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Abstract— Greedy embedding is a graph embedding
that makes the simple greedy geometric packet forwarding
successful for every source-destination pair. It is desir-
able that graph embeddings also yield low hop overhead
(stretch) of the greedy paths over the corresponding
shortest paths. In this paper we study how topological
and geometric properties of embedded graphs influence
the hop stretch. Based on the obtained insights, we design
embedding heuristics that yield minimal hop stretch greedy
embeddings and verify their effectiveness on models of
synthetic graphs. Finally, we verify the effectiveness of
our heuristics on instances of several classes of large, real-
world network graphs.

Index Terms—Greedy Routing, Shortest Path, Hyper-
bolic Geometry, Network Graph, AS Graph, Hop Stretch

I. INTRODUCTION

Greedy routing as an efficient alternative to the clas-
sical routing table approaches, was studied initially in
[9], [24], [19]. In the greedy routing paradigm, the
communication network is first embedded in a metric
space by assigning to each node a coordinate denoting
its location. From these coordinates, one can calcu-
late the geometric distance between any two nodes in
the embedding. According to the simplest deterministic
greedy routing rule, a node forwards a message to a
directly connected neighboring node that is closest to
the destination in geometric distance.

Notable advantages of greedy routing are its small
computational complexity, small memory requirement
per node, and the use of local information only – each
node finds a next hop based only on the coordinates
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of its neighbors. In addition, greedy routing based on
node locations and distances in Euclidean space, as can
be demonstrated by simulations, has high success rate1.
However, a principal disadvantage of greedy routing is
that it is not guaranteed to succeed for every source-
destination pair: it is easy to construct examples where
a packet reaches a node that is closer to the destination
than all of its direct neighbors, and the forwarding fails
even though a path to the destination exists (See e.g. [15]
for more details).

Routes found by greedy forwarding may take more
hops than the corresponding shortest paths. For each
source–destination pair, we define the hop stretch as the
ratio of hop lengths of the greedy path and the corre-
sponding shortest path in the graph. The average and the
maximum hop stretch can be used as measures of the hop
stretch for the entire graph. Ideally, the greedy path and
the shortest path would coincide for each pair, in which
case the hop stretch is 1. In practice, however, the hop
stretch is often higher, implying reduced efficiency of the
routing. Minimizing the hop stretch of greedy routing is
thus an important problem and has received significant
attention in the research literature.

Both the rate of success and the hop stretch of the
forwarding depend on the graph topology but also on the
embedding. Thus, for a given topology, we can speak
of the success rate or the average hop stretch of the
embedding. When the success rate is guaranteed to be 1
(100%) we call the embedding greedy [20].

If the real-world (geographic) node locations are used
as coordinates for forwarding, the success rate and hop
stretch can not be influenced readily. This motivates
the study of network embeddings based on virtual co-
ordinates (not necessarily coinciding with the physical
node locations) [22], chosen so as to optimize success

1The rate of success of greedy routing for a given graph embedding
is the fraction (percentage) of all source-destination pairs for which
greedy routing succeeds in finding the path to the destination.



2

rate, hop stretch or some other quantity of interest (see
also e.g. [17], [10] and the references therein.) Limiting
the focus to metric spaces and virtual coordinates, [12]
presents a notable result in this direction: every finite,
connected, undirected graph has a greedy embedding in
two-dimensional hyperbolic space.

In this work, we study the possibilities for construct-
ing graph embeddings that are both greedy and have
low hop stretch. Using virtual coordinates, we employ
the procedures of Kleinberg [12] and Cvetkovski and
Crovella [5] to obtain greedy embeddings. (Henceforth,
we refer to the greedy embeddings [12] and [5] as K
embedding and C embedding respectively.) Motivated
by the observation that varying some of the parameters
of a greedy embedding can cause significant changes
to the obtained average and maximum hop stretch, we
start by studying how the properties of K-embedded
graphs influence the hop stretch. Our finding is that the
choice of a spanning tree is a central problem in the
reduction of the hop stretch of greedy embeddings based
on spanning trees. We use the obtained insights to design
embedding heuristics that yield low hop stretch greedy
embeddings. Subsequently, we verify the effectiveness of
our proposed heuristics on a range of synthetic and real-
world graphs, using both K and C greedy embeddings.

