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ABSTRACT

When information sources are moderated by recommender sys-
tems, so-called “�lter bubbles” may restrict the diversity of content
made available to users, potentially a�ecting their opinions. User
opinions may in turn a�ect the output of recommender systems. In
this work we ask how the dynamical system de�ned by user and
recommender systems behaves, as each element evolves in time.
In particular, we look at whether the use of recommender system
can a�ect user experience and user opinions in a systematic way.
We de�ne and analyze three metrics to understand those e�ects
– intensity, simpli�cation, and divergence – and we explore both
link-based and ratings-based recommender systems. Our results
suggest that previous studies of this problem have been too sim-
plistic, and that user opinions can evolve in complex ways under
the in�uence of personalized information sources.
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1 INTRODUCTION

Recommender systems are an increasingly prevalent part of on-
line services, and increasingly mediate access to online resources.
Recommender systems are found in systems for online-shopping,
video streaming, news feeds, search queries and social media. Rec-
ommender systems are employed not just to explicitly give recom-
mendations, but to implicitly guide users, as in the selection and
ordering of items in a Facebook news feed.

The term �lter bubble refers to a narrowed access of informa-
tion caused by personalization, often in combination with search
engines [22]. The term and associated literature raises the concern
that recommender systems may have an e�ect on society, for ex-
ample by in�uencing user opinions. Given the prevalence of rec-
ommender systems, it is natural to ask whether they can have an
e�ect on user opinions, and what the nature of that e�ect is.
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In this paper we take this question a step further, and ask
how user opinions and recommender systems together change as
they interact over time. This question arises because many recom-
mender systems are adaptive, making and incorporating observa-
tions of users preferences and choices, even as the users are them-
selves reacting to the recommended items (again, take as an exam-
ple a Facebook news feed). This constitutes a kind of closed loop,
or dynamical system. The central question we ask is: how do user
opinions evolve when users and recommender systems each take
input from the other, over time?

To answer this question requires signi�cantly abstracting both
recommender systems and users in a manner that captures essen-
tial properties. Taking recommender systems �rst, these are usu-
ally classi�ed according to how the recommendations are made
[2]: content-based �ltering systems recommend items based on fea-
tures of the previous items evaluated by the user, while collabo-

rative �ltering systems recommend items that people with similar
tastes and preferences had evaluated before. Since the latter are
based on the opinions of users, our focus is on collaborative �lter-
ing systems. We use two di�erent models of collaborative �ltering
to compare results and explore di�erences: link based systems and
ratings based systems. Link based systems are exempli�ed by on-
line retailers, which rely on the past records of purchases by the set
of all users. Ratings based systems are exempli�ed by movie, mu-
sic, and hotel sites sites that recommend new (or previously seen)
experiences for a user based on their explicit feedback. These two
types of systems are often addressed using the neighbor approach
and latent factor models, respectively [24].

Turning to user modeling, the central e�ect to be captured is
how user opinion about an item is a�ected by the fact the item
has been presented to the user by the recommender system. Here,
we study a range of options, from the case where the user’s reac-
tion is random, to cases in which users have maximally negative
or maximally positive reactions to the item presented. These reac-
tions are captured by the recommender system and used to update
its knowledge base.

While there is littlework to date that has addressed this question
in the form that we pose it, parts of our study have connection to
the work in [8]. That paper constructed abstractions of three link
based recommender systems, and analyzed the e�ects on user opin-
ion under certain assumptions. Part of our work looks more deeply
at the same systems, examining the e�ect of key assumptions, and
shows e�ects that di�er considerably fromwhat is predicted in [8].
However our work also goes beyond link based systems to ratings
based systems, where we �nd that the set of phenomena (system
metrics) to be studied are more diverse.

Beyond abstracting the key system elements, we also must iden-
tify the properties of user opinions that are of interest. We study
three key properties of the evolving set of user opinions: the in-

tensity of individual user’s opinions, the simplicity of individual
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user’s opinions, and the divergence of the opinions of the entire set
of users. We make these concrete in the form of speci�c metrics.

Our results show a surprisingly subtle interaction between prop-
erties of recommender system algorithms, actions of users, and ini-
tial system state.We show that small di�erences in algorithms (e.g.,
whether an algorithm returns the “best” item or merely a “good”
item) have a strong e�ect on whether user opinions undergo sim-
pli�cation as they evolve. We show that the initial distribution
of opinions can determine whether users become simpli�ed over
time. Andwe show that recommender systems can cause user opin-
ions to diverge and simplify, but generally only if the recommender
system accurately predicts user preferences. On the other hand, we
show that a recommender system does not necessarily increase the
intensity of user opinions, as long as the systemmakes good recom-
mendations to the user. We conclude that there is striking richness
of interactions that are observed when user opinions and recom-
mender systems form a dynamical system, despite the high level
of abstraction necessary for a study like ours. Furthermore, the na-
ture of the e�ects observed suggests that the increasing prevalence
of recommender systems deserves attention and care.

2 FRAMEWORK

We formalize the problem as follows. We consider a system of n
users and m items. Items are objects over which the user has an
opinion or has a connection with, e.g., products, movies, books, or
news articles.

The knowledge used by the recommender system is held in an
n ×m matrix M. In link-based systems, entries in M are in {0, 1},
while in ratings based systems entries in M are in R. In ratings
systems, M is only partially known. In that case, let Ω denote the
index set {(i1, j1), (i2, j2), ...} of known (observed) entries ofM and
Ω̄ the index set of unknown entries of M. We use MΩ to denote
the known entries ofM.

