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Abstract

Recently the notion of self-similarity has been shown to apply to wide-area

and local-area network tra�c. In this paper we show evidence that the subset

of network tra�c that is due to World Wide Web transfers can show charac-

teristics that are consistent with self-similarity, and we present a hypothesized

explanation for that self-similarity. Using a set of traces of actual user execu-

tions of NCSA Mosaic, we examine the dependence structure of WWW tra�c.

First, we show evidence that WWW tra�c exhibits behavior that is consistent

with self-similar tra�c models. Then we show that the self-similarity in such

tra�c can be explained based on the underlying distributions of WWW docu-

ment sizes, the e�ects of caching and user preference in �le transfer, the e�ect

of user \think time," and the superimposition of many such transfers in a local

area network. To do this we rely on empirically measured distributions both

from client traces and from data independently collected at WWW servers.
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1 Introduction

Understanding the nature of network tra�c is critical in order to properly design and implement

computer networks and network services like the World Wide Web. Recent examinations of LAN

tra�c [14] and wide area network tra�c [20] have challenged the commonly assumed models for

network tra�c, e.g., the Poisson process. Were tra�c to follow a Poisson or Markovian arrival

process, it would have a characteristic burst length which would tend to be smoothed by averaging

over a long enough time scale. Rather, measurements of real tra�c indicate that signi�cant tra�c

variance (burstiness) is present on a wide range of time scales.

Tra�c that is bursty on many or all time scales can be described statistically using the notion

of self-similarity. Self-similarity is the property we associate with one type of fractal|an object

whose appearance is unchanged regardless of the scale at which it is viewed. In the case of stochastic

objects like timeseries, self-similarity is used in the distributional sense: when viewed at varying

scales, the object's correlational structure remains unchanged. As a result, such a timeseries exhibits

bursts|extended periods above the mean|at a wide range of time scales.

Since a self-similar process has observable bursts at a wide range of timescales, it can exhibit

long-range dependence; values at any instant are typically non-negligibly positively correlated with

values at all future instants. Surprisingly (given the counterintuitive aspects of long-range de-

pendence) the self-similarity of Ethernet network tra�c has been rigorously established [14]. The

importance of long-range dependence in network tra�c is beginning to be observed in studies such

as [8, 13, 18], which show that packet loss and delay behavior is radically di�erent when simulations

use either real tra�c data or synthetic data that incorporates long-range dependence.

However, the reasons behind self-similarity in Internet tra�c have not been clearly identi�ed. In

this paper we show that in some cases, self-similarity in network tra�c can be explained in terms of

�le system characteristics and user behavior. In the process, we trace the genesis of self-similarity in

network tra�c back from the tra�c itself, through the actions of �le transmission, caching systems,

and user choice, to the high-level distributions of �le sizes and user event interarrivals.

To bridge the gap between studying network tra�c on one hand and high-level system charac-

teristics on the other, we make use of two essential tools. First, to explain self-similar network tra�c

in terms of individual transmission lengths, we employ the mechanism described in [30] (based on

earlier work in [15] and [14]). Those papers point out that self-similar tra�c can be constructed

by multiplexing a large number of ON/OFF sources that have ON and OFF period lengths that

are heavy-tailed, as de�ned in Section 2.3. Such a mechanism could correspond to a network of

workstations, each of which is either silent or transferring data at a constant rate.

Our second tool in bridging the gap between transmission times and high-level system charac-

teristics is our use of the World Wide Web (or Web) as an object of study. The Web provides a
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special opportunity for studying network tra�c because its tra�c arises as the result of �le transfers

from an easily studied set, and user activity is easily monitored.

To study the tra�c patterns of the Web we collected reference data re
ecting actual Web use at

our site. We instrumented NCSA Mosaic [10] to capture user access patterns to the Web. Since at

the time of our data collection, Mosaic was by far the dominant Web browser at our site, we were

able to capture a fairly complete picture of Web tra�c on our local network; our dataset consists

of more than half a million user requests for document transfers, and includes detailed timing

of requests and transfer lengths. In addition we surveyed a number of Web servers to capture

document size information that we used to compare the access patterns of clients with the access

patterns seen at servers.

The paper takes two parts. First, we consider the possibility of self-similarity of Web tra�c for

the busiest hours we measured. To do so we use analyses very similar to those performed in [14].

These analyses support the notion that Web tra�c may show self-similar characteristics, at least

when demand is high enough. This result in itself has implications for designers of systems that

attempt to improve performance characteristics of the Web.

Second, using our Web tra�c, user preference, and �le size data, we comment on reasons why

the transmission times and quiet times for any particular Web session are heavy-tailed, which is

an essential characteristic of the proposed mechanism for self-similarity of tra�c. In particular,

we argue that many characteristics of Web use can be modelled using heavy-tailed distributions,

including the distribution of transfer times, the distribution of user requests for documents, and

the underlying distribution of documents sizes available in the Web. In addition, using our mea-

surements of user inter-request times, we explore reasons for the heavy-tailed distribution of quiet

times.

