
Active Positive-Definite Matrix Completion

Charalampos Mavroforakis Dóra Erdös Mark Crovella Evimaria Terzi

{cmav, edori, crovella, evimaria}@cs.bu.edu

Boston University

Abstract

In many applications, e.g., recommender systems and
biological data analysis, the datasets of interest are pos-
itive definite (PD) matrices. Such matrices are usually
similarity matrices, obtained by the multiplication of a
matrix of preferences or observations with its transpose.
Oftentimes, such real-world matrices are missing many
entries and a fundamental data-analysis task, known by
the term PD-matrix completion, is the inference of these
missing entries. In this paper, we introduce the active

version of PD-matrix completion, in which we assume
access to an oracle that, at a given cost, returns the
value of an unobserved entry of the PD matrix. In
this setting, we consider the following question: “given
a fixed budget, which entries should we query so that
the completion of the new matrix is much more indica-
tive of the underlying data?”. The main contribution of
the paper is the formalization of the above question as
the ActivePDCompletion problem and the design of
novel and e↵ective algorithms for solving it in practice.

1 Introduction

Positive-definite (PD) matrices are widely used in many
applications, including recommender systems [12, 20]
and analysis of biological data [6, 15, 28] In these ap-
plications, the PD matrices are capturing the similarity
between objects of interest (e.g., users, items, observa-
tions or features) and they are usually the result of the
multiplication of a data matrix with its transpose.

Limitations in the real-life observations usually lead
to partially-observed PD matrices. For data-analysis
purposes, such matrices are usually completed using a
matrix-completion method. One of the most common
completion methods is the maximum-determinant com-

pletion; among all the PD matrices that are consistent
with the observed entries, this method picks the one
that has the maximum determinant. Algorithms for
obtaining such completions have been developed since
the late 1980’s [2, 25]. The maximum-determinant com-
pletion is interesting because it makes the least possible

assumptions about the underlying true matrix; it cor-
responds to the most general model of the underlying

matrix that respects the input observations.
If the number of missing entries is large, the results

obtained by such completion methods might be uninfor-
mative; the completed matrix is too generic to provide
any useful insight about the underlying data. In these
cases, more information needs to be collected in order
to obtain useful completions. Throughout this paper we
assume that this information can be provided by an or-
acle that, for some given cost, returns the true value of
an unobserved entry. In practice, this may entail giving
additional incentives for users to provide extra informa-
tion about their preferences or – in the case of scientific
data – running some additional experiments.

Given such oracle access, we study the following
problem: Which entries of a partially-observed PD ma-
trix should we query so that we minimize the uncer-
tainty (and thus the determinant) of the maximum-
determinant completion of the observed and queried en-
tries? In this paper, we formally define this problem and
call it ActivePDCompletion, since it is the “active”

version of the PD matrix completion.
Even though the completion problem for PD matri-

ces has been widely studied, to the best of our knowl-
edge we are the first to define the active version of the
problem and design algorithms for solving it. This prob-
lem is also related to other recent work on active matrix
completion (for a thorough review of the related work
see Section 2), however the constraint that our matrix
is PD imposes new algorithmic challenges and solving
our problem requires very specific considerations.

Our algorithm for solving the ActivePDCom-

pletion problem has fundamental connections to the
graph-theoretic view of PD matrix completion. A key
concept that we use throughout the paper is that of
the mask graph of a partially-observed PD matrix. The
mask graph corresponds to the graph formed by us-
ing the rows (or columns) of the partially-observed PD
matrix as nodes and its observed entries as indicators
for the edges. It is known that a partially-observed
PD matrix has a PD-completion i↵ the mask graph
is chordal [9]. As a result, the algorithm for selecting
the entries to query has to not only identify informative

entries, but also to guarantee that the mask graph is
chordal and remains chordal after these queries.

At a high level, this task is hard since the level
up to which an entry can be “informative” needs to be
decided before seeing the actual value of the entry. We
quantify the potential information capacity of an entry
via a principled approach that takes into consideration
the range of values of the determinant of a well-specified
principal minor that contains the entry of interest.

In terms of computational time, the input and out-
put to our problem is quadratic, imposing the same
lower bound on the complexity as that of any completion
algorithm. In our case, we provide speedups of our ini-
tial algorithm by utilizing an appropriate data structure
known in the literature as a clique tree. Our extensive
experimental evaluation with synthetic as well as real
data demonstrate the significant reduction in the deter-
minant of the maximum-determinant completion that
we achieve using our algorithm.

2 Related work

To the best of our knowledge we are the first to define
and solve the ActivePDCompletion problem. How-
ever, both matrix completion and, more recently, active
matrix completion problems have been considered in the
past. We review some of this work here.

Matrix completion: For the past decades there
has been continuous interest in the reconstruction of
matrices from a few or noisy entries [4, 10, 11]. Although
related, all the above works do not focus specifically
on completions of PD matrices and therefore both the
applications but also the algorithmic problems that arise
there are very di↵erent from ours. In our work, we are
concerned specifically with the completion of partially-
observed positive definite matrices. Positive-definite
matrix completion (without queries) has been studied
since the 1980’s [2, 7, 9], but it is still an active area
of research [1, 3, 14, 26] While all of the above works
have motivated our own work, they do not tackle the
problem of active completion at all, which is the main
topic of our paper.