In a ratings-based system, a matrix completion algorithm de-
composes M into matrices X and Y (k by n and k by m respec-
tively) for a given latent space dimension k such that C = XT Y

and | |MΩ − CΩ | |2 is minimized.
We model a user’s set of preferences or opinions as an s dimen-

sional vector ui ∈ Rs . We think of this vector as the location of
the user in a “preference space.” This abstract representation can
capture a variety of user characterizations. For instance, in a link
based system, (such as speci�ed in [8]) the user vector can be in-
terpreted as a distribution over categories of items to which the
user is linked. On the other hand, for a ratings based system using
matrix completion ui can represent the completed vector of items
opinions, i.e., ui = ci (i-th row of C) or it can represent the projec-
tion of the user’s ratings in the latent space, ui = xi (i-th row of
X).

Dynamical System. The process we study in this paper is a dy-
namical system. Hence we introduce time indexing, whereMt and
uit denote respectively the state ofM and ui at time t . The concep-
tual approach we take is described abstractly as follows.

Let f (i,M) represent a recommender system algorithm; f re-
turns the next item r suggested for user i . Let д(i, r ) represent the
response of the user to the recommendation; this can be either a

rating for the item r or the decision to link to item r (e.g., to pur-
chase item r ). This action then provides additional knowledge for
the recommender system. Hence after a user has responded to an
item,Mt+1 (i, r ) is set to д(i, r ), and Ω is updated to include (i, r ).

In this setting we are interested in the dynamical system
{Mt }, t = 0, 1, . . . whose dynamics are governed by

Mt+1 (i, r ) = д(i, f (i,Mt )).

Denote by Pref(i,M) the function that computes the user prefer-
ence vector ui. The principal characterization of the system we
use is via uit = Pref(i,Mt ).

This general framework allows for a wide variety of investiga-
tions. To assess the impact of recommender system algorithms, we
consider two di�erent f functions. The two f functions return ei-
ther the top rated, or a randomly chosen, item for that user. We
also consider a range of д functions, which re�ect the degree to
which whether users tend to be favorably, or even unfavorably, in-
�uenced by the recommended items.

Metrics. Previous opinion formation studies have modeled user
opinions as scalar values, leading to a one-dimensional represen-
tation of user preferences [8]. Nonetheless, empirical studies show
that user opinions are better characterized as occupying a higher-
dimensional space, e.g., 20 to 40 dimensions [4]. Hence the set of
user preferences can be viewed as cloud of points, which we con-
sider to be centered at the origin.

While one-dimensional views of user preferences lead to the sin-
gle metric of polarization to describe opinion dynamics, the more
realistic multidimensional view of user preferences provides the
basis for a more diverse set of relevant metrics. We introduce three
de�nitions that generalize polarization in di�erent ways to describe
how user preferences may evolve over time.

First, we de�ne intensity as a per-user metric that captures the
strength of a user’s preferences. In our point-cloud view, intensity
could be conceived of as the distance of the user point from the
origin. Hence, given a user i at point uit at time t , if at time t ′ > t ,
we have | |uit′ | | > | |uit | |, we say the user’s intensity has increased.

Second, we de�ne simpli�cation as a per-user metric that cap-
tures the diversity of items that the user prefers, i.e., the spread
of user preferences as a distribution. Hence simpli�cation consists
of a reduction in the entropy of the user’s vector as a distribution,
H (ui). For a given user i

H (ui) = −

s
∑

j=1

*,
ui[j]

∑s
l=1

ui[l]
+- logs *,

ui[j]
∑s
l
ui[l]

+-
Then, for a user i at point uit at time t , if at time t ′ > t , we have
H (uit′ ) < H (uit), we say the user’s opinions have undergone sim-
pli�cation. We also use the term diversi�cation as the opposite of
simpli�cation, i.e., an increase the entropy of the user’s preference
vector.

Finally, we de�ne divergence as a property of a set of users
that captures the similarities among the users’ preference vectors,
i.e., the degree two which any two user’s preferences are alike. To
measure this we use the average correlation coe�cient over all
pairs of user preference vectors, ρ̄ = 2

n2−n

∑

i>j ρ (ui,uj) where ρ
is the standard correlation coe�cient. Then, if we have for a set
of users at time t ′ > t that ρ̄t ′ < ρ̄t we say that the user set has
increased divergence.
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3 LINK BASED SYSTEMS

A large class of recommender systems can be abstracted using a
graph; we call these link based systems. A link based system is
modeled as a bipartite graph G = (V1,V2, E), where nodes in V1
represent users, nodes in V2 represent items, and E is the set of
edges, i.e., connection among those nodes. In such a system the
recommender algorithm is a function f that takes as inputG and a
node i ∈ V1 and outputs a node j ∈ V2. The representation of those
connections varies with the speci�city of each system. Edges can
be unweighted to simply represent viewing of a video or purchase
of an product such as at [8], or weighted edges representing scores
or ratings such as at [7].

In this section we study three abstractions of link based systems
introduced in [8]. Our goal is twofold: �rst, we use these as a com-
parison case for our study of ratings based systems in the next
section; and second we seek to extend and probe the limits of the
analysis performed in [8].

3.1 Polarization: theoretical analysis

In [8], the authors investigate whether certain link based recom-
mender systems have a polarization e�ect, i.e., whether the rec-
ommender system dynamics result in an increased divergence of
opinions.

The authors analyzed three random-walk based recommender
algorithms inspired by well-known algorithms from literature:
SALSA [16] (SimpleSALSA), Item-based Collaborative Filtering
[17] (SimpleICF ), and Personalized PageRank [21] (SimplePPR) , de-
scribed in more detail below. We follow their framework, in which
items have labels l ∈ {“RED”, “BLUE”}, and there are an equal num-
ber of items of each label. That is, |V1 | = n and |V2 | =m = 2w with
w items of each label.

