue denotes
statistically significant superiority of the new method over
the baseline. Red denotes cases where the baseline is sig-
nificantly better than the new method. Gray denotes cases
where the new method and the baseline are statistically in-
distinguishable. SP-BS = split-bag bootstrap; SP-KF = split-bag
k-fold; SP-SH = split-bag shuffle.

of the difference in means between each set of 30 replications, using
a t-test at the 0.05 significance level.

6.3 Results

Our first set of results demonstrate that (a) our new approaches to
LLP model selection significantly outperform the state of the art; and
(b) the relative performance of model selection approaches depends
critically on the LLP variant at hand. Both of these results are evident
from Figure 2. The figure shows, for each model selection approach,
the fraction of experiments in which the new approach outperforms
the state of the art baseline to a statistically significant degree (in
blue).

With respect to (a), the figure shows that in almost every case
where a significant difference exists, the new model selection ap-
proach outperforms the baseline. In fact, in 90% of the cases where
a significant difference exists, the new model selection approach is
superior to the baseline.

With respect to (b), the figure shows that there is dramatic differ-
ence between LLP variants Hard, Intermediate, and Simple on one
hand, and the Naive variant on the other hand. In the case of the
Naive variant, neither full-bag (baseline) nor split-bag (new) model
selection methods are superior; for this variant, one could reason-
ably use either model selection method. However, for the cases
that inspired the development of the new model selection methods
(Simple, Intermediate and Hard, as explained in § 4), it is clear that
any of the split-bag methods are preferable to the baseline.

Next, we ask whether the superiority of the new methods is
dependent on the complexity (ie, number of hyperparameters) of
the algorithm used. Figure 3 shows our results broken down by
algorithm. The figure shows that whether one is using a model
with numerous hyperparameters (LMM) or few hyperparameters
(EM/LR) split-bag model selection is generally superior, in cases
where there is a statistically significant difference.
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Figure 3: Fraction of experiments comparing new (split-bag)
vs baseline (full-bag), for LLP algorithm and model selection
method. Same color and labeling scheme as Figure 2.
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Figure 4: Fraction of experiments comparing new (split-bag)
vs baseline (full-bag), for dataset type and model selection
method. Same color and labeling scheme as Figure 2.

We next ask whether the nature of the base datasets used affects
our conclusions. For example, images may involve more complex
decision boundaries than tabular datasets. Since full-bag model se-
lection methods train on only portions of the feature space (for the
Hard and Intermediate variants) it may be more important to use
split-bag methods on datasets with more complex decision bound-
aries. Figure 4 shows some evidence of this effect. It shows that
split-bag methods are more likely to outperform full-bag methods
on the test cases from the image classes (digits images and object
images) than from the tabular classes of data.

Furthermore, to demonstrate that our model selection strategies
indeed select different hyperparameters than previous (full-bag)
strategies, we look at a single example: the CIFAR-10-Grey (Airplane
vs. Automobile) Hard LLP dataset. In Figure 5 we show heatmaps
of the hyperparameters chosen for each strategy, with the hyper-
parameters chosen by full-bag k-fold on the left of the figure. The
remaining three columns show that the split-bag strategies gener-
ally choose hyperparameter values that are quite different from the
values chosen by the full-bag strategy.

Finally, to show the effect sizes behind the results in Figures 2 to
4 we show in Figure 6 the distribution of the difference between
split-bag and full-bag accuracies (for cases in which the difference
was statistically significant). The figure shows that when split-bag
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Figure 5: Frequency, over 30 executions, of selected hyperpa-
rameters for the CIFAR-10-Grey (Airplane vs. Automobile)
Hard LLP dataset.

methods outperform full-bag methods, the magnitude of improve-
ment is typically large compared the alternative case.

Discussion. In conclusion we make a number of observations
about model selection in LLP. First, we note that discrepancy be-
tween the expected bag proportions py and the actual bag propor-
tions can arise in split-bag methods due to sampling. For small bag
sizes, this can be an important effect that does not arise in full-bag
strategies (because they are not sampled). However, relative error
in sampling-induced deviation from expected proportions shrinks
as 1/+/n and we find that for bag sizes in the low thousands or more,
sampling error does not in general prevent split-bag strategies from
dominating full-bag approaches. A further means for mitigating
this effect comes in choosing how much of each bag to allocate to
training versus validation data. In Algorithm 2, this is controlled
by parameter . We find that setting § near 1/2 (which is what we
use our experiments) also improves overall performance since it
reduces sampling error in py. In fact, there are opportunities for
algorithm improvement in the proper selection of . We leave this
problem for future work.

