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Abstract

Most performance debugging and tuning of paral-

lel programs is based on the \measure-modify" ap-

proach, which is heavily dependent on detailed mea-

surements of programs during execution. This ap-

proach is extremely time-consuming and does not

lend itself to predicting performance under varying

conditions. Analytic modeling and scalability anal-

ysis provide predictive power, but are not widely

used in practice, due primarily to their emphasis on

asymptotic behavior and the di�culty of developing

accurate models that work for real-world programs.

In this paper we describe a set of tools for perfor-

mance tuning of parallel programs that bridges this

gap between measurement and modeling.

Our approach is based on lost cycles analysis,
which involves measurement and modeling of all
sources of overhead in a parallel program. We

�rst describe a tool for measuring overheads in par-

allel programs that we have incorporated into the

runtime environment for Fortran programs on the

Kendall Square KSR1. We then describe a tool that

�ts these overhead measurements to analytic forms.

We illustrate the use of these tools by analyzing the

performance tradeo�s among parallel implementa-

tions of 2D FFT. These examples show how our

tools enable programmers to develop accurate per-

formance models of parallel applications without re-

quiring extensive performance modeling expertise.

�This research was supported under NSF CISE Institu-
tional InfrastructureProgramGrant No. CDA-8822724, and
ONR Contract No. N00014-92-J-1801 (in conjunction with
the DARPA HPCC program,ARPA Order No. 8930). Mark
Crovella is supported by an ARPA ResearchAssistantship in
High Performance Computing administered by the Institute
for Advanced Computer Studies, University of Maryland.

1 Introduction

Traditional performance debugging and tuning of
parallel programs is based on detailed measure-
ment of program executions. Programmers typ-
ically implement a program, measure its perfor-
mance in detail, modify the program, and iterate.
This \measure-modify" approach to performance
tuning [19] results in detailed knowledge about a
series of executions of a parallel program. However,
programmers would often like to know about other,
potential, executions of the program: with varying
inputs, on a di�erent number of processors, or on
a di�erent machine. Using the measure-modify ap-
proach, those executions must be measured also.
Unfortunately it may be expensive or impossible to
perform those measurements: measurements take
time, and machines, data, or processors may be
scarce or unavailable.

Performance tuning over a range of machines,
data, or processors is important because the best
parallelization of an application is often not �xed.
Many researchers have noted that the best paral-
lelization for a given application can vary depend-
ing on the input, machine, or problem de�nition
[13; 25; 27]. In fact, the best parallelization for
a given application can depend on the size of the
input dataset, the structure of the input dataset,
the speci�c problem de�nition, the number of pro-
cessors used, and the particular machine used [10].
Exploring each of these environmental factors fully
requires the predictive power of modeling; it is sim-
ply impractical to measure the e�ects of all these
factors after each modi�cation of the application.

Analytic models, such as provided by scalabil-
ity analysis, provide predictive power but have not
been widely used in performance tuning. We feel
that modeling is not common in practice because:
1) analytic models emphasize asymptotic perfor-
mance, minimizing the importance of constants



that determine true performance; 2) analytic mod-
els often assume in advance that a particular over-
head or overheads will dominate over the entire
range of study, which may not be the case in prac-
tice; and 3) programmers writing parallel applica-
tions expect that analytic models are too di�cult
to develop in practice.
In this paper we describe a set of tools and asso-

ciated techniques that address these three impedi-
ments to using performance prediction for parallel
programs. Our goals in developing our performance
prediction tools and techniques are:

� su�cient accuracy to allow the user to select
among alternative implementations;

� applicability to applications written in any lan-
guage or programming style, and for a wide
range of machines; and

� utility to programmers who are familiar with
their applications, but are not experts in the
area of performance modeling.