We emphasize that our heuristics are not limited in
applicability to the K or C embeddings and are expected
to produce good results with any greedy embedding
procedure that is based on the extraction of an arbitrary
spanning tree, including those described in [12], [5],
[7], [8], [18], and those that might be devised in the
future. To the best of our knowledge, this is the first
study to demonstrate these insights and to construct
corresponding heuristics.

The rest of this paper is organized as follows. Section
II provides more specific background on the problem
at hand. We present the main ideas of our approach in
Section III and further examine their qualities in Section
IV. The conclusions are in Section V.

II. PRELIMINARIES

The input to the K embedding algorithm [12] is
a finite, connected, undirected and unweighted graph
representing a communication network. The procedure
places the graph nodes in the hyperbolic plane, and uses
the standard hyperbolic distance (see e.g. [2]) for the
forwarding function. The generic algorithm of [12] finds
a greedy embedding of the infinite d-regular tree for any
integer d ≥ 3. To embed an actual connected graph G,
first a spanning tree T of G is chosen and d is determined
as the maximum degree of any node in T . Subsequently,

the nodes of T are mapped to the embedded nodes of
the d-regular tree. It is proved in [12] that the result is
a greedy embedding of T . It is easy to see that a greedy
embedding of T is also a greedy embedding of the graph
G.

To start our study, we note that the average node
degree of the input graph, as a topological property,
strongly influences the average hop stretch of any greedy
embedding. In the extreme case when the graph is itself
a tree (G = T ), there is a unique path for each pair
of vertices making the greedy and the corresponding
shortest path coincide, and the hop stretch is 1. The other
extreme case, when G is a complete graph, also has an
ideal hop stretch of 1 since in this case all pairs are direct
neighbors and both the greedy and the shortest paths are
always 1 hop. Graphs with average node degrees between
a bare tree and a complete graph typically have larger
hop stretch.

To demonstrate the dependence of the hop stretch
on the average node degree, we show an initial series
of experiments using the largest connected component
of G(no, p) graphs with varying edge probability p,
resulting in graphs with n ≈ 50 nodes. For several values
of the average node degree between those of a tree (2(n−
1)/n / 2) and a complete graph (2n(n−1)/(2n) = n−1 ≈ 50)
we perform a K embedding based on a spanning tree
sampled uniformly at random [1], and average the hop
stretch over 32 graph instances. The results are shown
in Figure 1. The figure shows that there is a range of
critical node degrees, roughly between 3 and 8 for which
the hop stretch is maximal. In light of this fact, our
subsequent experiments focus on node degrees from the
critical range [3...8].

While the hop stretch depends both on the choice of
spanning tree and its mapping to the embedded nodes
of the d-tree, we find that in practice the mapping step
has relatively little impact. To illustrate this observation,
we show results from a typical experiment using the K
embedding in which for a randomly generated graph and
a randomly chosen spanning tree, we generate 600 differ-
ent random spanning tree mappings. For each mapping,
we record the average and the maximum hop stretch
of the embedding. As typical values, the average hop
stretch is 1.28 ± 0.02 and the maximum hop stretch is
4.3 ± 0.26. Since in our experiments, the spanning tree
mapping does not significantly influence the hop stretch
of the embedding, in the remainder of our study, we
focus only on the choice of spanning trees for low hop
stretch embeddings.



3

1 2 3 4 5 6 7 8910 20 30 4050
1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

Average node degree

A
v
e

ra
g

e
 h

o
p

 s
tr

e
tc

h

 

 

Average random tree

Fig. 1. Dependence of the average hop stretch of a greedy
embedding on the average node degree of the graph, averaged over 32
instance of a G(n0, p) graph. There is a range of critical node degrees,
typically between 3 and 8 for which the hop stretch is maximal.
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Fig. 2. A simplified model: The number of next hop candidates
exponentially decreases as the packet gets closer to the destination.