The picture that emerges is one in which large datasets (lead-
ing to large bags) with complex dependencies (e.g. Intermediate
or Hard variants) and complex decision boundaries (making out-
of-bag generalization difficult) present the greatest opportunity
for performance improvement through the use of split-bag model
selection strategies. Specifically, for all non-Naive variants, there is
benefit from using split-bag strategies over the full-bag k-fold in
the hyperparameter selection process. Among split-bag strategies,
split-bag k-fold and split-bag shuffle generally outperform split-bag
bootstrap. However, further investigation is needed to decide the
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Figure 6: Distribution of differences between split-bag and
full-bag accuracies, for cases showing a significant difference.

best split-bag strategy in individual cases, and we leave this problem
for future work.

7 CONCLUSIONS

In this paper, we have looked at the LLP problem from a perspective
that has not been taken in previous work, by putting a spotlight on
the dependence relationships that can exist between items, bags,
and labels. As a result, our first contribution is a taxonomy of LLP
variants, a characterization of the main properties of each variant,
and an analysis of the implications regarding hardness of learning
and model selection.

Our taxonomy can be interesting for any researcher studying or
applying LLP methods. However, the taxonomy may be of special
interest for those proposing new techniques. Ideally, new algo-
rithms, for the LLP problem itself and for model selection strategies
in LLP, should work across a range of LLP variants, or at least, the
readers should be aware of untested variants or situations where
the algorithms are known to perform badly. For these controlled
scenarios, statistical tests for independence and conditional are
available (e.g., [37]), and they may aid researchers in the task of
choosing the correct variant in Table 1.

Reviewing prior work in LLP, we note that in many cases, the
dependence structure of the problem instances considered, and
strategies used for model selection, are unclear. This fact and the
implications of our taxonomy motivate our second contribution, a
family of LLP-driven model selection techniques. We conduct exten-
sive experiments, and our results show the superiority of our new
methods for model selection over the state of the art. Over nearly a
thousand distinct experiments, spanning a range of LLP algorithms,
problem variants, and data types, our methods outperform the state
of the art in 90% of the statistically significant cases. We analyze the
advantages of our new methods, and conclude that for challenging
problems (large, complex data with complex dependence structures)
our new methods are particularly well suited.

ACKNOWLEDGMENTS

Part of this work was done while GF was at the Federal University
of Vicosa (UFV). GC thanks the support of the following Brazilian
funding agencies: FAPESP/MCTI/CGLbr (#2020/05182-3) and FAPES
(#1026/2022).



KDD ’23, August 6-10, 2023, Long Beach, CA, USA.

REFERENCES

(1]

[2

(3]
(4]

[7

[

(8]

=
22

[10

(1]

[12]

[13]

[14

(15

[16]

[17]

(18]

[19]

[20

[21]

[22]

[23]

Ehsan Mohammady Ardehaly and Aron Culotta. 2016. Domain Adaptation
for Learning from Label Proportions Using Self-Training. In Proceedings of the
Twenty-Fifth International Joint Conference on Artificial Intelligence (New York,
New York, USA). 3670-3676.

Ehsan Mohammady Ardehaly and Aron Culotta. 2017. Co-training for demo-
graphic classification using deep learning from label proportions. In 2017 IEEE
International Conference on Data Mining Workshops. IEEE, 1017-1024.

Denis Baruci¢ and Jan Kybic. 2021. Fast learning from label proportions with
small bags. arXiv preprint arXiv:2110.03426 (2021).

Jing Chai and Ivor W Tsang. 2021. Learning With Label Proportions by Incor-
porating Unmarked Data. IEEE Transactions on Neural Networks and Learning
Systems (2021).

Zhensong Chen, Wei Chen, and Yong Shi. 2020. Ensemble learning with label
proportions for bankruptcy prediction. Expert Systems with Applications 146
(2020), 113155.

Zhensong Chen, Zhiquan Qi, Bo Wang, Limeng Cui, Fan Meng, and Yong Shi.
2017. Learning with label proportions based on nonparallel support vector
machines. Knowledge-Based Systems 119 (2017), 126-141.