To address these goals, we are developing a per-
formance prediction method called lost cycles anal-
ysis, along with a supporting tool set. Lost cycles
analysis is based on the observation that the dis-
tinction between productive computation and par-

allel overhead is useful both for performance di-
agnosis and for performance prediction. Further-
more, decomposing overhead into categories is sim-
ilarly useful for both diagnosis and prediction. The
core of lost cycles analysis is a careful breakdown
of overheads into categories that can be separately
modelled.
We describe two tools to support lost cycles anal-

ysis: pp and lca. The role of pp is to accurately
measure parallel overheads and attribute them to
the categories we have de�ned. Although we show
that the output of pp can provide insight to parallel
programmers in its own right, our main use of pp's
output is as input to the tool lca. The role of lca
is to guide the user in �tting performance models
to the data output from pp. The output from lca

forms the basis for the performance model of the
application.

2 Lost Cycles Analysis

To predict performance, we must be able to pre-
dict two quantities: total parallel overhead To, and
pure computation Tc, as functions of all environ-
ment variables. Given To and Tc, we can predict
running time as Tp = (To + Tc)=p. As long as the

parallel algorithm is a parallelization of the best se-
rial algorithm, pure computation is equal to serial
running time.
Once we have an accurate measurement for To

we can obtain Tc = pTp � To: We measure To by
decomposing it into categories. In order for mea-
surements of overhead categories to be useful, all
categories must be measured using the same met-
ric. We call this metric lost cycles. Lost cycles
are simply aggregate seconds of parallel overhead,
attributed to various categories. Lost cycles is an
important notion because it allows us to quanti-
tatively study tradeo�s among e�ects such as se-
rial fraction, synchronization, communication, and
contention that are often measured and modeled
in incompatible ways. The portion of the execu-
tion time not consumed in lost cycles we refer to as
pure computation.

Measuring lost cycles directly for the entire en-
vironment space is still impractical, but if the cat-
egories are chosen properly, modeling them as a
separate function of each environment variable is
feasible. A small number of measurements for each
environment variable will then su�ce to parame-
terize the models, leading to an aggregate model
of performance prediction spanning the entire en-
vironment space.
Given performance models for each implemen-

tation that span the entire environment space, a
number of performance tuning problems can be
addressed. When an application is to be ported,
or run on a di�erent kind of data set, or run on
a di�erent number of processors, the performance
models can be quickly reduced to functions of the
environment variable(s) of interest. The crossover
boundaries at which one implementation outper-
forms another are then obtained by directly solving
the performance functions as simultaneous equa-
tions. In the context of a parallel programming en-
vironment these performance models would be as-
sociated with their implementations, for ready use
as implementation-selection decisions arise.
The core of our approach is the proper selection

of categories. To be successful, lost cycles must be
allocated to a set of categories that together meet
three criteria:

1. Completeness. The categories must capture
all sources of overhead.

2. Orthogonality. The categories must be mu-
tually exclusive.

3. Meaning. The categories must correspond to
states of the p execution that are meaningful
for analysis.
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Although often overlooked, completeness is a cru-
cial criterion. Completeness ensures that we do not
ignore any overheads as we vary environment vari-
ables, regardless of whether we expect them to be
dominant. Completeness is not often achieved in
performance measurement tools; many tools con-
centrate on speci�c performance metrics such as
cache miss rates, message tra�c, and execution
pro�les. Each of these tools is useful as long as
the tool's metric corresponds to a dominant source
of overhead. However, predicting which category
of overhead is dominant in all cases is a very di�-
cult task | it is not uncommon that performance
is dominated by unexpected e�ects.
Completeness is also rarely achieved because it

requires measurement of e�ects that occur at dif-
ferent levels | application (e.g., load imbalance)
and hardware (e.g., resource contention). A sys-
tem that attempts to measure lost cycles therefore
must be able to instrument the application, as well
as have access to hardware performance data.
Completeness and orthogonality together ensure

