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Abstract. Internet coordinate systems appear promising as a method for esti-
mating network distance without direct measurement, allowing scalable config-
uration of emerging applications such as content delivery networks, peer to peer
systems, and overlay networks. However all such systems rely on landmarks, and
the choice of landmarks has a dramatic impact on their accuracy. Landmark se-
lection is challenging because of the size of the Internet (leading to an immense
space of candidate sets) and because insight into the properties of good landmark
sets is lacking. In this paper we explore fast algorithms for landmark selection.
Whereas the traditional approach to analyzing similar network-based configurka-
tion problems employs the graph structure of the Internet, we leverage work in
coordinate systems to treat the problem geometrically, providing an opening for
applying new algorithms. Our results suggest that when employing small num-
bers of landmarks (5-10), such geometric algorithms provide good landmarks,
while for larger numbers of landmarks (20-30) even faster methods based on ran-
dom selection are equally effective.

1 Introduction

Internet coordinate schemes assign coordinate vectors to hosts in the Internet, and at-
tempt to do so in a manner such that the Euclidean distance between hosts approximates
their network distance, usually taken to be minimum RTT [7]. The power of such co-
ordinate systems is that they allow network distance to be estimated in the absence
of measurement. As a result, applications for which network distance matters (such as
content delivery networks, peer to peer applications, end-system multicast, and others)
can be rapidly configured in a network-sensitive manner based on static input data (i.e.,
a database of nodes and their coordinates).

A number of proposals have been put forward for such systems, ranging from initial
proposals based on expensive nonlinear optimization [7, 14] to more recent fast methods
based on Lipschitz embedding and dimensionality reduction [6, 13]. All such proposals
start from a set of inter-node measurements. For scalability, it is assumed that all nodes
desiring coordinates cannot measure all distances of interest (i.e., distances to all other
nodes), and so must choose a set of landmarks by which to establish their coordinates.
Thus, the usual arrangement is that all nodes measure their distances to a fixed set (or at
least to a fixed number) of landmarks, and use those measurements to determine their
coordinates, so that measurement load in the network scales linearly with the number
of nodes. Early work assumed a fixed set of landmarks, which recent proposals have



suggested that measurement load may be distributed by using multiple landmark sets
[13, 10].

Thus, in order to deploy coordinate systems, specific landmarks must be chosen.
There is reason to believe that the accuracy of Internet coordinate systems is sensitive
to the particular choice of landmarks. First, larger landmark sets are generally more
accurate, because they bring more information to bear on the coordinate construction
step. Second, two landmarks that are “close” to each other in the Internet may provide
little discriminatory power – meaurements to both landmarks will be nearly the same
and will therefore add little information in the coordinate construction step.

Because of the large number of possible landmarks (hundreds of millions in the
Internet) and the complex relationship between landmarks used and the accuracy of the
resulting coordinate scheme, optimal landmark selection is a very challenging problem.
A natural approach in seeking heuristics to guide the search is to look for structure in
the distance measurements found in the Internet, and to try to place landmarks in ways
that exploit that structure.

In this paper we examine the structure of Internet distance measurements, and ask
whether that structure can help us select good landmarks in an efficient way. While
network structure is usually throught of as a property of topology, we take a novel
approach that leverages the notion of internet coordinates: we examine the geometric
structure of network distances. We show that this structure is characterized by a high
degree of clustering.

We then proceed to ask what sorts of geometric algorithms, including those explic-
itly making use of clusters, can be used to efficient landmark selections. We study this
question using the Virtual Landmarks embedding method and find that the answer de-
pends on the size of the landmark set. Our initial results show that when using a small
number of landmarks (5-10), the proper choice of landmarks is quite important; but
when a larger number of landmarks is used, even random selection is as effective as
geometrically-informed approaches

Our results point the way to the ability to perform landmark selection in very large
datasets (since the geometric methods are relatively scalable) and suggest that if 20-30
landmarks can be used, then landmark selection can be done quite efficiently.

2 Related Work

Internet coordinate schemes were first proposed in [7]. In this work, we use the Virtual
Landmarks method for forming internet coordinates as described in [13]. The Virtual
Landmarks method is based on two ideas: First, it uses a Lipschitz embedding of nodes
into a high dimensionsal space. In a Lipschitz embedding, the distances to a set of
landmarks are taken as the coordinates of the given node. Second, it uses dimensionality
reduction via Principal Component Analysis to reduce the higher-dimensional space of
Lipshitz embedding to a lower-dimensional space. In this paper, all coordinates are
7-dimensional, which was found in [13] to provide a reasonable tradeoff between low
dimension and accuracy. Thus, the algorithms in this paper are concerned with selecting
landmarks for the Lipschitz embedding, while all error metrics are measured based on
the coordinate assignments after reducing to 7 dimensions.