Giovanni Comarela, Ramakrishnan Durairajan, Paul Barford, Dino Christenson,
and Mark Crovella. 2018. Assessing Candidate Preference through Web Brows-
ing History. Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining (2018), 158-167. https://doi.org/10.1145/
3219819.3219884

A.P.Dawid. 1979. Conditional Independence in Statistical Theory. Journal of
the Royal Statistical Society: Series B (Methodological) 41, 1 (1979), 1-15. https:
//doi.org/10.1111/.2517-6161.1979.tb01052.x

Gabriel Dulac-Arnold, Neil Zeghidour, Marco Cuturi, Lucas Beyer, and Jean-
Philippe Vert. 2019. Deep multi-class learning from label proportions. arXiv
preprint arXiv:1905.12909 (2019).

Seth R. Flaxman, Yu-Xiang Wang, and Alexander J. Smola. 2015. Who Supported
Obama in 2012? Ecological Inference through Distribution Regression. In Proceed-
ings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (Sydney, NSW, Australia) (KDD ’15). Association for Computing Ma-
chinery, New York, NY, USA, 289-298. https://doi.org/lO.l145/2783258.2783300
Maxime Gasse and Alex Aussem. 2016. Identifying the irreducible disjoint fac-
tors of a multivariate probability distribution. In Probabilistic Graphical Models.
Lugano, Switzerland, 183-194.

Jerénimo Hernandez-Gonzalez. 2019. A framework for evaluation in learning
from label proportions. Progress in Artificial Intelligence 8, 3 (2019), 359-373.
Jerénimo Hernandez-Gonzélez, Inaki Inza, Lorena Crisol-Ortiz, Maria A Guembe,
Maria J Inarra, and Jose A Lozano. 2018. Fitting the data from embryo implanta-
tion prediction: Learning from label proportions. Statistical methods in medical
research 27, 4 (2018), 1056-1066.

Daphne Koller and Nir Friedman. 2009. Probabilistic Graphical Models: Principles
and Techniques. MIT Press.

Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers of features
from tiny images. (2009).

Laura Elena Cué La Rosa and Dario Augusto Borges Oliveira. 2022. Learning
from Label Proportions with Prototypical Contrastive Clustering. In Proceedings
of the AAAI Conference on Artificial Intelligence, Vol. 36. 2153-2161.

Yann LeCun, Corinna Cortes, and CJ Burges. 2010. MNIST handwritten digit
database. ATT Labs [Online]. Available: http://yann.lecun.com/exdb/mnist 2 (2010).
Jiabin Liu, Zhiquan Qi, Bo Wang, YingJie Tian, and Yong Shi. 2022. SELF-LLP:
Self-supervised learning from label proportions with self-ensemble. Pattern
Recognition 129 (2022), 108767.

Jiabin Liu, Bo Wang, Hanyuan Hang, Huadong Wang, Zhiquan Qi, Yingjie Tian,
and Yong Shi. 2022. Llp-gan: a gan-based algorithm for learning from label
proportions. IEEE Transactions on Neural Networks and Learning Systems (2022).
Jiabin Liu, Bo Wang, Zhiquan Qi, YingJie Tian, and Yong Shi. 2019. Learning from
Label Proportions with Generative Adversarial Networks. Advances in Neural
Information Processing Systems 32 (2019).

Jiabin Liu, Bo Wang, Xin Shen, Zhiquan Qi, and Yingjie Tian. 2021. Two-stage
Training for Learning from Label Proportions. arXiv preprint arXiv:2105.10635
(2021).

Jay Nandy, Rishi Saket, Prateek Jain, Jatin Chauhan, Balaraman Ravindran, and
Aravindan Raghuveer. 2022. Domain-Agnostic Contrastive Representations for
Learning from Label Proportions. In Proceedings of the 31st ACM International
Conference on Information & Knowledge Management. 1542-1551.

H. James Norton and George Divine. 2015. Simpson’s paradox — and how to
avoid it. Significance 12, 4 (2015), 40-43. https://doi.org/10.1111/j.1740-9713.
2015.00844.x arXiv:https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1740-
9713.2015.00844.x

[24]

Gabriel Franco, Mark Crovella, and Giovanni Comarela

Giorgio Patrini, Richard Nock, Paul Rivera, and Tiberio Caetano. 2014. (Almost)
no label no cry. Advances in Neural Information Processing Systems 27 (2014),
190-198.