2 Background

2.1 De�nition of Self-Similarity

For detailed discussion of self-similarity in time series data and the accompanying statistical tests,

see [2, 29]. Our discussion in this subsection and the next closely follows those sources.

Given a zero-mean, stationary timeseries X = (Xt; t = 1; 2; 3; :::), we de�ne the m-aggregated

series X(m) = (X
(m)
k ; k = 1; 2; 3; :::) by summing the original series X over nonoverlapping blocks of

size m. Then we say that X is H-self-similar if for all positive m, X(m) has the same distribution

as X rescaled by mH . That is:

Xt
d
= m�H

tmX

i=(t�1)m+1

Xi for all m 2 N
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If X is H-self-similar, it has the same autocorrelation function r(k) = E[(Xt � �)(Xt+k � �)]=�2

as the series X(m) for all m. Note that this means that the series is distributionally self-similar:

the distribution of the aggregated series is the same (except for a change in scale) as that of the

original.

As a result, self-similar processes can show long-range dependence. A process with long-range

dependence has an autocorrelation function r(k) � k�� as k ! 1, where 0 < � < 1. Thus the

autocorrelation function of such a process follows a power law, as compared to the exponential

decay exhibited by traditional tra�c models. Power-law decay is slower than exponential decay,

and since � < 1, the sum of the autocorrelation values of such a series approaches in�nity. This

has a number of implications. First, the variance of the mean of n samples from such a series does

not decrease proportionally to 1=n (as predicted by basic statistics for uncorrelated datasets) but

rather decreases proportionally to n��. Second, the power spectrum of such a series is hyperbolic,

rising to in�nity at frequency zero|re
ecting the \in�nite" in
uence of long-range dependence in

the data.

One of the attractive features of using self-similar models for time series, when appropriate, is

that the degree of self-similarity of a series is expressed using only a single parameter. The parameter

expresses the speed of decay of the series' autocorrelation function. For historical reasons, the

parameter used is the Hurst parameter H = 1 � �=2. Thus, for self-similar series with long-range

dependence, 1=2 < H < 1. As H ! 1, the degree of both self-similarity and long-range dependence

increases.

2.2 Statistical Tests For Self-Similarity

In this paper we use four methods to test for self-similarity. These methods are described fully in

[2] and are the same methods described and used in [14]. A summary of the relative accuracy of

these methods on synthetic datasets is presented in [27].

The �rst method, the variance-time plot, relies on the slowly decaying variance of a self-similar

series. The variance of X(m) is plotted against m on a log-log plot; a straight line with slope (��)

greater than -1 is indicative of self-similarity, and the parameter H is given by H = 1� �=2. The

second method, the R=S plot, uses the fact that for a self-similar dataset, the rescaled range or R=S

statistic grows according to a power law with exponent H as a function of the number of points

included (n). Thus the plot of R=S against n on a log-log plot has slope which is an estimate of H.

The third approach, the periodogram method, uses the slope of the power spectrum of the series as

frequency approaches zero. On a log-log plot, the periodogram slope is a straight line with slope

� � 1 = 1� 2H close to the origin.

While the preceding three graphical methods are useful for exposing faulty assumptions (such as
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non-stationarity in the dataset) they do not provide con�dence intervals, and as developed in [27],

they may be biased for large H. The fourth method, called the Whittle estimator, does provide a

con�dence interval, but has the drawback that the form of the underlying stochastic process must

be supplied. The two forms that are most commonly used are fractional Gaussian noise (FGN)

with parameter 1=2 < H < 1, and Fractional ARIMA (p; d; q) with 0 < d < 1=2 (for details see

[2, 4]). These two models di�er in their assumptions about the short-range dependences in the

datasets; FGN assumes no short-range dependence while Fractional ARIMA can assume a �xed

degree of short-range dependence.

Since we are concerned only with the long-range dependence in our datasets, we employ the

Whittle estimator as follows. Each hourly dataset is aggregated at increasing levels m, and the

Whittle estimator is applied to each m-aggregated dataset using the FGN model. This approach

exploits the property that any long-range dependent process approaches FGN when aggregated to a

su�cient level, and so should be coupled with a test of the marginal distribution of the aggregated

observations to ensure that it has converged to the Normal distribution. Asm increases short-range

dependences are averaged out of the dataset; if the value of H remains relatively constant we can

be con�dent that it measures a true underlying level of self-similarity. Since aggregating the series

shortens it, con�dence intervals will tend to grow as the aggregation level increases; however if the

estimates of H appear stable as the aggregation level increases, then we consider the con�dence

intervals for the unaggregated dataset to be representative.

2.3 Heavy-Tailed Distributions

The distributions we use in this paper have the property of being heavy-tailed. A distribution is

heavy-tailed if

P [X > x] � x��; as x!1; 0 < � < 2:

That is, regardless of the behavior of the distribution for small values of the random variable, if

the asymptotic shape of the distribution is hyperbolic, it is heavy-tailed.