The question of how to select landmarks has not been explicitly addressed in previ-
ous Internet coordinate work. However it has relevance not just for Internet coordinates,
but for all methods that employ Lipschitz embeddings on round-trip times.

A number of papers have used Lipschitz embeddings to assign coordinates to hosts.
In [16], the goal is to map an arbitrary host to a nearby landmark whose geographic po-
sition is known. A landmark whose Lipschitz coordinates are similar to that of the host
is used as the estimated location of the host. A demographic placement approach was
proposed to improve the representativeness of landmarks with respect to the hosts to be
located. Like this work, they also explore placing probe machines in a geographically
distributed manner, to avoid shared paths.

In [9], the authors used a Lipschitz embedding to find nearby nodes for the purpose
of geolocation. The number of probe machines and locations was studied in order to
improve accuracy. However, specific algorithms for landmark selection were not inves-
tigated.

Placement of other Internet resources, such as caches and mirrors, has been inves-
tigated (e.g., in [8] and [3]) however these studies have not looked at geometrically
inspired algorithms.

In computer vision, Lipschitz embeddings have been used to generate fast indexing
schemes for images. The problem for the choice of landmarks in this setting has been
studied in [2, 15]. The authors in [2] propose four methods, including minimizing av-
erage distortion, which is similar to our Greedy method. Maximum distance methods
similar to those we employ have been studied in [15]. However, the results are mainly
relevant to the kinds of similarities found among images and it is not clear that their
conclusions would apply to the problem of Internet distances.

Finally, a number of papers have proposed scalability methods for Internet coordi-
nate schemes based on construction of multiple landmark sets [13, 10]. Such methods
assume the existence of algorithms for constructing landmark sets on the fly; the work
in this paper can inform the choice of those algorithms.

3 Data

We use 3 datasets in this work, which are the same as used in [13].

NLANR AMP The NLANR Active Measurement Project [1] collects a variety of mea-
surements between all pairs of participating nodes. Most participating nodes are at NSF
supported HPC sites, and so have direct connections to the Abilene network; about 10%
are outside the US. The dataset we use was collected on January 30, 2003 and consists
of measurements of a 116 × 116 mesh. Each host was pinged once per minute, and
network distance is taken as the minimum of the ping times over the day’s worth of
data.

Skitter The Skitter project [11] is a large-scale effort to continuously monitor routing
and connectivity across the Internet. It consists of approximately 19 active sites that
send probes to hundreds of thousands of targets. Targets are chosen so as to sample a



wide range of prefixes spanning the Internet. Results reported in [5] suggest that about
50% of the targets in this dataset are outside the US. The dataset we used was collected
in December 2002; each target was pinged approximately once per day. Network dis-
tances are the minimum ping time over 12 days. The set of targets varies among active
sites; selecting the largest set of rows for which complete data is available yields a 12 ×
12 symmetric dataset, and a 12 × 196,286 asymmetric dataset with 2,355,565 entries.

Sockeye Our last dataset was collected at Sockeye Networks [12]. It consists of mea-
surements from 11 active sites to 156,359 locations. Targets were chosen through a
scheme designed to efficiently explore as much of the routable Internet as possible.
Each active site sent a ping to each target on an hourly basis. Network distance was
taken as the minimum of all pings over a single day.

4 Algorithms

Each algorithm we consider selects a set of � landmarks {Li}, i = 1, .., � taken from
datasets containing n hosts H = {hi}, i = 1, ..., n. The network distance (RTT) be-
tween hi and hj is denoted d(hi, hj). Each algorithm takes as input an Internet co-
ordinate scheme φ : H → IRd and a distance function δ : IRd → R. In this paper φ
represents the mapping obtained from the Virtual Landmarks embedding into Euclidean
space with d = 7, and δ is the Euclidean norm.