These analyses considered cases in which users respond either
with or without what was termed biased assimilation. In that con-
text biased assimilation speci�cally means that the probability that
a user i accepts an item recommendation is proportional to the
quantity of items that i has of that label. On the other hand, without
biased assimilation the probability that a user accepts a given rec-
ommendation is label-independent. Speci�cally, let xi be the frac-
tion of “RED” items owned by i . A recommender algorithm is polar-
izing with respect to i if: (1) when xi >

1
2 the probability that than

a recommended item accepted by user i is “RED” is greater than xi ,
and (2) when xi <

1
2 , the probability that the recommended item

accepted by user i is “RED” is less than xi .
The authors in [8] conclude through analysis that SimpleSALSA

and SimpleICF are polarizing only if users respond with biased as-
similation; in contrast, SimplePPR is always polarizing. That anal-
ysis includes three assumptions: (1) the number of “RED” and
“BLUE” items is equal; (2) the set of items is arbitrarily large (i.e.,
they study the system properties as m → ∞); and (3) the rec-
ommender system may recommend the same item multiple times,
even if the user has already linked to it. The third assumption is not
explicitly stated but is implicit. One of the goals of this section is to
show that analysis of these algorithms are quite sensitive to these
assumptions and that as a result, conclusions about polarization
are necessarily more nuanced.

3.2 Model

We encode the link based model in a binary matrix M such that
M(i, j) = 1 i� there exists an edge ei j ∈ E that connects i ∈ V1
to j ∈ V2. Once that there are equal quantities of items of each
label we �xed the item label with respect of its position in M, for
instance, the �rst m2 items have “RED” label and consequently last
m
2 items have label “BLUE”.
The recommender algorithms studied in [8] were de�ned in

terms of a randomwalk onG. However, analysis becomes clearer if
we express the algorithms in terms of a Markov chain. Let PVi,Vj

be
the transitionmatrix between elements i ′ ∈ Vi to j ′ ∈ Vj . So, PV1,V2

is n bym matrix can be calculated fromM such that each element
pi j =

mi j
∑

j mi j
and PV2,V1

ism by n matrix such that pi j =
mj i

∑

i mj i
.

Since G is bipartite PV1,V1
= 0 and PV2,V2

= 0. Thus:

P =

[
0 PV1,V2

PV2,V1
0

]

We can now rewrite the random-walk based recommender al-
gorithms as Markov chain based algorithms as follows.

Algorithm 1 SimpleSALSA using transition matrix P

Require: M and a user i .
1: Compute P3, a three-step transition on the transition matrix P
2: Choose an item j according to the distribution P3 (i, ·).
3: Return j

Algorithm 2 SimpleICF using transition matrix P

Require: M and a user i .
1: Compute P2, a two-step transition on the transition matrix P
2: Choose k according to the distribution P(i, ·)

3: Compute j = argmaxs P2 (k, s )
4: Return j

Algorithm 3 SimplePPR using transition matrix P

Require: M and a user i .
1: Compute P3, a three-step transition on the transition matrix P
2: Compute j = argmaxk P

3 (i,k )

3: Return j

Note that none of these algorithms are prevented from recom-
mending an item to which the user has already linked. While some
systems such as music recommenders may suggest items multiple
times, for many other systems it is not desirable to recommend
items that have already been purchased or viewed (e.g., books,
movies, news articles).

To study the case in which repeated recommendation of an
already-linked item is not allowed, we adjusted the above algo-
rithms during simulation. In each case we simply ensured that the
algorithm did not return an item that had been already linked by
the user. Denoting Ω as the set of items already linked, we ensure
that each item k such that (i,k ) ∈ Ω is removed from the distribu-
tion used in SimpleSALSA and eliminated from consideration in the
argmax computations in SimpleICF or SimplePPR. In such cases, to
ensure that a recommendation is always possible, we replace the
zeros in P with a small value 0 < ϵ ≪ 1.
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3.3 Simulation and Analysis

Wewould like to understand the role of each factor – recommender
algorithm, user behavior, and initial system settings – in the forma-
tion of user opinion in the linked modelG.

For this, we use simulation consisting of the following steps: (i)
First, initialize M according to a probability distribution q(·); (ii)
Provide recommendations for all users according to Algorithm 1,
Algorithm 2 or Algorithm 3; (iii) For each user, accept the sug-
gested recommendation with some probability p, where p can be
a �xed probability (when users respond without biased assimila-
tion), or can vary with the fraction of items with same label that
the user has (for biased assimilation). (iv) The matrixM is updated
synchronously with the accepted items . The system evolves (re-
peating steps (ii) to (iv)) for T = 1000 timesteps. We repeat each
simulation 30 times and report con�dence intervals.

For simulations in this section we de�ne user preference ui as a
vector consisting of the distribution cl i of items the user i is linked
to over all labels l . We use two metrics: (i) average user entropy, i.e.
E[H (ui)] =

1
n

∑

i H (ui) where H (ui) = −
∑s
l=1

cl i logs (cl i ) (ii) the
system entropy H (U), where

H (U) = −

s
∑

l=1

(∑

i cl i
n

)

logs

(∑

i cl i
n

)

.

Hence the property we study is simpli�cation (as de�ned above)
which in this casemeasures the tendency for users to link primarily
to one label type versus the other.We use simpli�cation rather than
polarization because it measures the degree to which user opinions
become more extreme in cases where there may be more than two
labels, and hence is more general than polarization.

3.3.1 Case Study 1: including already-linked items. Our �rst set
of results studies the case in which the system is allowed to rec-
ommend an already-linked item. The settings simulated were 4700
users and 3700 items. Each user was initialized with an average
of 40 known items uniformly distributed between labels. Those
settings are inspired in by MovieLens [23] dataset. The label-
independent acceptance probability for non-biased user responses
was p = 1.0, i.e., the user always accepts the recommended item.