The focus of this paper is on determinant maxi-
mizing completions, which arise in many fields. Van-
denberghe et al. [24] give a survey on determinant-
maximizing applications. Even though these works pro-
vide a good motivation as of why the maximum deter-
minant is a good measure of the uncertainty of a matrix,
they do not necessarily focus on the active version of the
maximum-determinant matrix completion problem.

Active matrix completion: It is often assumed
that missing entries in a matrix can be queried at
some cost. Active matrix completion methods aim at

identifying cells of the matrix with missing values that
have presumably high “information content”. In other
words, this assumes that by revealing these entries’
content, the quality of the completed matrix would be
substantially improved. The notion of querying cells
based on information content is studied for example in
the context of adaptive sampling for matrix completion
in [13, 5]. It is used in many specific applications, such
as querying values to improve on a Bayesian method for
matrix factorization [22], query pairwise similarities to
improve on spectral clustering [21, 27] or even semi-
supervised link prediction [17]. One of the recent
works to unify a matrix completion approach and a
query strategy is by Ruchansky et al. [19]. Although
these works consider an active version of a matrix
completion problem, as we also do, they are quite
distinct from ours. First, none of these works considers
active completions of PD matrices. Secondly, none of
these works focuses on querying missing entries so that
the maximum-determinant completion of the resulting
matrix is maximized. Both the types of matrices we
consider and the objective function we try to optimize
raise unique computational problems that have not been
addressed before.

3 Background

In this section, we give the necessary notation and
background about the matrix completion problem in the
class of positive definite (PD) matrices.

Positive-definite matrices: Throughout the paper
we assume that there exists a symmetric n ⇥ n true
matrix T that is positive definite (PD). Recall that a
symmetric square matrix T is positive definite (PD) i↵
for any vector z 2 Rn zTTz > 0.

Now, assume that I ✓ {1, . . . , n} is of cardinality
k and I = I ⇥ I. Then, we denote by T(I) the k ⇥ k
submatrix of T with entries in the locations indicated
by I. This submatrix is also known as a principal minor

of order k. A symmetric square matrix T is PD i↵ all
of its principal minors are also positive definite.

A big family of PD matrices are the similarity

matrices, i.e., the matrices that are a result of the
product of a non-singular matrix (i.e., a matrix of
preferences or observations) with its transpose. Another
case of PD matrices are the covariance matrices over
linearly independent features. Let us consider a matrix
of user preferences over products A of size n ⇥ m,
such that n ⌧ m. Such matrices A usually have low

e↵ective rank, meaning that they have some singular
values that are significantly larger than the rest. Yet,
real-life matrices A never have zero singular values. As
a result, the n ⇥ n matrix T = AAT will not have
any zero eigenvalues, which makes it positive definite.

Usually some of the eigenvalues of T are significantly
larger than the rest, but oftentimes even the smaller
eigenvalues are far from zero. These are the PD matrices
we are interested in completing here.

Partially-observed PD (PPD) matrices: Through-
out the paper we assume that not all entries of the PD
matrix T are observed and that we only have access
to a subset ⌦ of its entries. We denote this partially-
observed matrix by T

⌦

and we call ⌦ the mask of T.
T

⌦

has the same values as T in the cells defined by the
pairs in ⌦ and the rest of its values are unknown. Ob-
serve that since we know that T is PD then we know
that it is symmetric and therefore if (i, j) 2 ⌦, then also
(j, i) 2 ⌦. We also assume throughout that (i, i) 2 ⌦
for every i 2 {1, . . . , n}.

We say that T
⌦

is partial positive definite (PPD)
if every one of its complete leading principal minors is
PD. Since T

⌦

comes from a PD matrix, we also assume
that all the T

⌦

’s in this paper are PPD.

Completability of PPD matrices: A matrix bT is a
PD completion of T

⌦

if bT is PD and T(i, j) = bT(i, j)
for every (i, j) 2 ⌦. We say that T

⌦

is PD-completable

if there exists a PD completion for it.
It is a known fact that deciding whether a PPD

matrixT
⌦

is PD-completable can be done in polynomial
time [9]. In fact, as Theorem 3.1 indicates, PD-
completability is a property of ⌦ and not of the actual
values observed in T

⌦

. In order to discuss this result
we introduce the notion of the mask graph.

Mask graph: Given a PPD matrix T
⌦

, we define
the mask graph G

⌦

(V,E) as follows: the set V has n
nodes, one for each row/column of T. The edge set E
contains edge (i, j) i↵ (i, j) 2 ⌦ and i < j1.

Now we are ready to state the following theorem
that shows how one can decide in polynomial time
whether a PPD matrix is PD-completable.

Theorem 3.1. (Dirac [9]) A PPD matrix T
⌦

is PD-

completable with completion

bT i↵ the mask graph G
⌦

is

chordal.