III. HEURISTICS

A. Maximum Weight Spanning Tree Heuristics

We start by laying the foundation for our first heuris-
tic, which we term the maximum weight spanning tree
(MWST). Consider a connected graph G that is K-
embedded starting from some chosen spanning tree.
The choice of a spanning tree T partitions all graph
edges into tree and non-tree (shortcut) edges. A greedy
path typically consists of some tree edges and some
shortcut edges. Intuitively, shortcut edges may help make
progress toward the destination more rapidly than the
tree edges and would thus lower the hop stretch.

When can a packet take a shortcut? Consider a packet
currently at node S and destined for node D. There are

between 1 and d tree edges incident to S, one of which
leads to the relative parent of S (denoted π (S)) when D
is taken as the root of the tree T . Forwarding to π (S)
certainly brings the packet closer to the destination D by
the greedy property of the embedding of T . In addition,
there may or may not be some non-tree edges incident
to S. Of those non-tree edges, useful as a next hop will
be only those that bring the packet closer to D than
π (S) is. The analysis of the exact shape of the locus
of points containing next hop node candidates reachable
via shortcuts from S is beyond the scope of this work,
but to gain some insight, here we resort to a simplified
calculation in which we consider the K embedding of
a graph whose spanning tree is the full regular tree of
degree d.

As a concrete example, Figure 2 schematically il-
lustrates the first L = 5 levels of a regular tree with
d = 4 spanning a random graph on n nodes along with
several possible packet source locations (S1 ... S4), and
a single destination D. Assuming that the graph has an
average node degree δ̄ = 6 leaves on average 2 non-
tree edges incident on each node (not shown). The locus
of next hop shortcut candidates when the packet is at
node S` at level ` is labeled Λ` in the figure and con-
tains approximately #Λ` = n/(d −1)L−`+1 nodes. The
probability of a non-tree edge between S` and any other
node is assumed to be uniform, and the probability that a
shortcut edge incident on S` is inside Λ` is approximately
p` = #Λ`/n = (d −1)−(L−`+1) whence the probability of
at least one useful shortcut is

pU = 1− (1− p`)
δ−d = 1− (1− (d −1)−(L−`+1))δ−d

for `= 2..L−1. The key point is that the value of pU is
small for critical average degree values, and additionally,
it decreases exponentially as the packet approaches the
destination.

Thus we expect that for small node degrees (from the
critical interval [3...8]), on average the fraction of used
shortcuts compared to the total number of hops taken by
greedy forwarding will be small. To support this claim
numerically, we set up an experiment to determine the
usage of non-tree hops. We start by extracting the largest
connected component of G(no, p) graphs of varying size
n0 and edge probability p, resulting in graphs with n≈ 50
nodes and node degrees [3...15]. From each such graph
we sample 1000 spanning trees uniformly at random and
K-embed them. For each such embedding, the usage of
shortcuts is recorded. The results are presented in Figure
3. Indeed, as predicted by our simplified model, small
node degrees imply that the greedy routes mainly consist
of tree edges. In other words, for node degrees from
the critical interval, shortcuts, although present are rarely
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Fig. 3. The usage of shortcut edges vs. the average node degree.
The boxes show the 25th, 50th and 75th percentile as well as the
minimum and the maximum value.

used for greedy forwarding and this is the reason for the
corresponding increase of the average hop stretch.

Based on these observations, we propose a heuristic
for choosing spanning trees that yield small hop stretch
of greedy graph embeddings. The hop stretch measures
the extent to which greedy paths coincide with the
shortest paths of the graph. To lower the hop stretch,
we need to increase this coincidence. If we choose a
spanning tree whose edges represent as many of the
shortest paths in the graph as possible, the embedding
based on this tree will have low hop stretch since the
greedily forwarded packets will be taking the tree edges
and thus greedy paths will more closely approximate the
shortest paths.

To construct a tree consisting of the edges that are
most frequently used by the shortest paths in the graph,
for experimental purposes, we proceed as follows: We
assign to each edge in the graph a weight that represents
the total number of shortest paths (for all pairs) that
pass through that edge. From this weighted graph we
choose the spanning tree of maximum weight and use it
as a basis of a greedy embedding. We call this tree the
maximum weight spanning tree (MWST).

To initially examine the hop stretch properties of
K embeddings based on the MWST, we set up an
experiment that correlates the average hop stretch and the
utilization of shortcuts in greedy embeddings based on
the MWST and 1200 spanning trees sampled uniformly
at random from the largest connected component of a 60-
node G(n, p) graph of average node degree 3.5. Figure
4 shows the results. For control, the minimum weight
spanning tree (mWST) is also included.