[25] Judea Pearl. 1988. Probabilistic Reasoning in Intelligent Systems: Networks of

[26

[27

[28

[29

[30

[31

[32

[35

[36

[37

[38

[39

[40

[41

[42

[44

[45

[46

Plausible Inference. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.
Rafael Poyiadzi, Raul Santos-Rodriguez, and Niall Twomey. 2018. Label propaga-
tion for learning with label proportions. In 2018 IEEE 28th International Workshop
on Machine Learning for Signal Processing (MLSP). IEEE, 1-6.

Rafael Poyiadzi, Raul Santos-Rodriguez, and Niall Twomey. 2019. Active learning
with label proportions. In ICASSP 2019-2019 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE, 3097-3101.

Zhiquan Qi, Fan Meng, Yingjie Tian, Lingfeng Niu, Yong Shi, and Peng Zhang.
2018. Adaboost-LLP: A Boosting Method for Learning With Label Proportions.
IEEE Transactions on Neural Networks and Learning Systems 29, 8 (2018), 3548—
3559. https://doi.org/10.1109/TNNLS.2017.2727065

Zhiquan Qi, Bo Wang, Fan Meng, and Lingfeng Niu. 2016. Learning with label
proportions via NPSVM. IEEE transactions on cybernetics 47, 10 (2016), 3293-3305.
Yaxing Qian, Qiang Tong, and Bo Wang. 2019. Multi-Class Learning from Label
Proportions for Bank Customer Classification. Procedia Computer Science 162
(2019), 421-428.

Yue Qiu, Mingjie Yan, and Zhensong Chen. 2021. Active learning from label
proportions via pPSVM. Neurocomputing 464 (2021), 227-241.

Novi Quadrianto, Alex J Smola, Tiberio S Caetano, and Quoc V Le. 2009. Estimat-
ing labels from label proportions. Journal of Machine Learning Research 10, 10
(2009).

Sebastian Raschka. 2018. Model Evaluation, Model Selection, and Algorithm
Selection in Machine Learning. CoRR abs/1811.12808 (2018). arXiv:1811.12808
http://arxiv.org/abs/1811.12808

Stefan Rueping. 2010. SVM classifier estimation from group probabilities. In
Proceedings of the 27th International Conference on International Conference on
Machine Learning. 911-918.

Rishi Saket, Aravindan Raghuveer, and Balaraman Ravindran. 2022. On Combin-
ing Bags to Better Learn from Label Proportions. In International Conference on
Artificial Intelligence and Statistics. PMLR, 5913-5927.

Clayton Scott and Jianxin Zhang. 2020. Learning from Label Proportions: A
Mutual Contamination Framework. In Advances in Neural Information Processing
Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin (Eds.),
Vol. 33. Curran Associates, Inc., 22256-22267. https://proceedings.neurips.cc/
paper/2020/file/fcde14913¢766c£307¢75059e0e89af5-Paper.pdf

Rajat Sen, Ananda Theertha Suresh, Karthikeyan Shanmugam, Alexandros G
Dimakis, and Sanjay Shakkottai. 2017. Model-powered conditional independence
test. Advances in neural information processing systems 30 (2017).

Yong Shi, Limeng Cui, Zhensong Chen, and Zhiquan Qi. 2019. Learning from
label proportions with pinball loss. International Journal of Machine Learning
and Cybernetics 10, 1 (2019), 187-205.

Yong Shi, Jiabin Liu, and Zhiquan Qi. 2018. Inverse convolutional neural net-
works for learning from label proportions. In 2018 IEEE/WIC/ACM International
Conference on Web Intelligence (WI). IEEE, 643-646.

Yong Shi, Jiabin Liu, Zhiquan Qi, and Bo Wang. 2018. Learning from label
proportions on high-dimensional data. Neural Networks 103 (2018), 9-18.

Yong Shi, Jiabin Liu, Bo Wang, Zhiquan Qi, and YingJie Tian. 2020. Deep learning
from label proportions with labeled samples. Neural Networks 128 (2020), 73-81.
Marco Stolpe and Katharina Morik. 2011. Learning from Label Proportions
by Optimizing Cluster Model Selection. In Proceedings of the 2011 European
Conference on Machine Learning and Knowledge Discovery in Databases - Volume
Part III (Athens, Greece) (ECML PKDD’11). Springer-Verlag, Berlin, Heidelberg,
349-364.