The power of this theorem is that it translates a
problem about completing a PPD matrix into checking
the chordality of the mask graph. 2 Deciding whether
a graph is chordal can be done in polynomial time [23].

Obtaining a PD completion: A key question is the
following: given a PD-completable PPD matrix T

⌦

can
we obtain a completion of T

⌦

? The answer to this

1
This means that we omit any self-loop edges from E and do

not consider edge multiplicities.

2
Recall that a graph is chordal if every one of its cycles of

length 4 or larger has at least one chord, i.e., an edge that connects

two non-adjacent nodes of the cycle.

question is positive. The algorithm itself is the heart
of the proof of Theorem 3.1 and since it is central for
our paper we describe it in detail below.

First, let us develop some intuition using some ideas
by Johnson [9]: Let H

x

be a principal minor in T
⌦

that
is complete except for one of its elements. If we denote
this unknown value by x, and by appropriate reordering
of the rows and columns of the principal minor, then it
looks as follows:

(3.1) H
x

=

0

@
a bT x
b A c
x cT d

1

A

Here, we use the following notation: H
x

is of size
n0 ⇥ n0, A denotes a completely specified symmetric
matrix of size (n0 � 2)⇥ (n0 � 2) and a, b and c refer to
known/observed entries of H

x

.
Let B and C be the largest specified principal

minors of H
x

. That is,

B =

✓
a bT

b A

◆
C =

✓
A c
cT d

◆

Then, the determinant of H
x

can be expressed as:

det(H
x

) =

det(B) det(C)�

det

✓
bT x
A c

◆�
2

det(A)

=
det(B) det(C)

det(A)
� det(A)(x� bTA�1c)2(3.2)

We can see that det(H
x

) is nonnegative if x is in
the interval I

x

⇢ R defined by the two roots of
Equation (3.2). We call I

x

the completion interval of x.
Choosing any value x 2 I

x

yields a feasible completion.
The above discussion shows us how to complete

a principal minor that is missing a single entry. The
algorithm for computing a PD-completion of a PPD
matrix T

⌦

, which we call Completion (Algorithm 1),
uses the above intuition. In the first step (line 1) the
algorithm finds a suitable ordering of the nodes of G

⌦

-
which also determines the ordering with which principal
minors H

x

are going to be considered -to complete
T

⌦

. This ordering is called a perfect elimination order

(PEO), and we find it using the minimum-e�ciency
algorithm [18]. The Completion algorithm uses the
PEO to determine the next missing entry x to be
completed. Due to properties of the PEO the addition
of the edge that corresponds to the missing entry x to
the mask graph will not violate its chordality. Let H

x

be the maximal principal minor corresponding to x of
the form shown in Equation (3.1). Completion samples
the value for x at random from the completion interval

Algorithm 1 The Completion algorithm.

Input: PPD matrix T
⌦

with observed entries ⌦
Output: PD matrix bT

1: ↵ PEO of V from G
⌦

= (V,E)

2:

bT T
⌦

3: while G
⌦

is not a complete graph do
4: k max{i | 9v 2 V, {v,↵

i

} 62 E}
5: r max{i | {↵

i

,↵
k

} 62 E}
6: H

x

 largest complete principal minor of bT
containing element (↵

r

,↵
k

)

7:

bT(↵
r

,↵
k

) = bT(↵
k

,↵
r

) = x 2 I
x

.
8: E = E [{↵

r

,↵
k

}
return: bT

I
x

. Observe that this results in one possible completion
among potentially infinite ones.

Maximum-determinant completions: Although a
PD-completable PPD matrix can be completed in poly-
nomial time, there are potentially infinite many such
completions. The most widely used method for rank-
ing these completions is using the determinant of the
completed matrix bT, denoted by det(bT). Thus, we are
trying to find the matrix with the maximum determi-

nant. In terms of notation, if T
⌦

are all possible PD-
completions of T

⌦

, we use T⇤
⌦

to denote the completion
in T

⌦

with the maximum determinant.
Finding the maximum-determinant completion has

been a common objective for PD-matrix completion [2,
7]. This is an intuitive objective for the following reason:
the eigenvectors of the PD-matrix define a base and each
eigenvector is scaled by the corresponding eigenvalue
such that all data points are enclosed by the hyper-
rectangle defined by the scaled eigenvectors. Since the
determinant of a matrix is the product of its eigenvalues,
the maximum-determinant completion aims to find the
matrix that has the maximum-volume hyper-rectangle.
Thus, the maximum-determinant completion is the
most general PD matrix that agrees with the PPD
matrix in the observed entries.

Finding the maximum determinant completion:

The maximum determinant completion of a PD-
completable PPD matrix can be found in O(n2O

INV

)
where O

INV

is the time required for a matrix inversion –
see Theorem 6.1 of [2]. In fact the algorithm for finding
the maximum-determinant completion of a PPD matrix
is the Completion with the di↵erence that in line 7 we
now have to pick x 2 I

x

such that det(H
x

), given in
Equation (3.2), is maximized.

In fact, Theorem 6.1 of [2] proves that these lo-
cal maximizations of the determinant will lead to the
unique global determinant-maximizing solution. We call

this version of the Completion the MaxDetCompletion

algorithm.