We observe in Figure 4 that for randomly sampled
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Fig. 4. The average hop stretch vs. the fraction of shortcut hops
taken by all greedy routes for a random, 60-node graph. The fraction
of shortcuts (non-tree edges) used by the greedy paths is relatively
small.

spanning trees, typically only 15–30% of the traversed
edges are shortcuts, while the majority of hops (70–
85%) taken by greedy forwarding are tree edges for most
spanning trees. Some spanning trees provide better uti-
lization of shortcut edges, and as expected this improves
the hop stretch of the embedding. Thus, one way to
lower the hop stretch appears to be choosing a spanning
tree that provides better shortcut utilization. However,
this relation holds only on average, and the dependency
between the hop stretch and the fraction of shortcuts is
weak. On the other hand, the MWST shows an average
hop stretch of 1.14 (14%) compared to the values for
random trees (20–55%) and at the same time, the MWST
renders an embedding having a notably low participation
of shortcuts in the greedy paths (about 13%).

To investigate whether the MWST retains the low
hop stretch of the embedding for varying node degrees
and multiple graph instances, we perform an experiment
similar to the one described in Section II, but this time
including the embeddings based on the MWST as well
as the mWST. The results are shown in Figure 5 and
confirm that on average, for the entire interval of critical
node degrees, the MWST performs consistently and
significantly better than the average random tree and
the minimum weight spanning tree. Above the critical
interval, the three curves coalesce since more and more
nodes are directly connected and greedy forwarding
trivially finds the one-hop paths to the destinations.

Further evaluation of the MWST heuristic over a wider
class of test cases is presented in Section IV.



5

1 2 3 4 5 6 7 8910 20 30 4050
1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

Average node degree

A
v
e

ra
g

e
 h

o
p

 s
tr

e
tc

h

 

 

Average min weight tree

Average random tree

Average max weight tree

Fig. 5. Dependence of the average hop stretch of a greedy
embedding on the average node degree of the graph, averaged over 32
instance of a G(n0, p) graph. There is a range of critical node degrees,
typically between 3 and 8 for which the hop stretch is maximal.

B. Minimum Diameter Spanning Tree Heuristics

In this section, we investigate the usability of an
alternative low-stretch heuristic for K embedding – the
minimum-diameter spanning trees (mDST).

From our previous considerations it appears that a
spanning tree representing a large number of short paths
of the graph, provides relatively low hop stretch. Since
the minimum diameter spanning tree minimizes the
maximum path length on the tree among all the spanning
trees, we conjecture that mDSTs will, like MWSTs,
also represent a large number of short paths and thus
provide low hop stretch compared to a randomly sampled
spanning tree.

As a first experiment, we examine the correlation
between the spanning tree diameter and its weight as
defined in Section III. For this purpose, we sample 2000
spanning trees uniformly at random from a 50-node
graph representing the largest connected component of a
G(n, p) graph with an average node degree of 4. Typical
results are illustrated in Figure 6, along with the MWST,
mWST, and mDST. We observe that while the mDST
does not capture as much graph weight as the MWST, it
still has more weight than most random spanning trees.
This encourages further investigation of the hop stretch
provided by mDSTs.

IV. NUMERICAL EVALUATION

A. Numerical Evaluation for Synthetic Graphs

In this section we present additional comparative
results on various properties of the MWST and mDST
heuristic.
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Fig. 6. Spanning tree weight percentage of the total graph weight vs.
spanning tree diameter for 2000 spanning trees sampled uniformly at
random and used as a basis for the greedy embedding of a random
50-node graph. The MWST, mWST and mDST are also shown.
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Fig. 7. Typical hop stretch results for a G(n, p) graph

So far we have considered random graph instances
generated from the G(n, p) model. Here we also use
graphs generated by placing nodes uniformly at random
in the Euclidean plane and placing an edge between pairs
of nodes if the Euclidean distance between them is below
a chosen threshold. We refer to this model as a wireless
graph. The average node degree of the wireless graph
can be varied by varying the threshold distance. We use
the largest connected component of the generated graphs.