that we can correctly measure lost cycles, and in-
directly, pure computation. Completeness ensures
that measurements of pure computation are accu-
rate. Orthogonality ensures that we can subtract
overheads from running time to calculate pure com-
putation in the natural way.
Meaningfulness of categories serves a rather dif-

ferent purpose, and makes the choice of categories
somewhat more di�cult. Categories must be mean-
ingful so that they are likely to be amenable to sim-
ple analysis. It is certainly possible to de�ne a set of
overhead categories that are complete and orthog-
onal, but without meaning for analytic purposes |
the simplest such set would contain one category
for all lost cycles. Thus the challenge in de�ning a
category set is in dividing overheads �nely enough
that they can be analyzed simply, but not so �nely
as to present problems in measurement, or in veri-
fying completeness and orthogonality.
Meaningfulness of categories also allows the pro-

grammer to relate the measurements made to
the program being studied. Categories that are
amenable to analysis tend to correspond in sim-
ple ways to the structure of the program. As a
result, measurements of meaningful categories can
provide signi�cant performance tuning assistance
even apart from their use in analytic models.
The category set we use in this paper is:

Load Imbalance (LI): processor cycles spent
idling, while un�nished parallel work exists.

Insu�cient Parallelism (IP): processor cycles

spent idling, while no un�nished parallel work
exists.

Synchronization Loss (SL): processor cycles
spent acquiring a lock, or waiting in a barrier.

Communication Loss (CL): processor cy-
cles spent waiting while data moves through
the system.

Resource Contention (RC): processor cycles
spent waiting for access to a shared hardware
resource.

This category set has satis�ed the three criteria
(completeness, orthogonality, meaning) for the ap-
plications we have studied. Of course, it will need
to be expanded to handle a wider range of over-
heads as it is used in more varied situations. In par-
ticular, it does not currently distinguish between
synchronization types, measure contention for soft-
ware resources, or measure operating system and
runtime library e�ects. Each of these extensions
appears to be straightforward within the existing
framework however.

3 Tools for Lost Cycles Anal-

ysis

3.1 Measuring Lost Cycles: pp

In previous work [8] we showed that basing mea-
surement on logical expressions that recognize lost
cycles is a particularly useful approach. We call
these expressions performance predicates. The
use of performance predicates to specify cate-
gories of lost cycles makes program instrumenta-
tion straightforward, and allows predicate pro�les

to be constructed based on user demands. For ex-
ample, using predicate pro�ling, the user can ask
for a breakdown of lost cycles by processor num-
ber, task, or procedure. The current implementa-
tion uses predicate pro�ling of event logs, rather
than the runtime pro�ling used in our earlier work.
Our current implementation of the predicate pro-

�ler, pp, measures Fortran programs running on
the Kendall Square KSR1, and consists of 1) a li-
brary linked into the executable code and 2) a post-
processor of event logs that outputs the pro�le. The
KSR Fortran runtime system can log events such
as the start and end of individual loop iterations,
which we use for calculating load imbalance. Ad-
ditional calls to our library routines are inserted at
the start and end of parallel loops, parallel tasks,
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and synchronization operations. The inserted li-
brary calls are quite simple and could easily be
added by a source-to-source preprocessor.
The KSR1 [17] is a two-level ring architecture in

which all memory is managed as a cache, which is
organized in two levels on each node. Thus, inter-
node communication occurs only as the result of
misses in the secondary cache. Dedicated hardware
monitors the state of buses between the processor
and the second-level cache. This performance mon-
itor counts the number of secondary cache misses,
the time taken to service secondary cache misses,
and the number of cache lines that passed through
the higher-level ring before arrival. Based on this
data, we can calculate the amount of communica-
tion performed in an execution and the amount of
resource contention that occurred.
Communication loss is measured as a product