4 Active PD-completion

In this section, we define the ActivePDCompletion

problem. Our key assumption is that the entries of T
which are not observed in T

⌦

can be queried at some
cost. Formally, we define the problem as follows.

Problem 1. (ActivePDCompletion) Given a PPD

matrix T
⌦

with observed entries ⌦ and budget k, iden-
tify a set Q of k entries from the underlying true matrix

T so that, once Q is revealed, det
�
T⇤

⌦[Q

�
is minimized.

The intuition behind this problem formulation is
that some of the unobserved entries of T carry high
information content. If we then choose to query
such entries and enhance the set of initial observa-
tions ⌦ accordingly, the determinant of the maximum-
determinant completion T

⌦[Q

will be considerably less
than that of the completion of T

⌦

, since the solution
space for completions bT is going to be smaller. Thus,
in this case bT will be closer to the true matrix T.

Discussion: In this definition we assumed that the
cost of querying any unknown entry of T is constant.
However, our algorithms can take into account varying
querying prices for di↵erent entries.

The main di�culty of the problem comes from the
fact that we need to decide which entries to query before

actually knowing their value.
Note also that this problem definition assumes that

the mask graph of the input matrix T
⌦

is chordal.
If this is not the case, then we first need to make
the mask graph chordal (by using k0 k queries
to reveal the unknown values) and then solve the
ActivePDCompletion problem on the chordal graph
with a budget of k � k0. Transforming a non-chordal
graph into chordal with the minimum number of edge
additions is known as the minimum fill-in problem [29],
for which known heuristics exist [23].

5 Algorithms

In this section, we describe our algorithms for the
ActivePDCompletion problem. The common setup
in our algorithms is that we query entries from T one-
at-a-time. The entry (i, j), that is to be queried in the
next iteration, is one that once it is included in the mask
graph it maintains the graph’s chordality. At the same
time, among all the edges with this property we pick the
one with the highest score. The idea behind the score
of an entry is that edges with high score correspond
to entries with high uncertainty. Hence, querying a
high score location in the PPD matrix reduces our
uncertainty about the hidden matrix the most.

The Select algorithm: We first give a high-level
description of our basic query strategy in Select Al-
gorithm 2. Then we discuss the technicalities of the
computationally-challenging tasks it performs. Select

first builds a data structure (line 2), a so called clique

tree, that enables us to find candidate entries (in
the FindCandidates function in line 4) which can be
queried without violating the chordality of the mask
graph. Next, we compute the score of each candidate
(line 5). Finally we add the candidate with the high-
est score to the query set (line 7) and update the data
structure accordingly (line 10).

Algorithm 2 The Select algorithm.

Input: PPD matrix T
⌦

with observed entries ⌦,
mask graph G

⌦

= (V,E) and budget k.
Output: PPD matrix T

⌦[Q

which is PD-
completable.

1: Q = ;
2: C = CliqueTree(G

⌦

)
3: for i = 1, . . . , k do
4: S = FindCandidates(G

⌦[Q

, C)
5: for e 2 S do
6: compute score(e)

7: e⇤(i, j) = argmax {score(e) | e 2 S}
8: Q = Q [(i, j) [(j, i)
9: E = E [e⇤

10: Update C by inserting (i, j)

return T
⌦[Q

The function FindCandidates (line 4) in Select

enumerates all the edges that can be inserted to the
current mask graph G

⌦

while maintaining its chordal
structure. To do that, we make use of the clique tree

data structure as introduced by Ibarra [8]. In the
supplementary material, we provide more information
about this data structure. Finally, after an edge
insertion (query), we update the clique tree in O(n).

Scoring functions: A key step of our method is the
computation of score(e) for every edge e(v, v0) 2 E. We
compute this score as follows: for e(v, v0) = x assume
that H

x

is the maximal leading minor that contains x
and it has the form given in Equation (3.2). Then, we
compute the score(e) as follows:

(5.3) score(e) =

R
x2I

x

det(H
x

)

det(A)
,

where I
x

is the completion interval of x given in the
maximum leading minor H

x

.
Intuitively, this computation isolates the expected

impact of the missing value of x in the maximum-
determinant completion of the input PPD matrix. The

Algorithm 3 FindCandidates: generation of all in-
sertable edges of a graph G.

Input: Mask graph G = (V
G

, E
G

), clique tree
structure C = (V

C

, E
C

)
Output: Set of insertable edges S

1: S = ;
2: for v 2 V

G

do
3: Let c 2 V

C

be a clique containing v
4: for c

i

2 DFS(C) starting from c do
5: for v

i

2 clique c
i

do
6: if (v, v

i

) is insertable in G then
7: S = S [{(v, v

i

)}
return S

larger the value of score(e), the larger the contribu-
tion of x in the maximum-determinant completion and
thus the larger the uncertainty of entry x; alterna-
tively, knowing x is expected to significantly reduce the
determinant of the maximum determinant completion.
Therefore, large values of score(e), indicate entries that
need to be queried.