Figures 7 and 8 illustrate instances of connected com-
ponents of G(n, p) and wireless graphs, as well as typical
histograms of the average hop stretch for 400 spanning
trees sampled uniformly at random. The MWST, mWST
as well as the mDST are also shown.

Figures 9 and 10 show the correlation between the
average hop stretch and the spanning tree diameter for
the G(n, p) and the wireless graph model. We observe
that for the general random spanning tree, there is no
strong correlation between the two quantities, but the
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Fig. 8. Typical hop stretch results for a wireless graph
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Fig. 9. Average hop stretch vs. spanning tree diameter for the G(n, p)
graph model
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Fig. 10. Average hop stretch vs. spanning tree diameter for the
wireless graph model

correlation becomes notable toward the low stretch – low
diameter end of the spectrum. We also observe that a
spanning tree of maximum weight does not necessarily
have the minimum diameter, but the diameter of the
MWST is usually low.

We conclude that for both graph types, MWST con-
sistently shows the best stretch performance. The mDST
has somewhat higher, but still satisfactorily low hop
stretch.

B. Numerical Evaluation for Large Real-World Graphs

Prompted by the potentially high computational cost
of the MWST heuristic as described in Section III-A,
in this section we study the performance of MWSTs
computed from a relatively small sample of all pairs
and a single sample from the possibly many shortest
paths between each sampled pair. Henceforth, for brevity,
we call such trees sampled MWSTs. Sampled MWSTs
allow for significant reduction of computation costs for
large networks consisting of thousands of nodes and thus,
billions of source-destination pairs. Moreover, sampled
MWSTs allow for a design trade-off between perfor-
mance and cost. Here we demonstrate that just like full
MWSTs, sampled MWSTs also perform consistently and
significantly better than the average random spanning
tree. Using sampled MWSTs, we then proceed to show
the applicability of the MWST heuristic on instances of
several classes of large real-world network graphs.

1) Sampling: To get an initial sense of how the
performance of sampled MWSTs and mWSTs depends
on the number of sampled pairs used for the calcula-
tion of the weighted graph, we set up the following
experiment: We sample pairs of nodes uniformly at
random from the graph to be embedded, and for each
such pair we calculate one shortest path between them,
also chosen uniformly at random from all the possible
shortest paths for that pair. Starting from the adjacency
matrix of the graph, we increment by 1 those entries
that correspond to an edge of the calculated shortest
path. The MWST as well as the mWST are subsequently
calculated from the so obtained sampled weight matrix
and for the corresponding K embeddings, the average
and the maximum hop stretch are evaluated for greedy
routing between all pairs.

The hop stretch results are shown in Figure 11 for the
GCC of a G(n, p) graph consisting of 100 nodes (10,000
pairs). The graph is sampled progressively from 0 to 10%
of all possible pairs and hop stretch is calculated for
several data points from that interval. We observe that for
a fraction of sampled pairs as small as 2%, the worst case
of the average stretch of the MWST in 150 experiment
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Fig. 11. The average and maximum hop stretch as a function of
the percent of sampled pairs for the calculation of the weight matrix.
The curves are averaged over 150 runs of the experiment. The vertical
lines show the min-max range for each data point. For a fraction of
pairs as small as 2%, the worst case of the MWST was better than
the best case of the mWST tree.

runs is better than the best case of the mWST tree. We
also observe that increasing the number of samples above
this point soon starts to provide diminishing returns.

2) Real-World Graphs: Using sampled spanning trees
we are in a position to apply the MWST heuristic to large
real-world network graphs. For our empirical evaluation,
we choose the four network instances summarized in
Table I and detailed below.

HEP–PH [16] is a collaboration network containing
edges between authors who coauthored at least one paper
in the High-Energy Physics – Phenomenology category
of the ArXiv preprint database between January 1993
and April 2003 (124 months). It begins a few months
after ArXiv’s inception and thus represents a fairly
complete history of the HEP-PH section up to 2003.
A paper co-authored by k authors induces a completely
connected subgraph on k nodes.