of the number of cache misses and the ideal time
to perform the cache line transfers. Resource con-
tention (contention for the ring interconnect and for
remote memories) is measured as in [28] | that is,
the ideal time to perform the communicationopera-
tions is compared to the actual elapsed time. Since
the KSR1 hardware monitors both the number of
cache lines transferred and the elapsed time waiting
for cache lines, this calculation is straightforward.
Although the performance monitoring hardware on
the KSR is rather unique, something comparable
may be required for other cache-coherent architec-
tures. On simpler architectures, such as a message-
passing system, the performance monitoring capa-
bilities of the DEC Alpha [12] should be su�cient
to gather the same information.
pp is currently installed for use by the user com-

munity at the Cornell Theory Center on their 128-
node KSR1. Example output from the current ver-
sion of pp is shown in Figure 1. Lost cycles for each
category are presented in seconds, aggregated over
all processors. Actual execution time of the ap-
plication was 9.86 seconds, which is equal to total
time (49.29 seconds) divided by the number of pro-
cessors (5). In this execution, pp has identi�ed that
the primary bottleneck is a serial section of code.
Although this implementation does not support it,
a simple modi�cation to the pro�ler would peri-
odically sample the value of the program counter,
allowing the bottleneck to be associated with a par-
ticular section of code.

3.2 Analyzing Lost Cycles: lca

lca is a tool that manages performance data and
focuses the user on a selection of appropriate mod-

% f77 -o runfast myprog.f -lctc -lpmon

% runfast

% pp

PP version 4.0

** processors: 5

Load Imbalance 0.180677

Insuff Parallelism 16.813304

Synchronization Loss 0.003779

Communication Loss 2.274899

Resource Contention 1.351362

Total Time 49.293890

Remaining Time 28.669868

Figure 1: Example Output of pp

els for each category of lost cycles. It assists the
user in two ways:

1. It guides the user's selection of models for each
category and environment variable, using de-
faults based on our experience in modeling the
categories of lost cycles. For example, when
varying data set size, the model for commu-
nication loss defaults to a linear function of
data size. Likewise, when varying the number
of processors, the model for insu�cient paral-
lelism loss defaults to a linear function of num-
ber of processors.

2. It provides error estimates for the goodness-of-
�t for each of the default models, and for any
models explicitly requested by the user. This
gives the user the opportunity to compare the
quality of each of the default models and to
additionally compare any models the user feels
might be better than the defaults. To assist in
selecting the best �t, lca can also output the
raw data and the �tted models in graphical
format, using Gnuplot.

An example output from lca is shown in Fig-
ure 2. This example �rst shows the collection
of a number of predicate pro�les for the program
runfast, in which the number of processors used
(p) is varied (2, 4, 6, and 8). The resulting data�le
(in a form output by pp especially for use by lca) is
then processed by lca. The arguments given to lca
specify that we are interested in selecting a model
for Load Imbalance, while varying p. The tool has
3 default models that describe how Load Imbalance
often varies with p: p

p
p, p, and null (independent

of p). The R2 column shows that p
p
p is the best-

�tting model, and the form column indicates that
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the coe�cient based on a least squares �t of these
data is 0.000298.

% runfast -p 2

% pp -l >> datafile

% runfast -p 4

% pp -l >> datafile

% runfast -p 6

% pp -l >> datafile

% runfast -p 8

% pp -l >> datafile

% lca datafile -var p -cat li

(0.000298 +/- .000017) *p*sqrt(p) R2: .975

(0.149540 +/- .007899) *p R2: .567

(12.9491 +/- 10.7811) R2: .002

Figure 2: Example Output of lca

The R2 value provided by lca is the fraction of
the total variation in the measurements that is ex-
plained by each model. Generally, the user can se-
lect a model if it explains a large fraction of the
total variation (e.g., more than 95%). Each param-
eter estimated by lca is also given a 90% con�dence
interval. The con�dence interval is provided so that
the user can distinguish terms in each model that
do not contribute to goodness-of-�t; if any parame-
ter's con�dence interval contains zero, then that pa-
rameter cannot be statistically di�erentiated from
zero, and the associated term should be eliminated.
Eliminating terms from a model is useful because
it narrows the con�dence intervals on the model's
predictions.