Our comparison between the above-defined and
other candidate scoring functions (presented in the
supplementary material) indicate that the score defined
in Equation (5.3) outperforms all scoring schemes we
considered

Complexity: The running time of Select is
(5.4)
O(kn3

|{z}
candidate generation

+ kn2O
INV| {z }

score computation

+ kn|{z}
cliquetree update

)

where k is the given budget and O
INV

is the time
required to invert an n⇥ n matrix.

The XSelect algorithm: The complexity of Select is
a strict limit for its practical applicability – particularly
as the size of the input matrix grows. For this reason,
we revisit our candidate generation algorithm and make
a simple observation; instead of retrieving all possible
insertable edges S, we could limit its cardinality |S| to
be constant. Whenever the size of S grows larger than
�, the algorithm will return. Additionally, instead of
repeating it n times (one traversal for each node), we
can sample a set of seed nodes (line 2) for the depth-
first-search of size ↵. We will call this faster version of
our query algorithm XSelect(↵,�). After the above
modifications, the time complexity of XSelect(↵,�)
becomes O(kmin(↵n2,�n) + k�O

INV

+ kn).

6 Experiments

The aim of this section is twofold; it showcases the
performance and e�ciency of Select compared to a
clever random baseline and it investigates the trade-o↵

(a) Random hiding (b) Diagonal hiding (c) Block hiding

Figure 1: Budget experiment: The performance of our methods compared to the baseline for di↵erent budget
percentages on synthetic data. Only 25% of the entries of the matrix are observed.

(a) Random hiding (b) Diagonal hiding (c) Block hiding

Figure 2: Budget experiment: The performance of our methods for di↵erent budget percentages on the proteins
dataset. Only 25% of the entries of the matrix are observed.

between speed and performance when using XSelect.
We make all our code and data available online3.

6.1 Datasets We run our algorithms on both syn-
thetic and real-world matrices. This way, we achieve a
deeper and more systematic understanding of the per-
formance of our methods, and at the same time show-
case their applicability in real-world situations.

Synthetic data: We generate synthetic matrices that
are symmetric and positive definite, with some block-
like structure in the following way:

(i) Pick the size of the matrix n, a number of clusters
c, a number of features k.

(ii) Generate c clouds of points in a k-dimensional
space, each with n

1

, n
2

, . . . n
c

members such that
n
1

+ n
2

+ . . . + n
c

= n. Denote this n ⇥ k matrix
as D.

(iii) Compute D0 = DDT + R, where R ⇠
Uniform(1)n⇥n is a noise matrix.

(iv) Return T = D0D0T .

In our experiments we chose n = 100, c = 5, k = 5, but
the results are consistent for all other choices.

Real data: In order to experiment with real data we
need to generate symmetric PD matrices from matrices
that encode observations of data points with respect to
di↵erent features. We do this in the following way:

3
http://cs-people.bu.edu/cmav/active_complete

(i) Start with a real matrix D of size n⇥ k.

(ii) If n k, return T = DDT , else set T = DTD.

The resulting matrices are known either as similarity

or covariance matrices. We apply this procedure to
the proteins dataset. This is a 1080 ⇥ 77 matrix
describing the the expression level of various proteins in
the cerebral cortex of mice [16]. We disregard any rows
with missing data and compute the 77 ⇥ 77 covariance
matrix of the expression levels.

6.2 Generating partial matrices We experiment
with three di↵erent ways to hide h elements from a
given matrix T of size n ⇥ n; random, diagonal and
block hiding. All of these methods take as argument
the number of cells whose values are hidden.

Random hiding: This method is generating a partial
matrix T

⌦

with |⌦| = n2 � h observed entries. The
choice of entries to hide is made randomly, while re-
specting the constraint that the mask graph G

⌦

. In or-
der to do that, we start with the full mask graph G

⌦0 ,
with ⌦

0

= E meaning that all the cells of T are ob-
served, we generate the clique tree of G

⌦0 as described
in [8] and sequentially remove h edges from that graph.
The resulting graph, i.e. G

⌦

h

, corresponds to the par-
tial matrix T

⌦

h

that we aim for.

Diagonal hiding: This method only keeps observa-
tions that belong to the ` first diagonals. Given h, we
find the number of diagonals ` that we need to observe

http://cs-people.bu.edu/cmav/active_complete

so as to keep the number of observed elements as close
to n2 � h as possible.

Block hiding: This hiding method works as follows:
we split the matrix T into b blocks and will observe only
the elements of the blocks that intersect the diagonal.
To make sure that we can control the number of
observed elements, we formulate the problem of picking
the block sizes as a quadratic integer program (QIP)

minimize
x

bX

i=1

x2

i

� (n2 � h)(6.5)

s.t
bX

i=1

x
i

= n, and

x
i

� 2.
The result is the hiding pattern we use.

6.3 Baseline algorithm Since there is no existing
work on the ActivePDCompletion, the baseline that
we compare against is the random query algorithm,
denoted by RandComplete. At each iteration, this
method uses a clique tree [8] to track the edges that
are insertable in the mask graph without violating
its chordality. It randomly picks one of these edges,
executes the query and fills in the corresponding cell
in the matrix. Finally, it updates the clique tree
and repeats the previous steps for as long as there is
remaining budget. Essentially, it works the same way
as Algorithm 2, with the main di↵erence being that in
lines 5–7 the query is selected from S at random.