TABLE I
LARGE, REAL-WORLD NETWORK GRAPHS USED IN THE

EVALUATION OF THE MWST HEURISTICS. NUMBER OF NODES IN
THE GCC nGCC; AVERAGE NODE DEGREE d .

Graph nGCC d Type

ArXiv HEP–PH [16] 11204 20.996 Collaboration
Enron Email [16], [13] 33696 10.732 Communication
Gnutella [16], [23] 22663 4.827 Internet P2P
AS Graph [26] 41491 6.282 Internet AS

The Enron Email Network [13] is a communication
network describing email communication of Enron, a US
based energy, commodities and services company. Nodes
in the network are email addresses and there is an edge
if an address i sent at least one email to the address j.
Here we use the graph described in [16], containing data
from October 2003 to May 2005.

Gnutella [23] is peer-to-peer file sharing network
and represents an example of a large self-organized
network of independent entities. We use a snapshot from
3/25/2002 [16]. Nodes represent the hosts in the Gnutella
network and edges represent file transfers between them.

The AS (Autonomous System) Graph is a graph
representing the topology of the Internet at the inter-
domain level where each AS is a node, and the BGP
peering between two ASes is a link. We use a snapshot
of the AS Graph from the Internet Topology Collection
Project at UCLA [26] as of 04/24/2012 and extract the
links that have been seen in the last 20 days.

We set up an experiment to evaluate the performance
of the MWST heuristic on each of these four large
networks, the results of which are presented in Figures
12 and 13. For each network, we start by sampling
progressively from 10 to 150,000 pairs and the sampled
weighted graph is calculated for several data points from
that interval. For each data point, we find the MWST
and the mWST and calculate the corresponding K and
C greedy embeddings. Then we find the length of the
greedy path for 300 pairs chosen uniformly at random
from the network. In Figs. 12 and 13 we report the
average and maximum hop stretch for 10 runs of this
experiment. The maximum, minimum and the average
of the series are depicted. In order to demonstrate that
MWST consistently performs better than a randomly
chosen spanning tree, for each graph we also report the
hop stretch for 10 spanning trees chosen uniformly at
random from the graphs.

In all cases, we observe that even for a very small
fraction of pairs there is a significant improvement of
the hop stretch when using the MWST compared to a
random spanning tree. In the Enron dataset, MWST cal-
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TABLE II
AVERAGE HOP STRETCH AT 100,000 SAMPLED PAIRS, K

EMBEDDING

Graph MWST Random mWST

ArXiv HEP–PH 1.45 2.04 (+0.59) 1.87 (+0.42)
Enron Email 1.15 1.55 (+0.40) 1.73 (+0.58)
Gnutella 1.89 3.53 (+1.64) 3.33 (+1.44)
AS Graph 1.11 1.32 (+0.21) 1.48 (+0.37)

culated from as few as 1,000 pairs provided better results
than a random tree in all 10 runs of the experiment.
In the AS Graph, 4,000 random pairs were sufficient
to see a definite improvement. In the cases of HEP-
PH and Gnutella, MWST was better than a random tree
for any number of samples and notably improved with
increasing of the number of samples above 5,000. In all
cases, saturation in the improvement for both the average
and the maximum stretch appeared above 50,000 pairs
which is 0.04%, 0.004%, 0.01%, and 0.003% of all pairs
for the HEP–PH, Enron, Gnutella and the AS Graph,
respectively.

The average hop stretch for 100,000 samples is sum-
marized in Table II.

C. Implementation Details

In this section we provide additional details on the
implementation of our low-stretch heuristics.

In a network graph there may be multiple shortest
paths between a pair of nodes. In generating edge
weights for the purpose of validating the MWST on
synthetic graphs, we took into consideration all possible
shortest paths between each pair. To calculate all shortest
paths, for each pair, we used a slightly modified version
of an efficient algorithm for finding the k-shortest loop-
less paths in a network [25]. Once the weighted graph is
obtained from the initial unweighted topology, finding
the MWST or the mWST is a matter of applying a
classical minimum weight spanning tree algorithm (e.g.
[14], [21]). However, in the evaluation of the MWST
heuristic on large real-world networks (Section IV-B),
we showed that using only one randomly chosen shortest
path also provides the desired reduction of the hop
stretch. Given that the input graph is unweighted, shortest
paths can be found by a randomized breadth-first search
from one source to many or all destinations with time
complexity of O(N+E), where N and E are the number
of nodes and edges respectively. On the other hand,
a minimum diameter spanning tree ([4], [11]) can be
performed in linear time via distributed asynchronous
computation ([3]). Finally, we showed that sampling can

be used to greatly reduce the computational cost of the
weight matrix for real-world networks.