Kuen-Han Tsai and Hsuan-Tien Lin. 2020. Learning from label proportions with
consistency regularization. In Asian Conference on Machine Learning. PMLR,
513-528.

Yanshan Xiao, HuaiPei Wang, and Bo Liu. 2020. A new transfer learning-based
method for label proportions problem. Information Sciences 541 (2020), 391-408.
Felix Yu, Dong Liu, Sanjiv Kumar, Jebara Tony, and Shih-Fu Chang. 2013.
\proptoSVM for Learning with Label Proportions. In International Conference on
Machine Learning. PMLR, 504-512.

Felix X Yu, Liangliang Cao, Michele Merler, Noel Codella, Tao Chen, John R Smith,
and Shih-Fu Chang. 2014. Modeling attributes from category-attribute propor-
tions. In Proceedings of the 22nd ACM international conference on Multimedia.
977-980.

Felix X Yu, Krzysztof Choromanski, Sanjiv Kumar, Tony Jebara, and Shih-Fu
Chang. 2014. On learning from label proportions. arXiv:1402.5902 (2014).

Fan Zhang, Jiabin Liu, Bo Wang, Zhiquan Qi, and Yong Shi. 2019. A Fast Algorithm
for Multi-Class Learning from Label Proportions. Electronics 8, 6 (2019), 609.


https://doi.org/10.1145/3219819.3219884
https://doi.org/10.1145/3219819.3219884
https://doi.org/10.1111/j.2517-6161.1979.tb01052.x
https://doi.org/10.1111/j.2517-6161.1979.tb01052.x
https://doi.org/10.1145/2783258.2783300
https://doi.org/10.1111/j.1740-9713.2015.00844.x
https://doi.org/10.1111/j.1740-9713.2015.00844.x
https://arxiv.org/abs/https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1740-9713.2015.00844.x
https://arxiv.org/abs/https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1740-9713.2015.00844.x
https://doi.org/10.1109/TNNLS.2017.2727065
https://arxiv.org/abs/1811.12808
http://arxiv.org/abs/1811.12808
https://proceedings.neurips.cc/paper/2020/file/fcde14913c766cf307c75059e0e89af5-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/fcde14913c766cf307c75059e0e89af5-Paper.pdf

Dependence and Model Selection in LLP: The Problem of Variants

A SUPPLEMENTAL MATERIAL

A.1 Derivations

The set of allowable dependence relations in Table 1 is derived
using inference rules. Here we show the two rules used to eliminate
those dependence relations that are logically inconsistent.

In the derivations below, we use the following definition of con-
ditional independence:

XAWY|Z = p(x,y.2)p(2) = p(x,2)p(y. 2)
as discussed in [11].

Here we derive the two rules that allow us to narrow the set of
cases to just those in Table 1. We (re)derive these rules in order to
identify any necessary conditions on the positivity of distributions.

(1) XUY|Z XLZ|Y > XLY, X1Z

Proof.
(@ XLY|Z - p(x,y,2)p(2) = p(x,2)p(y, 2).
(b) X LZ[Y — p(x,y,2)p(y) = p(x,y)p(y, 2).
(©) () & (b) — forany x,y,z, p(x,2)/p(z) = p(x,y)/p(y)
if p(y,z) # 0.
(d) Hence p(x|z) = p(x|y) = p(x).
(e) Hence X L Z, X 1L Y.
Thus we can conclude that the rule stated above follows,
unless there are some values (y, z) where p(y, z) = 0 and, for
those values it happens that p(x | y) # p(x|z).
@) XUY|Z XUZ|Y > XLZ
Proof.
(@ XLY|Z - p(x,y,2)p(2) = p(x,2)p(y, 2).
(b) X U Z|Y — Tyo, 21, 22 s.t. p(x | yo, z1) # p(x|yo,2z2). By
definition p(yo, z1) # 0 and p(yo, z2) # 0.
(c) Hence 3 wyo,z1,22 st p(x,yo,21)p(yo, 22) *
P(x, Y0, 22)p (Yo, 21).
d @ & (© — [plez1)/p(z0)]p(yo. z1)p(yo. 22)  #
[p(x,22)/p(22)1p(yo, z2)p (Yo, z1)
(e) Hence 3 z1,z2 s.t. p(x,z1)/p(z1) # p(x,22)/p(z2). By def-
inition p(z1) # 0 and p(z2) # 0.
(f) Hence 3 z1, 22 s.t. p(x | z1) # p(x|z2).
(g) Hence X )L Z.
We conclude that no special conditions on the positivity of
distributions are required for this rule.