Note that this baseline is a “clever” random baseline
as it guarantees that the queried entries maintain the
chordal property of the mask graph.

6.4 Evaluating the e�cacy of our method As
a first step, we compare the performance of Select

and XSelect with RandComplete. For the comparison
we proceed as follows: let Q

x

be the entries queried
by algorithm x 2 {Select, XSelect} and Q

r

be the
entries queried by RandComplete. Then, we define
X = T⇤

⌦[Q

x

and R = T⇤
⌦[Q

r

to be the maximum-
determinant completions of PPD matrices T

⌦[Q

x

and
T

⌦[Q

r

respectively. We evaluate the performance of x
by computing the following measure:

(6.6) LogDetRatio(x) = log
detX

detR
.

We call this measure the log-determinant ratio of x. The
smaller the value of the log-determinant ratio the better
the performance of x; small values of LogDetRatio(x)
indicate that the numerator is much smaller than the
denominator and thus the maximum-determinant com-
pletion achieved after querying using x is much smaller

than the one achieved by RandComplete. Note that
we take the logarithms of the determinants because the
values of the determinants in our experiments are very
large. This way we compare the performance with re-
spect to the order of magnitude improvement.

Budget experiment: First, we explore the perfor-
mance of the algorithms for di↵erent hiding schemes as
we change the number of entries we can query. In all ex-
periments we start with a matrix where only 25% of the
total entries are known. The results across the di↵erent
datasets are summarized in Figures 1 (synthetic) and
2 (proteins). In the x-axis of the panels we show the
percentage of queried entries and on the y-axis we re-
port the LogDetRatio for Select and XSelect. In these
plots, we report the results of XSelect for ↵ 2 {5, 50}
and � 2 {1%, 10%}. Experimenting with more values
demonstrated that the trends we observe do not change.
Notice that ↵ is in absolute numbers, while � is relative
to the number of edges (hidden elements that are candi-
dates for querying). Since each experiment is repeated
at least 10 times, we use boxplots to display the perfor-
mance of each algorithm. The displayed boxplots have
information about the min, the 1st quartile, the median
the 3rd quartile and the max of the LogDetRatio value
achieved over di↵erent repetitions.

For both the synthetic and the real dataset across all
panels, we observe that the values of LogDetRatio are
significantly small and therefore Select and XSelect

show significant improvement over RandComplete, in-
dependently of the hiding pattern.

The performance of all algorithms for large number
of queries is the same. Notably, the sampling algorithms
do not su↵er a significant drop in performance compared
to Select. Indeed, XSelect(5, 1) is only marginally
worse than Select, and comes with an impressive
speed-up in the execution time.

Hiding experiment: Here, we test the e↵ect of the
number of observations in the input in the performance
of our algorithms. For this experiment, we fix the
number of queries to be 10% of the elements of the
matrix. We run our evaluations on matrices where only
25%, 50%, or 75% of the entries are observed and the
rest are missing. The results of these evaluations are
summarized in Figures 3 (synthetic) and 4 (proteins).
In these plots, the x-axis corresponds to the percentage
of observed entries and the y-axis corresponds to the
LogDetRatio of Select and XSelect. Again, we see
the same pattern as before; all of the methods are
significantly better than the baseline, and the sampling
algorithms only su↵er a minimal performance drop
compared to Select. The trend in the results shows
that, as expected, if only a few elements are missing,
there is not much that a smart query method can do.

(a) Random hiding (b) Diagonal hiding (c) Block hiding

Figure 3: Hiding experiment: An evaluation of our algorithms on synthetic data when varying the percentage of
the observed entries. The query budget is 10% of the total number of entries.

(a) Random hiding (b) Diagonal hiding (c) Block hiding

Figure 4: Hiding experiment: Evaluating our algorithms on the proteins dataset for di↵erent percentage of
observed entries. The query budget is 10% of the total number of entries.

6.5 Measuring the speedup achieved by XSelect

Here, we investigate in depth the gain in terms of
execution time that we achieve by using XSelect. More
specifically, we focus on the experiments that we ran
for the budget experiment previously, and show the
speedup of the di↵erent instantiations of the XSelect

algorithm when compared to Select. The results are
summarized in Figures 5 and 6; the x-axis on the plots
shows the percentage of queried entries and the y-axis
shows the speedup achieved by the di↵erent versions
of XSelect when compared with Select; the speedup
is computed as the ratio of the execution time of the
latter over the execution time of the former. Depending
on the hiding pattern and the budget, we can get up
to almost 18x speedup when using XSelect instead of
Select. It is worth mentioning that ↵ appears to be
very critical for the execution time; smaller values lead
to much faster performance.