While lca assists in selecting a model for each
category as a function of a single variable, the user's
goal is often to create performance models that are
functions of more than one variable. To use lca

to construct multivariate models, the user must
employ an appropriate experimental design. In
many cases, the environmental factors (e.g., num-
ber of processors or data set size) interact, that is,
they are not simply additive. In addition, over-
head models for many factors are nonlinear. For
these two reasons, the user must use factorial or
reduced-factorial experimental designs, and must
measure more than two values for each factor [2;
4]. In practice, these criteria are met if the user
samples the \edges" of the parameter space, for 3
or more points on each edge.

In some cases it will be necessary to perform sim-
ple analysis on the program to ascertain the models

(which would still be tested by the user using lca).
The examples in Section 4 exhibit cases where this
occurs. We expect that in most cases this analysis
will be straightforward.

4 Using Lost Cycles Analysis

This section presents a detailed case study of the
use of lost cycles analysis on parallel implementa-
tions of the two-dimensional discrete Fourier trans-
form program (2D FFT). Additional case stud-
ies showing the use of lost cycles analysis on less
regularly-structured applications are presented in
[9].
The serial implementation of 2D FFT consists of

a number of iterations which consist of 1D FFTs
on columns of the input matrix, followed by 1D
FFTs on the rows of the matrix. The environmental
factors of interest are the number of processors p
(varied from 2 to 26), and the size of one side of
the input matrix n (varied from 32 to 1024).
We consider two parallel implementations of the

program. The �rst parallelization is purely data
parallel (DP). In the DP version, each iteration of
the program consists of 5 parallel loops: one to
initialize the matrix, one to perform the column-
wise FFTs, two to transpose the matrix (using an
intermediate matrix), and one to perform the row-
wise FFTs.
The second parallel implementation uses task

parallelism as well as data parallelism. In this im-
plementation (TP), processors are segregated into
two groups using tasking directives. One group ini-
tializes the matrix and performs data-parallel row-
wise 1D FFTs, while the other group transposes
the matrix and performs data-parallel column-wise
1D FFTs. The two tasks are pipelined so that each
one is kept busy working on separate matrices.

4.1 Modeling the Performance of 2D
FFT

The ability to capture the expected performance
of a program based on a small number of mea-
surements is critical to managing the problem of
understanding and selecting among di�ering im-
plementations. Measuring and debugging program
performance without gathering large amounts of
data is an important capability in its own right,
and is the subject of much current e�ort [3; 21;
23]. The results in this section show that lost cy-
cles modeling is a convenient way of capturing large
amounts of performance data, requiring minimal
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Category Model
Varying n Varying p

PC n2 log(n) 1
LI n log(n) p

p
p

IP 1 p
SL 0 0
CL n2 p
RC n2 p; p > �

Table 1: Models of Overhead, 2D FFT, as a Func-
tion of n and p

measurement e�ort and little storage.
In this example we will:

1. Measure the program's lost cycles for the
\edges" of the parameter space, i.e., for p = 2,
p = 26, n = 32, and n = 1024. This is a full
factorial design.

2. Select appropriate simple models for each cat-
egory of lost cycles and for pure computation,
as separate functions of varying data size and
varying number of processors.

3. Use the measurements made in step 1 to com-
bine and parameterize the models selected in
step 2, yielding predictions for running time
over the entire range of data sizes and num-
bers of processors.