Figure 1a and Figure 2a show the simpli�cation e�ects for Case
Study 1 over 1000 steps. The �gure shows that none of the 3 al-
gorithms show signi�cant variation over time, with or without bi-
ased assimilation. This is surprising because the theoretical anal-
ysis of [8] suggests that SimpleSALSA and SimpleICF should have
distinct behavior (not polarizing and polarizing) when comparing
label-independent and biased assimilation.

However, a closer look at those simulation outcomes revealed
that they were mostly outputting the same recommendation over
time.

A simple inspection of the SimpleICF and SimplePPR algorithms
and their respective random process reveals that without con-
straints preventing the repetition of the same item, and given a
�nite number of users and items, the selection step (through the
argmax computation at line 2) of SimplePPR and SimpleICF is likely
to always return the same item; consequently few or no updates
are made onM, explaining the constant entropy measured. In con-
trast, when an in�nite number of items and users is considered a

higher randomness in the selection step is expected. Therefore,the
chances of return the same item is reduced.

This leads to two conclusions: (1) the simpli�cation (or polar-
ization) e�ects of a real (�nite) recommender system are di�erent
than those of a idealized in�nite system; and (2) the previous con-
clusions that SimpleSALSA and SimpleICF can be non-polarizing in
some cases need to be re-examined for realistic systems.

3.3.2 Case Study 2: no already-linked items. Next, in Case Study
2 we look at how results change when the system is not allowed
to repeat already-linked items. In all other respects, simulation set-
tings are the same as Case 1.

The simpli�cation of user preference in Case Study 2 is shown
in Figure 1b. The �gure shows that (i) without biased assimilation
all algorithms have a diversi�cation e�ect; (ii) with biased assimi-
lation SimpleSALSA lead to simpli�cation, SimpleICF has an initial
diversi�cation followed by a simpli�cation e�ect and, SimplePPR

leads to a diversi�cation e�ect. This shows that when linked items
are not repeated, results are very di�erent from those in Case Study
1, and from the systems analyzed in [8].

We also analyze for Case Study 2 the simpli�cation of the sys-
tem, i.e. the diversity of the combined preferences of all users as it
evolves over time. Figure 2b shows that forSimpleSALSA and Sim-

plePPR the system has a similar and almost constant e�ect regard-
less of whether users respond in a label independent way or with
biased assimilation. However, SimpleICF su�ers a simpli�cation ef-
fect when there is biased assimilation.

The diversi�cation e�ects for biased assimilation in Figure 1b
for the initial steps of SimpleICF and SimplePPRmay seem counter-
intuitive, but they can be understood as resulting from the less-
diverse set of recommendations that those algorithms provide to
the user. These algorithm provide less diverse recommendations
as a result of the argmax step that each employs. We note that
the most well connected items are those most likely to be recom-
mended because of their higher values in P2 or P3. Although ini-
tially there is on average the same quantity of items of each label
there are also well connected items of both labels due to random-
ness in the connection pattern. As a result, the lower randomness
of recommendations in SimpleICF and SimplePPR often results in
the system recommending the same item repeatedly until the user
accepts it. This leads initially to each user linking to items with
both labels approximately equally, regardless of whether the user’s
assimilation is biased or unbiased. However, after some number of
simulation steps (approximately 200 steps) the increase of density
leads to an increase of the randomness output from SimpleICF. I
that case, biased assimilation is able to cause a user to acquire more
items of one label than another, resulting in simpli�cation of user
preference. Furthermore the greater randomness of SimpleSALSA

causes a similar biased consumption e�ect resulting in simpli�ca-
tion of individual users’ opinions. This is further con�rmed by the
fact that the overall system sees no change in the label distribution
as shown in Figure 2b under SimpleSALSA.

In summary, this section shows that the tendency of user pref-
erences to simplify or diversify depends on a delicate interplay of
the diversity of items suggested by the recommender system and
the extent to which users exhibit biased assimilation.
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Figure 1: Average Entropy: User’s Preference
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Figure 2: Average Entropy: System’ Preference
3.3.3 Case Study 3: Variations. To test whether our results in

Case Study 2 are representative, we vary the simulation parame-
ters from Study Case 2. In particular, we study the e�ects of vary-
ing;

(1) The percentage of items to which each user is initially
linked. Previous cases used 1.08%, here we also explored
10%;

(2) The label-independent probability of accepting an item in
the unbiased biased case. Previous results used p = 1.0,
here we range p in {0.6, 0.8}.

None of the above variations a�ected signi�cantly the trends re-
sults presented in Study Case 2, regardless of recommender algo-
rithm or biased/unbiased assimilation. Rather than presenting all
results in full, we summarize their similarity by presenting statis-
tics in Table 1. The table shows the coe�cients of linear regression
lines �t to each individual algorithm and response variation. Specif-
ically, Table 1 presents the slopes (noted as s) and intercept points
(noted as i) for algorithms SimpleSALSA, SimpleICF and SimplePPR

(noted respectively as f = {1, 2, 3}). In the Table the percentage
of initial items is denoted as q(%), the number of users is n, the
number of items ism, and the user response probability or biased
response indicator is denoted as д(p). Across almost all variants in
Table 1 we observe similar slopes and intercept points.