7 Conclusions

The key contribution of our work is the introduction of
the concept of active PD-matrix completion, the formal-
ization of theActivePDCompletion problem and the
design of e↵ective querying strategies. Our experiments
with both synthetic and real datasets demonstrate the
e↵ectiveness of these querying strategies: the completed
matrices obtained after incorporating the queried en-
tries are much more meaningful – i.e., the determi-

nant of their maximum-determinant completion is sig-
nificantly smaller than the corresponding determinant
obtained with the original observations. These results
demonstrate the advantage of incorporating an inter-
active step between the data collection and the data
analysis parts of the data mining pipeline.

References

[1] C.-G. Ambrozie. Finding positive matrices subject to
linear restrictions. Linear Algebra and its Applications,
2007.

[2] W. W. Barrett, C. R. Johnson, and M. Lundquist. De-
terminantal formulae for matrix completions associated
with chordal graphs. Linear Algebra and its Applica-
tions, 1989.

[3] E. Ben-David and B. Rajaratnam. Positive definite
completion problems for bayesian networks. SIAM J.
on Matrix Analysis and Applications, 2012.

[4] E. J. Candès and B. Recht. Exact matrix comple-
tion via convex optimization. Foundations of Compu-
tational Mathematics, 2009.

[5] S. Chakraborty, J. Zhou, V. N. Balasubramanian,
S. Panchanathan, I. Davidson, and J. Ye. Active matrix
completion. In IEEE ICDM, 2013.

[6] M. T. Dittrich, G. W. Klau, A. Rosenwald, T. Dan-
dekar, and T. Muller. Identifying functional modules
in protein protein interaction networks: an integrated
exact approach. Bioinformatics, 2008.

(a) Random hiding (b) Diagonal hiding (c) Block hiding

Figure 5: An analysis of the speed-up that XSelect achieves when compared to Select. The comparison is on
synthetic data and only 25% of the entries observed.

(a) Random hiding (b) Diagonal hiding (c) Block hiding

Figure 6: An analysis of the speed-up that XSelect achieves when compared to Select. The comparison is for
the proteins dataset with 25% of the entries observed.

[7] R. Grone, C. R. Johnson, E. M. Sá, and H. Wolkow-
icz. Positive definite completions of partial hermitian
matrices. Linear algebra and its applications, 1984.

[8] L. Ibarra. Fully dynamic algorithms for chordal graphs
and split graphs. ACM Transactions on Algorithms
(TALG), 2008.

[9] C. R. Johnson. Matrix completion problems: a survey.
Proc. Symposia in Appl. Math., 1990.

[10] R. H. Keshavan, A. Montanari, and S. Oh. Matrix
completion from a few entries. IEEE Transactions on
Information Theory, 2010.

[11] V. Kolmogorov and R. Zabih. What energy functions
can be minimized via graph cuts? IEEE TPAMI, 2004.

[12] Y. Koren. Factor in the neighbors: Scalable and
accurate collaborative filtering. TKDD, 2010.

[13] A. Krishnamurthy and A. Singh. Low-rank matrix and
tensor completion via adaptive sampling. In NIPS,
2013.

[14] M. Laurent. Encyclopedia of Optimization, chapter
Matrix completion problems. 2001.

[15] B. Lehne and T. Schlitt. Protein-protein interaction
databases: keeping up with growing interactomes.
Human Genomics, 2009.

[16] M. Lichman. UCI machine learning repository, 2013.
[17] R. Raymond and H. Kashima. Fast and scalable

algorithms for semi-supervised link prediction on static
and dynamic graphs. In ECML/PKDD, 2010.

[18] D. J. Rose. A graph-theoretic study of the numerical
solution of sparse positive definite systems of linear
equations. Graph theory and computing, 1972.

[19] N. Ruchansky, M. Crovella, and E. Terzi. Matrix

completion with queries. In ACM SIGKDD, 2015.
[20] E. Scheinerman and K. Tucker. Modeling graphs using

dot product representations. Computational Statistics,
2010.

[21] O. Shamir and N. Tishby. Spectral clustering on a
budget. In AISTATS, 2011.

[22] J. G. Silva and L. Carin. Active learning for online
bayesian matrix factorization. In ACM SIGKDD, 2012.

[23] R. E. Tarjan and M. Yannakakis. Simple linear-time
algorithms to test chordality of graphs, test acyclicity
of hypergraphs, and selectively reduce acyclic hyper-
graphs. SIAM J. Comput., 1984.

[24] L. Vandenberghe, S. Boyd, and S. po Wu. Determinant
maximization with linear matrix inequality constraints.
SIAM J. on Matrix Analysis and Applications, 1998.

[25] L. Vandenberghe, S. Boyd, and S.-P. Wu. Determinant
maximization with linear matrix inequality constraints.
SIAM J. on matrix analysis and applications, 1998.

[26] C. Wang, D. Sun, and K. Toh. Solving log-determinant
optimization problems by a newton-cg primal proximal
point algorithm. SIAM J. on Optimization, 2010.

[27] F. L. Wauthier, N. Jojic, and M. I. Jordan. Active
spectral clustering via iterative uncertainty reduction.
In ACM SIGKDD, 2012.

[28] Z. Xia, L.-Y. Wu, X. Zhou, and S. T. Wong. Semi-
supervised drug-protein interaction prediction from
heterogeneous biological spaces. BMC Systems Biol-
ogy, 2010.