The process of combining models in step 3 uses
the data collected from step 1. In some cases, mod-
els will be additive; in other cases they will be mul-
tiplicative. The data collected in step 1 can be used
to distinguish these cases by using standard allo-
cation of variation techniques for factorial designs
[16]. Allocation of variation uses least-squares �ts
to assess the main (additive) and interaction (mul-
tiplicative) terms of a model. To perform allocation
of variation, we use lca in a slightly di�erent role
| we use it to �nd the least squares �t of additive
and multiplicative terms to the experimental data.
If interactions account for the majority of varia-
tion, we combine the models for separate factors
by multiplying them together; otherwise we add
the separate-factor models to form the combined
model.
The simple models we chose to describe each

overhead are listed in Table 1, as separate func-
tions of n (the length of a side of the input matrix)
and p (number of processors). Each model has an
implicitly associated constant; the purpose of our
lost cycles measurements in step 1 is to discover the

constants. Each of these models is a simple, initial
approximation to reality. Better models for each
are possible, but not necessary in this context since
they trade increasing accuracy for increasing mea-
surement cost, and decreasing analytic tractability.
Considering �rst the models for varying n, the

model for pure computation is based on simple al-
gorithmic analysis of 2D FFT. The model for load
imbalance is based on the length of an iteration
of the program's parallel loops. There are no syn-
chronization operations in the program, so we ex-
pect no synchronization loss. The model for insuf-
�cient parallelism is based on the the portion of the
code that runs serially, which has no data size de-
pendencies. The model for communication loss is
based on the total amount of data used. Finally,
the model for resource contention is based on the
expectation that resource contention will be pro-
portional to data size.
In choosing models of overhead as we vary the

number of processors, we can rely on the large body
of work in the literature to provide likely candidate
models. Most of the models we use are straightfor-
ward: pure computation does not vary as we vary
processors, insu�cient parallelism obeys Amdahl's
Law, and synchronization loss is zero.
Load imbalance can arise in two ways: variation

in the running time of each loop iteration, and un-
equal numbers of loop iterations handled by dif-
ferent processors. If variation in running time of
iterations is random, the time taken by the longest
iteration can be modeled using order statistics (e.g.,
[11]) and predicted to grow proportionally to

p
p.

Communication loss can be di�cult to model, but
for this simple application is proportional to p. Fi-
nally, resource contention can be expected to grow
linearly once the number of processors passes a
threshold value.
Using the lost cycles measurements we then pa-

rameterize the six models (PC, LI, IP, SL, CL, and
RC ). For example, the �nal form for Load Imbal-
ance (in which the e�ects of varying p and n are
multiplicative) is:

LI(n; p) =
n log(n)p

p
p

36200
:

Using the basic identity Tp = (Tc + To)=p, we con-
struct the performance model for the implementa-
tion by adding the performance models for each
category and dividing by p. The results for the 2D
FFT program are shown in Figure 3. These plots
show the performance of the application measured
in M
ops, as a function of both number of proces-
sors and of dataset size. The left hand plot shows
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Figure 3: Predicted and Actual Performance of 2D FFT

the predictions of our model for 78 data points,
that is, all points within the range of processors
and data set sizes we set out to model. The right
hand plot shows the actual measured performance
of the application on the KSR1 for those same 78
data points.

As can be seen, the model is an idealized but
reasonably accurate approximation to actual per-
formance. In fact, the average relative error of the
model with respect to the actual performance, over
all 78 points, is only 12.5%. For comparison, the
average relative error of a simple linear interpola-
tion (without interactions) based on a least squares
�t of the four \corner" points is over 750%. Thus
both the overall shape of the predicted performance
curve and its actual values are su�ciently accurate
to allow it to be used in studying tradeo�s against
an alternative implementation, which we will do in
the next section.

4.2 Task Parallel vs. Data Parallel
2D FFT

A comparison of the task parallel and data paral-
lel implementations of 2D FFT on the iWarp was
presented in [27]. On that machine, the authors
discovered that as data set sizes are varied past a
certain threshold, the choice of which implementa-
tion is best changes. For small data sets (n � 128)
the parallel tasking implementation outperformed
the pure data parallel implementation. For large
data set sizes (n � 256), the purely data parallel

implementation outperformed the parallel tasking
implementation. The principal reason for this e�ect
is that in the parallel task version, communication
between tasks must pass through a single channel of
the iWarp network, while purely data parallel com-
munication can take place along multiple channels.
For small data sizes, the larger problem granularity
of parallel tasking leads to better performance, but
as problem sizes increase, intertask communication
becomes a bottleneck.