3.3.4 Case Study 4: non-uniform initialization. The case studies
above demonstrate how di�erent algorithms and user responses

Table 1: Case Study 3: Comparison over parameter varia-

tions.

n m q(%) f д(p) slope intercept
4700 3700 1.08 1 0.6 8.4e-06 0.99
4700 3700 1.08 2 0.6 8.4e-06 0.99
4700 3700 1.08 3 0.6 6.8e-06 0.99
4700 3700 1.08 1 0.8 7.5e-06 0.99
4700 3700 1.08 2 0.8 7.8e-06 0.99
4700 3700 1.08 3 0.8 1.3e-05 0.99
4700 3700 1.08 1 1.0 6.6e-06 0.99
4700 3700 1.08 2 1.0 6.7e-06 0.99
4700 3700 1.08 3 1.0 1.1e-05 0.99
4700 3700 1.08 1 bias -5.3e-06 0.98
4700 3700 1.08 2 bias -3.2e-05 0.99
4700 3700 1.08 3 bias 7.4e-06 0.99

4700 3700 12 1 1.0 9.5e-07 0.99
4700 3700 12 2 1.0 5.7e-07 0.99
4700 3700 12 3 1.0 1.0e-06 0.99
4700 3700 12 1 bias -2.1e-07 0.99
4700 3700 12 2 bias -7.2e-07 0.99
4700 3700 12 3 bias 7.4e-07 0.99

evolve in a system in which links to items of di�erent labels are
initially uniformly-distributed. We undertake Case Study 4 in or-
der to better understand the role played by the initial distribution
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of item labels. The setting of Case Study 4 is the same as Case Study
2 except for the initialization step. Each user is still linked on aver-
age to 40 items but on average 60% of those links are to items with
the �rst label ("RED") and 40% are to items with the second label.
Figure 1c and Figure 2c shows the simpli�cation e�ects over time at
the user and system level respectively when there is a uneven start-
ing link distribution and no repeat items are allowed. The �gures
show �rst of all that the degree of simpli�cation in this case is dra-
matically larger than in any of the balanced-link cases. This shows
the very strong e�ect that the initial preferences of users have on
the evolution of the system. Second, the �gures show that the high
levels of simpli�cation are visible both at the user level and at the
system level. Overall, the fraction of links that are to RED items
grows dramatically at the system level. Third, with respect to the
behavior of various algorithms, we note the following. Without bi-
ased assimilation SimpleSALSA still has a diversi�cation e�ect on
both user’s and system level e�ect measured by the increase of
average entropy. However when the user’s response is biased the
SimpleSALSA results in signi�cant simpli�cation at both the user
and system level. On the other hand, SimpleICF and SimplePPR al-
ways result in very sign�cant simpli�cation at the user and system
level regardless of the user’s response behavior.

The dramatic change of behavior of SimpleICF and SimplePPR

when starting preferences are unbalanced is once more explained
by the selection step (through the argmax computation at line 2).
When there are initially more links to items of one label the most
well connected items are also from that label, creating a cycle of
same-label recommendations.

3.4 Discussion

The failure of the theoretical analysis to consistently match any set
of results in our case studies reveals how sensitive the analysis of
system dynamics in [8] is to assumptions and initial state. This can
be seen intuitively as well. For example, the operation of Simple-

SALSA is just to take three steps in a Markov Chain starting from a
random state. Intuitively this results in an output vector that inter-
polates between the initial state and the steady state of the chain.
The extreme symmetry of the initial system setup in [8] suggests
that the steady state is the uniform distribution (considered sep-
arately over users and items). Creating a new link according to
this distribution will move the system to an ever more uniformly
connected state – hence the decrease in polarization shown in Fig-
ure 1a and Figure 2a which agrees with the analytical results in [8].
However, the same analysis suggests that the analytical results are
strongly dependent on the initial linking pattern, as an imbalance
in that pattern will result in an imbalanced steady state, and hence
the addition of links in an imbalanced fashion as well.

Our analysis also shows the key role played by diversity of rec-
ommendations. Both SimpleICF and SimplePPR attempt to provide
a notion of “best” recommendation through the use of the argmax
step. On the other hand, SimpleSALSA only tries to provide a “good”
recommendation (with high probability).While providing the “best”
recommendation may seem more optimal in some sense, Simple-

SALSA shows a much smaller tendency to simplify user prefer-
ences, particularly when user preferences start out in an imbal-
anced state (which seems the likely case in practice).

4 RATINGS BASED SYSTEMS

The link based systems considered in the previous section are rel-
atively easy to analyze and interpret. However, in many recom-
mender systems the relation between a user and an item goes be-
yond a simple binary connection and is expressed in some form of
numerical rating. We term such systems as ratings based systems.
A recommender algorithm in that scenario aims to predict the rat-
ings of the unevaluated items – i.e., anticipate how the user will
evaluate the remaining unevaluated items.

One of the main methods used by rating based systems is to pro-
vide recommendations using latent factor models [24]. Latent fac-
tor models estimate the ratings relations between users and items
bymodeling each in a latent space. The latent vectors are are learned
from the data. Ratings are then estimated using inner product of
user and item vector in the latent space. This estimation process
can be also understood as matrix completion.

In a system where user preferences are real-valued, there are
a wider array of metrics that are important and can be considered.
Our goal in this section is to understand not just how simpli�cation
evolves (as in the last section) but also how intensity and diversity
evolve in time.

4.1 Model

LetM ∈ Rn×m be a ratings matrix ofn users overm items, λMIN be
the minimum ratings value, λMAX be the maximum ratings value,
and a the completion algorithm that decomposesM into the factors
X and Y where C = XTY.

Once C is computed, a typical way to provide a recommenda-
tion r to a user i is using an algorithm f that recommends the
unevaluated item C (i, j) with highest predicted rating. We denote
that algorithm as RecBEST ; it is described below (Algorithm 4).

As a comparative case we de�ne RecRAN (Algorithm 5) to be
the recommender algorithm f that simply recommends a random
unevaluated item.