[29] M. Yannakakis. Computing the minimum fill-in is np-
complete. SIAM J. on Algebraic and Discrete Methods,
1981.

Active Positive-Definite Matrix Completion

Supplementary Material

Charalampos Mavroforakis Dóra Erdös Mark Crovella Evimaria Terzi

{cmav, edori, crovella, evimaria}@cs.bu.edu

Boston University

1 The FindCandidates function of Algorithm 3

In the FindCandidates function (line 4), Select finds

all the single edges that can be added to the current

mask graph G⌦ while maintaining its chordal structure.

To do that, we make use of the clique tree data structure

as introduced by Ibarra [1]. Given a graph G = (V,E),

the clique tree is a tree C = (V
C

, E
C

), in which each

node is a maximal clique of G, i.e., V
C

⇢ 2

V

. In our

case the number of nodes |V
C

| is O(n) because G is

chordal [1]. Two cliques are connected in the clique

tree if they share common nodes. According to Ibarra,

retrieving the insertable edges e = (i, ·), i.e., those that

are attached to node i 2 V , requires running a depth-

first search on C (line 4). For every clique c 2 V
C

that

we visit and for each node j 2 c, we check if the edge

(i, j) is insertable. As a result, it takes O(n3
) time to

retrieve the set of all insertable edges. The pseudocode

of this procedure is summarized in Algorithm 3.

2 Exploring di↵erent score functions

In all the experiments that we reported above, we run

our algorithms using the edge scoring scheme given by

function score, which we defined in Equation (5.3). In

this experiment, we explore the performance of three

other scoring schemes and show that indeed using score

was our best option.

More specifically, we consider the following three

scoring alternatives, which in turn define variations of

Select.

data score: We compute the data score as follows:

for e(v, v0) = x assume that H
x

is the maximal leading

minor that contains x and it has the form given in

Equation (3.2). Then, we define data score(e) to be the

value

1

det(A)|{x 2 Z : x 2 I
x

}|
X

x2Z:x2I

x

det(H
x

),

where Z is the set of observations in H
x

.

That is, for the calculation of the “expected” deter-

minant, instead of using the integral over all values of

x 2 I
x

(as in Equation (5.3)), we only use the values

which appear in the matrix and are observations from

the ground truth.

norm score: In the norm score, we normalize the

“expected“ determinant of H by its maximum value.

Using the same notation as above the norm score is

defined as follows:

norm score(e) =
1

det(A)

1

max

x2I

x

det(H
x

)

Z

x2I

x

det(H
x

)

det score: Finally, in the det score we remove the

normalization by det(A); in this scoring scheme the

edge that maximizes det score is the edge that maxi-

mizes the expected determinant of the its correspond-

ing maximal leading minor. That is, using the same

notation as above det score is defined as follows:

det score(e) =

Z

x2I

x

det(H
x

).

We run Select with these di↵erent score vari-

ants as well as the original score function, defined

as score in Equation. (5.3). We also run for all the

data the RandComplete algorithm and we report the

LogDetRatio of the di↵erent versions of Select. For

this experiment we use the synthetic partial matrices

generated by random hiding. As in the budget experi-

ment, we only reveal 25% of the original matrix as our

observed entries.

Figure 1 summarizes our findings; the x-axis cor-

responds to the query budget, while the y-axis re-

ports the LogDetRatio for score, data score, norm score

and det score. The dashed line corresponds to the

LogDetRatio of an algorithm that has the same per-

formance as RandComplete, i.e., our baseline. Anything

above this line corresponds to an algorithm that per-

forms worse than the baseline and anything below the

dashed line corresponds to an algorithm that performs

better than RandComplete. Clearly, using the score

scoring with Select performs consistently the best. Al-

most as good is the performance of data score. This is

somehow expected as the score and data score are de-

fined using the same rationale in mind: they try to see

Figure 1: A performance analysis for di↵erent choices of

scoring functions. Values above the dashed line imply a

performance worse than our random baseline.

the impact of the value of x in det(H
x

) by subtracting

the value of det(A), which consists of entries indepen-

dent of x. The only di↵erence between these two scoring

schemes is that score computes the expected value of

det(H
x

) using all possible values in I
x

, while data score

computes the same value using the entries that appear

in H
x

and are observations from the ground truth.

The results also showcase that norm score is not

as good as score or data score, as it performs almost

as good as the random baseline. Finally, det score

is significantly worse than all other scoring schemes,

including the random baseline. We conjecture that

the reason for this is that det score does not isolate

the impact of x in the value of det(H
x

), as it does

not subtract the impact of A. As a result, the values

appearing in A may dominate the det score, preventing

this version of the algorithm from really evaluating x
itself.

References

[1] L. Ibarra. Fully dynamic algorithms for chordal graphs

and split graphs. ACM Transactions on Algorithms

(TALG), 2008.

	Introduction
	Related work
	Background
	Active PD-completion
	Algorithms
	Experiments
	Datasets
	Generating partial matrices
	Baseline algorithm
	Evaluating the efficacy of our method
	Measuring the speedup achieved by XSelect

	Conclusions