Greedy The most expensive approach is the Greedy algorithm [2]. The Greedy algo-
rithm chooses the set of landmarks that minimizes the average distortion of distances
at each step. We define the relative error function Q(hi, hj , φ) for a pair of hosts hi,
hj ∈ H as

Q(hi, hj , φ) =
δ(φ(hi), φ(hj)) − d(hi, hj)

d(hi, hj)

The accuracy of the embedding φ can be calculated by the average absolute error:

Q̄(φ) = 2/(n2 − n)
∑

i>j

|Q(hi, hj , δ)|

Exact minimization of Q̄(φ) is computationally infeasible for large n and �. A step-
wise approach that is tractable, but still quite expensive, is the Greedy algorithm, which
proceeds iteratively. The first landmark L1 is chosen at random. Subsequent landmarks
are chosen so as to give the lowest average absolute error when used together with the
already-chosen landmarks. That is, in step m we choose Lm so as to minimize Q̄(φ)
when used with landmark set L1, ..., Lm.



K-means The k-means algorithm is a geometric algorithm that operates on distances
as computed using an Internet coordinate scheme. K-means finds � disjoint clusters in
the data [4]. It starts by choosing � hosts to act as centroids (c1, ..., c�) at random. Each
centroid cj has an associated cluster Gj . The algorithm then repeatedly performs the
following three steps:

1. Assign each host h ∈ H to the cluster Gj with the nearest centroid cj .
2. For each cluster Gj , calculate a new center c =

∑
h∈Gj

h
|Gj |

3. Assign a new centroid cj to Gj as the host nearest to this center c.

These steps are iterated until the centroids and the clusters become stable. Then,
these � centroids chosen by the above k-means algorithm are assigned as the landmarks.

Maximum Distance The Maximum Distance algorithm is also a geometric algorithm.
It attempts to find the maximally-distributed landmarks from the set of n hosts, based on
the intuition that landmarks must be spread far apart to give useful location information
[15]. The � landmarks are chosen in an iterative manner. The first landmark L1 is chosen
from the set H at random. In iteration m (1 < m ≤ �) the distance from a host hi to the
set of already chosen landmarks L1, ..., Lm−1 is defined as the minLj

δ(φ(hi), φ(Lj)).
The algorithm selects as landmark Lm the host that has the maximum distance to the
set L1, ..., Lm−1.

Random The Random method is the most efficient and simplest among all four algo-
rithms. The � landmarks are randomly chosen from the n hosts.

5 Clusters

One reason for considering geometric algorithms for landmark placement is that Inter-
net hosts show a high degree of clustering. In this section we explore empirically this
clustering in our datasets.

As described in Section 2 our data consists of Internet hosts whose coordinates are
points in IRn with n = 7. We can start to examine the evidence for clustering in our
datasets by looking at projections of the points onto various subspaces. When using the
Virtual Landmarks method for coordinate assignment, coordinates are assigned in order
of significance. The first coordinate captures the largest amount of variation possible
in a single dimension, the next coordinate captures the largest amount of variation in
the remaining dimensions, and so on [13]. Thus the most significant projections of
the resulting data are onto the subspaces spanned by the initial axes of the coordinate
system.

In Figure 1(a) we show the projection of the Skitter dataset onto the space spanned
by the first two axes. In Figure 1(b) we show the corresponding plot for the Sockeye
dataset. To reduce plot file size we plot a random sample of 30,000 hosts from each of
our datasets; plots of the entire dataset show exactly the same features.
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Fig. 1. Clusters in (a) Skitter Data and (b) Sockeye Data
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Fig. 2. (a) Zoom In on Clusters in Sockeye Data (b) Average Distance to Cluster Centroid as a
Function of Number of Clusters

These plots show the remarkable amount of clustering (as well as other types of
structure) that is present when Internet hosts are embedded in Euclidean space. Al-
though the two plots represent data that was collected at different times from completely
different measurements infrastructures (having different probes and target locations),
they show very similar structure. The number, sizes, and relative positions of the largest
clusters in each dataset are very similar.

Although these two datasets we collected in different ways, the underlying data
collection strategy in each case was to try to sample all portions of the space of live
Internet addresses. Thus we interpret the similarity between Figures 1(a) and 1(b) as
evidence that the structure exhibited reflects real properties of Internet host connectivity.

We can also observe that clustering is present on smaller scales as well. Figure 2(a)
zooms in on a part of Figure 1(b) corresponding to the largest visible cluster. This figure
shows that even within a cluster, host density varies across different regions, suggesting
the presence of clustering at multiple scales.

To assess the number of clusters present in our data, we adopted the following ap-
proach. Using the k-means clustering algorithm as described in Section 4, we con-



structed clusters for varying values of k and measured the mean cluster diameter. The
resulting curves for the skitters and sockeye datasets are shown in Figure 2(b). This
figure shows an inflection point around 20 clusters, indicating the presence of at least
20 clusters in both datasets.