Algorithm 4 RecBEST using C

Require: C, Ω and a user i .
1: Compute j = argmax

j
C[i, j] such that (i, j) ∈ Ω̄.

2: Return j

Algorithm 5 RecRAN using C

Require: C, Ω and a user i .
1: Choose randomly j such that (i, j) ∈ Ω̄.
2: Return j

We seek to capture a range of possibilities for the response of a
user to a recommendation. These essentially re�ect how a user’s
opinion changes in response to evaluating an item (e.g., viewing a
movie or reading a book). We model the user response дx (i, r ) as a
probabilistic function of x ∈ [0, 1]. The user signals her evaluation
by providing either a rating of λMAX or λMIN . The parameter x
determines how often a user tends to be positive about a recom-
mended item. That is, for a given user i and a recommendation r ,
M will be updated accordingly to дx (i, r ), i.e., M (i, r ) = дx (i, r ),
where:
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дx (i, r ) =

λMAX , with probability x

λMIN , with probability (1 − x )
(1)

4.2 Datasets

The previous section showed that system dynamics can be strongly
in�uenced by the initial system state. Hence we conclude that it is
important to initialize the system in a realistic manner. As a result
we use previously captured datasets as the system initialization in
this section. We use three datasets that include ratings relations
between users and items to de�ne the starting point matrixM and
initial Ω.

TheMovieLens dataset is collected froma non-commercial web
movie recommender [23]. We selected a relatively dense subset of
this dataset, consisting of users that have at least 40 ratings, which
we denote as dataML. In total dataML has 4736 users, 3706 movies,
and 962682 ratings. Additionally we scaled the ratings to center
them at zero, changing the initial range from [1:5] to [-2:2].

TheMovieTweetings dataset is collected from well-structured
movie evaluation tweets on Twitter from 2013 until 2015 [9].We se-
lected a relatively dense subset of this dataset of movies that have
at least 10 ratings and users that have at least 40 ratings, which
we denote dataMT. This dataset has 2604 users, 3703 movies and
218302 ratings. We centered the ratings in dataMT by rescaling
them from [1:10] to [-5:5].

The BookCrossing was collected in a 4-week crawl from the
Book-Crossing community [28]. We used a relatively subset of this
data excluding null inferred ratings and selecting user with at least
40 ratings over books with at least 5 ratings, which we denote
dataBX. This dataset has 294 users, 2764 books, and 20040 ratings
rescaled from [1:10] to [-5:5].

4.3 Simulations

We again study the closed-loop dynamics between recommender
system and users in simulation.

In our simulations all matrix completion procedures were per-
formed using LMaFit [26] with a latent space k = 20. We de�ne
the user preference vector as the completed vector of item opin-
ions (ui = ci) and observe how ui evolves over time through an
individual dynamic simulation, i.e., just one user evolves in time
while other user ratings are not changed. We observe how the user
preference evolves in the dynamical system at an individual level
(through intensity and simpli�cation) as well as at a system level
(through divergence).

We analyzed the recommender algorithms f ∈

{RecBEST,RecRAN}. over the probabilistic users response дx (i, r )
for x ∈ {0.0, 0.1, . . . , 1.0}. Using those settings we evolved each
user for T = 400 iterations where at each step a new recommen-
dation was made and evaluated by the user according to rating
policy дx . Furthermore some individual and collective metrics
were computed from ui at each step. This framework for our
analysis is described in Algorithm 6.

4.3.1 Intensity. First we consider how the intensity of the user
preference vector varies over time and how the choice of user re-
sponse and recommender system in�uence in those changes.

Figure 3 captures the intensity measures computed for all of our
simulations. Each square from each plot of Figure 3 represents one

Algorithm 6 Ratings based dynamical system

Require: A partially-observed matrix of ratings MΩ; a recom-
mender system algorithm f ; a user response function дx ; a
preference space size k ; and a number of iterations T .

1: for i ∈ Users do

2: R = M

3: for (step=1:T) do
4: (X,Y) = LMaFit(R,k,Ω)
5: C = XTY

6: j = f (C, i,Ω)

7: R(i, j) = дx (i, j)

8: Ω = Ω ∪ (i, j)

9: Output Intensity and Simpli�cation of ci
10: S(step, i) = ci
11: end for

12: end for

13: for (step=1:T) do
14: Output Divergence of S(step)
15: end for

metric observation, while the color of the square indicates the met-
ric value as indicated in the color map. Furthermore, the x-axis in
each plot represents the simulation step (ranging from 1 to 400)
and, the y-axis in each plot represents the probability with which
the user responseдx was set. Thus each horizontal set of points rep-
resent one particular simulation. Each plot of Figure 3 represents a
set of simulations results from a given algorithm and dataset. Dif-
ferent set of plots rows correspond to the dataset used to initial-
ize M – respectively dataML , dataMT or dataBX . The �rst two
columns of plots group simulation results from RecBEST and Re-

cRAN respectively. The last column shows the pointwise subtrac-
tion of RecRAN from RecBEST for comparative purposes.

The reason for the last column of plots is that the RecRAN simu-
lations measure the e�ects on user opinion when randomly chosen
items are evaluated by the user according to the rating policy дx .
Thus, this case can be considered to capture the e�ect of a user
viewing and rating items without the in�uence of a recommender
system, but rather in completely random fashion. Therefore the
subtraction of the simulations results (RecBEST - RecRAN ) – noted
in this work as BEST-RAN – is a measure of in�uence of the rec-
ommender system algorithm on user opinion.

All the intensity observations represented at Figure 3 were com-
puted by averaging the norm of the users preference vectors for a
given time step.