A.2 Other LLP Variants

A.2.1 Colliders. The LLP variants presented in the 5% and 7th
rows of Table 1 are examples of colliders, in which B is independent
of either X (Label Collider) or Y (Feature Collider). However, given
the third variable in each case, the independence disappears due
to the explaining-away effect [25]. While we consider these cases
interesting from a theoretical perspective, practical scenarios giving
rise to these cases seem rare. Further, the associated dependence
structure only arises as the result of a single DGM in each case. As
a result, we leave detailed consideration of the implications of these
variants for future work.

A.2.2 Cross-bag LLP. As illustrated by the DGMs (Table 1, gth
row), cross-bag cases occur when the correlation between X and Y
is mediated by B. In other words, a correlation between X and Y

exists across bags, but not within any given bag. This is an example
of Simpson’s paradox: no correlation between X and Y exists in
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the subgroups (bags), but when groups are combined, a correlation
exists [23].

These considerations show that in Cross-bag LLP, it is important
to use items coming from multiple bags as input to the learning
step of model selection, as only in that way can the relationship
between X and Y be observed.

A.3 Datasets

We used six classification datasets. For multi-class classification
data, we consider some pairs of classes as a dataset. We made the
Census-KDD dataset balanced with the same positive and negative
instances. We also converted the CIFAR-10 images to greyscale in
order to reduce the number of features. Table 2 presents the details
and pointers to the data sources.

Table 2: Summary of datasets

Dataset N Features Proportions of 1’s  Source
Adult 48842 179 0.24 UCI
Default-Credit-Card 30000 23 0.22 UCI
Covertype (Classes 1 and 2) 495141 54 043 UCI
Census-KDD (Balanced) 37136 506 050 UCI
MNIST-Digits (Pairs of classes) ~ Ranges from 13138 to 14780 784 Ranges from 0.49 to 0.54  [17]
CIFAR-10 Grey (Pairs of classes) 12000 1024 0.50 [15]

Following [45], for each dataset, the features were scaled to
[-1, 1]. Moreover, categorical features were one-hot encoded.

A.4 Bag generation process

Since we are using classification datasets in our experiments, we
need to have a procedure to generate bags given a classification
dataset. For each dataset, we generated four LLP datasets: a Naive
LLP dataset (see Section 4.1), a Simple LLP dataset (see Section
4.2), an Intermediate LLP Dataset (see Section 4.3), and a Hard LLP
dataset (see Section 4.4). We assume that X and Y are correlated in
all datasets since they are classification datasets.

Our generation process is based on a clustering assignment. We
used k-means to create a clustering assignment for the dataset.
Then, given a base dataset, we just use the clusters as bags to
generate an Intermediate dataset.

Let p’ be the vector of proportions from the Intermediate dataset,
and B’ the vector of bag sizes from the Intermediate dataset (pf , Blt.
denotes the proportion and size of the i-th bag of the Intermediate
dataset respectively). Our goal is to have similar bag sizes across
all variants and similar proportions in Simple, Intermediate, and
Hard variants.

For the Naive variant, we randomly assigned bags to items. For
each bag i, the probability of an item being assigned to this bag
is proportional to Bl? . Then, we have a correspondence between
the clustering assignment sizes and bag sizes for the Naive LLP
datasets.

For the Simple variant, each item has a probability of being
assigned to a certain bag based on its label, i.e., these probabilities
are different from when the item label is positive or negative. These
probabilities are computed in a way such the dataset will have
approximately proportions p! and bag sizes B?.

For the Hard variant, each item has a probability of being as-
signed to a certain bag based on its label and its cluster id, i.e., these
probabilities are different for each label and cluster combination.
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These probabilities are also computed in a way such the dataset More precise algorithms to generate LLP datasets from base
will have approximately proportions p? and bag sizes B. datasets and formal tests to verify their respective variant will be
addressed in future work.
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