It is very likely that these clusters are influenced by the geographical location of
hosts. This can be seen in Figure 3 where we have identified the clusters formed with
k = 6 for the AMP dataset. Although the clustering algorithm uses no direct infor-
mation about geographical location, it produces clusters that are in fact geographically
distinct.

Fig. 3. Clusters in AMP data (based on graphic from [1]).

6 Algorithms for Landmark Selection

Motivated by these geometric considerations, in this section we evaluate algorithms for
landmark selection.

We average absolute relative error as our principal metric. That is, for each algo-
rithm for landmark selection, leading to an embedding φ, we report Q̄(φ).

In addition, the entire distribution of relative error is of interest. In particular it
is important to know the variability of relative error for various landmark selection
methods. For these reason we also report the 90th percentile of relative error.

In applying the algorithms for landmark selection we proceed as follows. In the
case of the AMP dataset, we select � landmarks from the 116 hosts using each of the
algorithms. We then evaluate the relative error of the Virtual Landmarks embedding
of the remaining 116 − � hosts. In the case of the Skitter and Sockeye datasets, we
subsample 2000 hosts at random from the set of measurement targets. We then select
� landmarks from this set, and evaluate the relative error of the Virtual Landmarks
embedding on the active sites. For Skitter, this means we are evaluating the relative
error over 12 hosts, and for Sockeye, 11 hosts. Although these sample sizes are small,
the consistency of our results suggests that they are reasonably representative.

In Figures 4, 5, and 6 we present our main results. On the left in each figure is the
average absolute relative error, and on the right is the 90th percentile of absolute relative
error.
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Fig. 4. (a) Average Absolute Relative Error and (b) 90th Percentile of Relative Error of Landmark
Selection Algorithms for AMP Data

In the case of the AMP hosts (Figure 4), the Greedy algorithm performs distinctly
better than the others, regardless of the number of landmarks. The Random algorithm,
and the geometric algorithms (K-means and Maximum Distance) have very similar
performance, although the worst-case performance of Random is slightly poorer than
the other two.

These results may be understood in light of the nature of the AMP hosts, which are
generally sites in North America, with good connections to the high-speed Abilene net-
work. For these hosts, the particular choice of landmark set is not too critical, although
an expensive (Greedy) approach yields some benefits.

The situation is rather different when looking at lardmark sets that span the Inter-
net as a whole, with more heterogeneous connectivity (Skitter and Sockeye datasets in
Figures 5 and 6). Here the Greedy algorithm is still best, as expected, but there is a
distinct difference between the others. Maximum Distance performs rather poorly, pos-
sibly because the landmarks it finds, while far from most hosts, have relatively little
path diversity to the set of hosts, and therefore provide poor location information. K-
means performs well even when using only a small set of landmarks. The performance
of Random is poor when using a small set of landmarks, but surprisingly, it is compa-
rable to k-means when using a large set of landmarks. This effect is especially strong
when the metric of interest is the 90th percentile of absolute relative error.

These results suggest the following conclusions. First, the best-performing approach
is always the expensive Greedy algorithm; if resources permit, this is the best algorithm.
However, if a more efficient algorithm is needed, then for a small number of landmarks
(5-10) the geometrically-based k-means algorithm is best; however, an even simpler
and faster option is to expand the larkdmark set (to approximately 20-30 landmarks)
and simply use Random selection.

7 Conclusions

In summary, we have advocated a geometric approach to Internet location analysis,
and based on that we have described and evaluated useful algorithms for landmark
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Fig. 5. (a) Average Absolute Relative Error and (b) 90th Percentile of Relative Error of Landmark
Selection Algorithms for Skitter Data
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Fig. 6. (a) Average Absolute Relative Error and (b) 90th Percentile of Relative Error of Landmark
Selection Algorithms for Sockeye Data

selection. Motivated by the evidence of significant clustering among Internet hosts, we
explored algorithms based on k-means and maximum distance, and compared them to
greedy and random alternatives. We find that the greedy algorithm is best in all cases;
however, it is computationally expensive. Among the more efficient algorithms, we find
that exploiting clustering (k-means) is effective when the number of landmarks to be
chosen is small (5-10). However, if 20-30 landmarks are employed, then even simple
random selection works well. These results suggest that effective landmark selection
appears feasible even on the scale of the Internet.
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