The �gure show a number of results. First, for both algorithms
(RecBEST and RecRAN ) and for all datasets, regardless of the user’s
response, we can observe a general increase in intensity over time
– marked by the vertical increase of average norm value when the
time color indicators also increases.

Second, for RecBEST (�rst column) the increase in intensity of
opinion is maximized for probabilities x intermediate between 0
and 1. The RecBEST system increases intensity the least when x =
1, the user always agrees with the system and rates the items pre-
sented highly.
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Figure 3: Average Norm of User’s Preference
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Figure 4: Average Entropy of User’s Preference

These two e�ects together mean that for BEST-RAN (third col-
umn) there is a generally decreasing relationship between the user
opinion intensity and the degree to which the user agrees with
the recommender algorithm. In other words, when the user agrees
with the recommendations made by the system, the user’s opin-
ion intensity increases, but the increase is lower than if there had
not been a recommender system in the loop. On the other hand,
when the user disagrees with the recommender system, the user’s
intensity of opinions increases more than if there had been no rec-
ommender system in the loop.We conclude from this that a recom-
mender system does not necessarily increase the intensity of user
opinions, as compared to random recommendations, as long as the
system makes good recommendations to the user.

4.3.2 Simplification. Our second analysis concerns how the
user’s preference vector behaves over time as a distribution, which
is captured as simpli�cation (or diversi�cation) of opinions. Fig-
ure 4 compiles the results from the simpli�cation measures of the
user preference vector. The �gure uses the same representation for
squares, colors, plots and plot positions as Figure 3.

The �gure shows a number of e�ects in opinion dynamics. First
of all, for both algorithms (RecBEST and RecRAN ) and for all datasets
regardless the user response, we can observe a general increase of
entropy over time. In another words, user opinions get more di-
verse under the in�uence of either a recommender system or a
random presentation of items.
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Figure 5: Average Correlation Coe�cient of User’s Prefer-

ence

Second, the in�uence of dataset (i.e., system initialization) has
a much stronger e�ect on diversity (as compared to, eg, intensity).
The changes in diversity are highly varied across datasets (although
diversity always increases).

However, the third column (BEST-RAN ) shows that the relative
in�uence of the recommender algorithm RecBEST over users for
dataML and dataMT is that when y increases, the average entropy
decreases. This means that, when the user agrees more with the
recommendations its opinions become simpler, as compared to a
random presentation of items. Even for dataBX, where there is no
strong correlation between the in�uence of the recommender sys-
tem and the user response дx , user opinion always becomes sim-
pler under the in�uence of the recommender system than under a
random item presentation.

These results emphasize the importance of comparing the e�ect
of a recommender system to an alternative. While a dynamical sys-
tem involving a recommender system tends to result in diversi�ed
user opinions, the same is true of a dynamical system that does not
involve a recommender system. Only by comparing the two do we
see how the recommender system decreases the diversity of user
opinion.

4.3.3 Divergence. Our last analysis is with regard to how closed
loop dynamics shapes the user preference vectors as a set.Wewant
to understand the conditions under which the user preference vec-
tors become more similar to the others, i.e. we want to observe
when there is loss or increase of individuality from the user pref-
erence vectors set.

Figure 5 presents the average correlation of user preference vec-
tors, with plots using the same representation for squares, colors,
plots and plot positions as in previous �gures.

We note that for both algorithms (RecBEST and RecRAN ) and for
all datasets, the average correlation coe�cient decreases for inter-
mediate values of x , while it increases when x is close to either 0 or
1. Thus, unless the user does not fully agree or disagree with most
recommendations, the set of user opinions tends to diverge. How-
ever, the in�uence of the recommender system as compared to ran-
dom recommendations, as shown in the third column (BEST-RAN )
is quite di�erent. That column shows that as the user’s agreement
with recommendations increases, there is a consistent increase in
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opinion divergence. This e�ect is strong enough that opinions al-
ways increase in divergence, compared to random item presenta-
tions, when the user fully agrees with the recommendations made
by the recommender system.

4.4 Discussion

The conclusions from this section and the previous section together
show consistencies that reinforce a number of high level conclu-
sions. The principal conclusion concerns the tendency of recom-
mender systems to simplify user opinions. This tendency is ob-
served generally over both link based and ratings based systems,
although it comes with some caveats. First, recommender systems
that recommend the “best” item at any given time (eg, SimpleICF,
SimplePPR, and RecBEST ) have a much stronger simplifying e�ect
than systems that return “good” recommendations according to
some probability (SimpleSALSA). Furthermore, the simplifying ef-
fect is strongest when the recommender system does a good job of
predicting user preference (e.g., when x = 1 in RecBEST ).

Second, the initial state of the system when the recommender
system starts has a strong e�ect on the eventual outcome. In the
case of RecBEST, opinion diversity is strongly a�ected by the dataset
used, and in the cases of SimpleICF and SimplePPR the simpli�ca-
tion e�ect is highly pronounced when the system does not state in
a perfectly balanced con�guration.

Turning to the other metrics, our results suggest that the rat-
ings based system tends to cause user opinions to collectively di-
verge and to become individually less diverse, but only when the
system accurately predicts the user’s preferences. If the system is
less e�ective in this regard, it can cause the opposite e�ect, namely,
the to cause user opinions to become more similar to each other,
and to become individually more diverse. On the one hand, the
conclusion that opinions can diverge and become less diverse is
potentially concerning, but the realization that the recommender
system must be quite accurate for this to happen raises questions
about whether this e�ect is likely to occur in practice.

5 RELATED WORK

Although a number of papers have addressed the individual com-
ponents of the dynamics between recommender systems and user
opinion formation or the social implications of that dynamic, few
of them have addressed the problem in whole.