It is interesting to ask whether a similar e�ect
would be observed when this application is run on
the KSR1, a machine with a signi�cantly di�er-
ent architecture. Unfortunately, the data from the
iWarp cannot help us decide which executions to
measure, since the machines are so di�erent. Thus
we immediately run into a problem: perhaps there
is a crossover between implementations in some sec-
tion of the environment space (here, n and p), but
�nding the crossover would require measurements
over the entire space.

To answer this question using the lost cycles ap-
proach, we only need to construct a model for the
application. The simplest approach in this case is
to 1) decide whether the category models used for
the pure data parallel implementation follow the
same functions; and 2) determine new constants
for the overhead functions. To do this we measured
6 points varying the data set size, (to explore the
functions of n) and 6 points varying the number of
processors (to explore the functions of p).

The results are shown in Table 2. The table
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Category Data Parallel Task Parallel

PC
n2 log(n)
3550

n2 log(n)
3350

LI
n log(n)
63:0

n log(n)
81:9

IP 3.36
n2

992

SL 0
n2

31600

CL
n2

14900
n2

12200

RC
n2

20100
n2

35600

Table 2: Performance Models for Data Parallel and
Task Parallel 2D FFT

shows the functions and the associated constants
for the n variable, since the models did not di�er
signi�cantly in the p dimension.1 These functions
immediately answer our questions about these two
implementations. First of all, resource contention
in the task parallel implementation is signi�cantly
less than in the data parallel implementation, indi-
cating that the channel bottleneck e�ects observed
on the iWarp will not be present on the KSR1. This
conclusion is reasonable, since intra-ring communi-
cation costs are insensitive to source and destina-
tion on the KSR1. In fact, we see that resource
contention is only about half as great in the task
parallel version, since in the pure data parallel ver-
sion, all processors are simultaneously requesting
and providing data during the matrix transpose,
while in the parallel task version, half the proces-
sors request data and the other half provide it.
The second observation is that on this machine,

the task parallel implementation will always per-
form more poorly than the pure data parallel im-
plementation. Synchronization loss and insu�cient
parallelism are functions of n2 in the task parallel
implementation. The reason for this change from
constant values to functions of n2 when the im-
plementation is changed can be seen in observing
that synchronization loss is now equal to about a
third of the communication loss. In fact, in this
implementation, the two tasks do not incur equal
overhead. The task that transposes the matrix in-
curs more overhead because it must traverse the
source matrix across cache lines, destroying local-
ity. Thus each loop iteration for the transposing

1We hold p constant at its maximum value (26) in these
formulae.

task takes slightly longer than an iteration of the
initializing task; a pair of spin locks prevents either
task from overtaking the other. As a result of this
synchronization loss in the main thread of the ini-
tializing task, the other threads in its group must
wait without work, incurring lost cycles due to in-
su�cient parallelism. This insu�cient parallelism
has a particularly small constant in the denomina-
tor and hence dominates the small improvements in
resource contention and load imbalance generated
by task parallelism.2

Thus we have quickly answered the question of
whether two implementations, known to have a per-
formance tradeo� on at least one architecture, have
a similar performance tradeo� on the architecture
of interest to us. To do this, we only needed to
measure a small number of data points in each of
the 2 environmental dimensions, and compare the
resulting lost cycles models.