V. CONCLUSIONS

Greedy embeddings are a promising tool for infor-
mation routing in communication and social networks.
The main advantage of greedy embedding is that packet
forwarding is guaranteed to succeed while nodes main-
tain information only about their directly connected
neighbors. Greedy embedding is a hard problem, and
recently several interesting solutions have been proposed
[12], [5], [7], [8], [18]. However, a problem left open in
these works has been to find greedy embeddings that
are low-stretch – meaning that the paths taken in such
networks have length close to that of the shortest path.

In this work we study how topological and geomet-
ric properties of greedy embeddings influence the hop
stretch. Our finding is that the choice of a spanning tree
is a central problem in the reduction the hop stretch
of greedy embeddings based on spanning trees. From
the obtained insights of our study, we construct the
maximum-weight spanning tree (MWST) heuristic from
which we derive the minimum-diameter spanning tree
(mDST) and the sampled MWST heuristics for reduction
of the hop stretch. We provide arguments and insights
explaining why our proposed heuristics are justified.

We emphasize that our heuristics can be applied to
any greedy embedding procedure based on the extraction
of an arbitrary spanning tree, including those described
in [12], [5], [7], [8], [18]. Furthermore, a spanning tree
constructed by any method that gathers sufficient weight
according to our definition is likely to perform well. This
observation opens the problem of constructing efficient
methods for the (preferably distributed) calculation of
high-weight spanning trees for low-stretch greedy em-
beddings.

For the graph models considered in our evaluations,
these heuristics typically improve average hop stretch
from e.g. 1.50 (worst) or 1.30 (average) to <1.15 in
the case of G(n, p) or wireless graphs. For the consid-
ered instances of large real-world graphs we measured
a reduction of the average hop stretch between 0.21
and 1.64 with respect to a randomly chosen spanning
tree, for a modest fraction of sampled pairs for the
calculation of the MWST. Overall, the MWST is the
best performer most of the time. The derived heuristics
(mDST and sampled MWST) appear more amenable for
implementation in real-world graphs and perform just as
well as the full-fledged MWST.
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Avg. Hop Stretch, K embedding [12] Avg. Hop Stretch, C embedding [5]
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(a) High Energy Physics - Phenomenology collaboration network [16]
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(b) Enron email communication network [16], [13]
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(c) Gnutella peer-to-peer file sharing network [23]
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(d) Internet AS Graph [26]

Fig. 12. Numerical evaluation of the average hop stretch on large real-world network graphs. The left column shows the average hop
stretch for 10 sampled weight matrices and 300 sampled source-destination pairs for the K embedding [12]. The right column shows the
average hop stretch for the same cases when the C embedding [5] is used. The vertical bars show the minimum and the maximum values
among the experiments. The hop stretch for 10 random spanning trees is also shown. The corresponding axes and data points are identical.
Note that in each case the MWST performed significantly better than a randomly chosen spanning tree in both the average and the maximum
stretch.
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Max. Hop Stretch, K embedding [12] Max. Hop Stretch, C embedding [5]
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(a) High Energy Physics - Phenomenology collaboration network [16]
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(b) Enron email communication network [16], [13]
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(c) Gnutella peer-to-peer file sharing network [23]
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(d) Internet AS Graph [26]

Fig. 13. Numerical evaluation of the maximum hop stretch on large real-world network graphs. The left column shows the average of
the maximum hop stretch for 10 sampled weight matrices and 300 sampled source-destination pairs for the K embedding [12]. The right
column shows the average of the maximum hop stretch for the same cases when the C embedding [5] is used. The vertical bars show the
minimum and the maximum values among the experiments. The hop stretch for 10 random spanning trees is also shown. The corresponding
axes and data points are identical. Note that in each case the MWST performed significantly better than a randomly chosen spanning tree
in both the average and the maximum stretch.
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