In this section we review three works that have addressed the
dynamics of opinion formation by recommender systems, and we
review key prior work that has explored individual components of
that dynamics.

As discussed extensively in the body of the paper, the authors
in [8] explore the causes of polarization through an opinion forma-
tion process based on averaging of users opinions. They show that
the opinion in the group polarizes when users have biased assimi-
lation responses. Additionally, they expand the opinion formation
process analysis to a recommender system model analyzing the bi-
ased assimilation response. As we covered in Section 3 our results
generalize that work and show that in many realistic settings, the
conclusions therein do not apply.

Bakshy, Messing and Adamic carry out an empirical analysis
of the ideological diversity of news exposure on Facebook in [3].
They measure the diversity of news (through political alignment)

shared between friends andmeasure the potential for cross-cutting
– i.e. how much a user from a given political alignment (conserva-
tive, moderate or liberal) is exposed to news of a di�erent political
alignment. They concluded that the individual’s social network it-
self is the most important factor in limiting their exposure to di-
versity. However, is the user’s choices about what to consume (i.e.
which links to click) more than the newsfeed ranking algorithms
that contribute to the news diversity consumed. Although [3] rec-
ognized the dynamics between news feed (recommender system)
and users, their analysis focuses only on the user’s exposure to di-
versity when user opinion (political a�liation) is held constant in
their model.

Koren in [15] proposes a recommender system based in collab-
orative �ltering that incorpores temporal dynamics. Using his rec-
ommender system he splits the prediction score between factors
dependent or independent of the interaction of users and items
and performs an analysis of rating drifting on a Net�ix dataset.
Although [15] studies the dynamics of recommender systems and
how much the interaction of user and items can a�ects the predic-
tion score over time, his analysis is focused in the recommender
system itself and doesn’t explore the user’s opinion formation.

Opinion Formation. Next, we turn to work that addresses indi-
vidual aspects of our study. Prior work in opinion formation has
taken several approaches to understand how opinions can evolve
in a network according to a given model of information propaga-
tion.

One line of work examines the direct in�uence of neighbors and
self beliefs in opinion formation; this is studied in [6] where a re-
peated averaging model is used to analyze consensus. An alterna-
tive approach, taken by [5] uses game theory as opinion formation
process. Both works present boundaries for the cost to reach con-
sensus in their models. Finally, in [19] Mas and Flache propose
a peer-to-peer interaction model that can explain polarization of
opinion with homophily and without negative in�uence (disliking
of dissimilar others). Although these models are concerned with
some of the same phenomena as our study (eg, polarization) they
do not include a recommender system as an external agent.

Filter Bubble. Finally, attention has recently been drawn to the
situation in which there is a narrowing of access to information
by users in online systems. The focus here has primarily been on
personalization and recommender engines. This e�ect has been
dubbed a “�lter bubble” by Pariser in [22]. Following this line, re-
searchers have analyzed interactions between users and recom-
mender systems to detect �lter bubbles. The authors in [11] and
[13] explore the factors that trigger personalization on results of
search queries. Furthermore online price discrimination was ex-
posed by [12] and online ad delivery discrimination was exposed
by Sweeney in [25]. These are examples in which information con-
tent is �ltered and throttled in a fashion that is undesirable.

The authors in [29] investigate the di�erent types of personal-
ization in communication and they claim that at present, there is
no empirical evidence that warrants any strong worries about �l-
ter bubbles however, they agree that this could be a future problem
if personalization technology improves.

Another line of work related to the �lter bubble phenomenon
tries to understand the role played by recommender algorithms in
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decreasing recommendations diversity and thus potentially limit-
ing user experience.

Knijenburg et al in [14] claims that for solve the Filter Bub-
ble problem it is necessary to build a recommender system with
a di�erent goal than simply recommending good items. The au-
thors of [14] then proposes a idea of a new recommender system –
named ”Recommender System for Self-Actualization” – that aims
to support the users in developing, exploring and understand their
unique taste.

Graells-Garrrido et al in [10] proposes a content recommender
on Twitter that uses graphical tools and gap indicators to stimulate
diversity and connect people of opposite views. Other researchers
such as [18], [1], [27] and [20] suggest the inclusion of “serendipi-
tous” recommendations in order to promote diversi�cation. While
these suggestions are consistent with our observation that “best”
recommendations are not always the most bene�cial for user opin-
ion formation, they also do not consider how opinions and recom-
mender systems evolve together over time.

6 CONCLUSIONS

In this paper we studied the closed-loop dynamics between recom-
mender systems and users across a wide variety of system models
and con�gurations. We proposed three metrics – intensity, simpli-
�cation and divergence – to capture important properties of user
opinions as they evolve in such a system. By studying a wider
range of settings, we extend previous work [8] and show that its
conclusions do not always generalize to more typical settings (eg.,
when already-linked items may not be recommended, or when the
system starts with nonuniform user preferences). Further, compar-
ing results for link based and ratings based systems, we identify
common features of recommender systems that tend to simplify
user opinions. We also show that under certain circumstances, rec-
ommender systems can act to cause user opinions to diverge and
become less diverse, but this is not always the case, andmore study
is needed to determine whether in practice the conditions neces-
sary for divergence and simpli�cation of opinions do actually oc-
cur.

Our work has a number of limitations that suggest the need for
future study; in particular, further theoretical analysis of both link
based and ratings based dynamics seems worthwhile and poten-
tially feasible. Nonetheless, our results show that the dynamics of
recommender systems over time are complex and varied, and that
there is potential for such systems to a�ect user opinions in subtle
ways. Combined with the increasing prevalence of recommender
systems, our results suggest that better understanding of closed
loop opinion formation is an ongoing and important problem.
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