5 Related Work

The majority of the tools and metrics devised for
performance evaluation and tuning re
ect their ori-
entation on the measure-modify paradigm (e.g., [6;
14; 15]). Such tools are very useful in application
�ne-tuning, but usually do not provide complete-
ness (i.e., they don't measure all sources of over-
head in the execution). As a result, they are lim-
ited to cases in which the principal overheads are
known in advance.
A number of researchers in the parallel perfor-

mance evaluation and tuning community have fo-
cused on measurement of multiple parallel over-
heads. In particular the PEM system has developed
a taxonomy of parallel overheads similar to ours [5],
and Quartz and MemSpy together can measure the
overhead categories we use [1; 20]. However, since
these (and similar tool sets) are not oriented toward
performance prediction of alternative implementa-
tions, the speci�c overhead categories they use are
not always amenable to easy analysis. In addition,
the completeness criterion has not been emphasized
in most previous overhead measurement work [5;
22; 28].
A common method of modeling of overheads in

parallel programs is scalability analysis [18]. Scala-
bility analysis develops analytic, asymptotic models
of computation and selected overhead categories as
a function of the size of the problem n and the num-
ber of processors p. These analyses provide insight

2Presumably these e�ects were not present on the iWarp
because of message passing optimizations.
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into the inherent scalability of a particular appli-
cation and machine combination. Such analyses
are an important part of our approach, but they
don't provide enough mechanism on their own to
solve the best implementation problem. Most im-
portantly, they are subject to the problem of de-
ciding beforehand which overheads will dominate,
which can be error-prone. In addition, they cannot
be used directly for performance prediction or for a
comparison of alternative implementations in gen-
eral because of their reliance on asymptotic anal-
ysis, and on constants which must be determined
experimentally.

Another method of performance prediction is
based on the notion of parallel program templates

[24; 29]. These methods require the programmer to
explicitly select a program template, which de�nes
the mapping from application-level constructs onto
the parallel hardware. Templates free the program-
mer from developing complex performance models,
since by selecting a template for the application, the
programmer also implicitly selects a performance
model. Our approach, while not providing as much
accuracy as is possible using the template approach,
does not restrict the programmer to any set of pre-
constructed templates.

Our work bears similar goals to [7], which takes
a static approach to performance prediction, rather
than the dynamic approach we use.

Finally, the notion of selecting alternative imple-
mentations based on the environment is present in
the ISSOS system [26]. The emphasis in that work
is on selecting alternative implementations dynami-
cally based on ongoing system monitoring. As a re-
sult the dynamic adaptations do not include drastic
restructuring of the application, and no guidelines
for how the programmer should select among alter-
natives were developed.

6 Conclusion

We have presented a technique that combines per-
formance measurement with analytic modeling.
Our technique is based on measuring overhead cat-
egories that meet the three criteria of complete-
ness, orthogonality, and meaning; we have shown
how each of these criteria is necessary in order to
produce reliable performance predictions. We have
shown that lost cycles analysis yields a performance
model of the application that is accurate enough
to distinguish among implementations, can be ap-
plied to programs using a wide range of languages
and platforms, and can be supported by tools that

automate most of the modelling process.
Our examples show that lost cycles analysis has

signi�cant 
exibility. Our �rst example showed how
modeling lost cycles can capture a great deal of per-
formance data using only a small number of mea-
surements. Our second example studied two imple-
mentations and used lost cycles modeling to expose
di�erences in the predicted and actual behavior of
the two applications.

A limitation of our work lies in the application of
analytic models to e�ects that may not have ana-
lytic behavior (such a synchronization loss). We are
addressing this in two ways: we believe that some
subcategories may have analytic behavior (such as
contention for software data structures, currently
measured as sychronization loss); and we are con-
sidering nonanalytic extensions to lca (such as
critical-path predictions) to handle the remaining
cases.

We are continuing to develop the lost cycles ap-
proach in two directions. We intend to extend the
set of categories measurable so that lost cycles anal-
ysis will be complete for a wider range of applica-
tions. We are also exporing the use of lost cycles
analysis on program fragments, to allow users to
predict the e�ects of program restructuring in ad-
vance of implementation.
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