The simplest heavy-tailed distribution is the Pareto distribution. The Pareto distribution is

hyperbolic over its entire range; its probability mass function is

p(x) = �k�x���1; �; k > 0; x � k:

and its cumulative distribution function is given by

F (x) = P [X � x] = 1� (k=x)�

The parameter k represents the smallest possible value of the random variable.
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Heavy-tailed distributions have a number of properties that are qualitatively di�erent from

distributions more commonly encountered such as the exponential, normal, or Poisson distributions.

If � � 2, then the distribution has in�nite variance; if � � 1 then the distribution has in�nite mean.

Thus, as � decreases, an arbitrarily large portion of the probability mass may be present in the tail

of the distribution. In practical terms a random variable that follows a heavy-tailed distribution

can give rise to extremely large values with non-negligible probability (see [20] and [16] for details

and examples).

To assess the presence of heavy tails in our data, we employ log-log complementary distribution

(LLCD) plots. These are plots of the complementary cumulative distribution �F (x) = 1 � F (x) =

P [X > x] on log-log axes. Plotted in this way, heavy-tailed distributions have the property that

d log �F (x)

d log x
= ��; x > �

for some �. To check for the presence of heavy tails in practice we form the LLCD plot and look

for approximately linear behavior over a signi�cant range (3 orders of magnitude or more) in the

tail.

It is possible to form rough estimates of the shape parameter � from the LLCD plot as well.

First, we inspect the LLCD plot and choose a value for � above which the plot appears to be linear.

Then we select equally-spaced points from among the LLCD points larger than � and estimate the

slope using least-squares regression.1 The proper choice of � is made based on inspecting the LLCD

plot; in this paper we identify the � used in each case, and show the resulting �tted line used to

estimate �.

Another approach we used to estimating tail weight is the Hill estimator [12] (described in

detail in [30]). The Hill estimator uses the k largest values from a dataset to estimate the value

of � for the dataset. In practice one plots the Hill estimator for increasing values of k, using only

the portion of the tail that appears to exhibit power-law behavior; if the estimator settles to a

consistent value, this value provides an estimate of �.

3 Related Work

The �rst step in understanding WWW tra�c is the collection of trace data. Previous measurement

studies of the Web have focused on reference patterns established based on logs of proxies [11, 25],

or servers [21]. The authors in [5] captured client traces, but they concentrated on events at the user

interface level in order to study browser and page design. In contrast, our goal in data collection

was to acquire a complete picture of the reference behavior and timing of user accesses to the

1Equally-spaced points are used because the point density varies over the range used, and the preponderance of

data points at small values would otherwise unduly in
uence the least-squares regression.
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WWW. As a result, we collected a large dataset of client-based traces. A full description of our

traces (which are available for anonymous FTP) is given in [6].

Previous wide-area tra�c studies have studied FTP, TELNET, NNTP, and SMTP tra�c [19,

20]. Our data complements those studies by providing a view of WWW (HTTP) tra�c at a

\stub" network. Since WWW tra�c accounts for a large fraction of the tra�c on the Internet,2

understanding the nature of WWW tra�c is important.

The benchmark study of self-similarity in network tra�c is [14], and our study uses many of

the same methods used in that work. However, the goal of that study was to demonstrate the

self-similarity of network tra�c; to do that, many large datasets taken from a multi-year span were

used. Our focus is not on establishing self-similarity of network tra�c (although we do so for the

interesting subset of network tra�c that is Web-related); instead we concentrate on examining the

reasons behind self-similarity of network tra�c. As a result of this di�erent focus, we do not analyze

tra�c datasets for low, normal, and busy hours. Instead we focus on the four busiest hours in our

logs. While these four hours are well described as self-similar, many less-busy hours in our logs

do not show self-similar characteristics. We feel that this is only the result of the tra�c demand

present in our logs, which is much lower than that used in [14]; this belief is supported by the

�ndings in that study, which showed that the intensity of self-similarity increases as the aggregate

tra�c level increases.

Our work is most similar in intent to [30]. That paper looked at network tra�c at the packet

level, identi�ed the 
ows between individual source/destination pairs, and showed that transmission

and idle times for those 
ows were heavy-tailed. In contrast, our paper is based on data collected

at the application level rather than the network level. As a result we are able to examine the

relationship between transmission times and �le sizes, and are able to assess the e�ects of caching

and user preference on these distributions. These observations allow us to build on the conclusions

presented in [30] and con�rm observations made in [20] by showing that the heavy-tailed nature of

transmission and idle times is not primarily a result of network protocols or user preference, but

rather stems from more basic properties of information storage and processing: both �le sizes and

user \think times" are themselves strongly heavy-tailed.

4 Examining Web Tra�c Self-Similarity

In this section we show evidence that WWW tra�c can be self-similar. To do so, we �rst describe

how we measured WWW tra�c; then we apply the statistical methods described in Section 2 to

assess self-similarity.

2See, for example, data at http://www.nlanr.net/INFO/.
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4.1 Data Collection

In order to relate tra�c patterns to higher-level e�ects, we needed to capture aspects of user

behavior as well as network demand. The approach we took to capturing both types of data

simultaneously was to modify a WWW browser so as to log all user accesses to the Web. The

browser we used was Mosaic, since its source was publicly available and permission has been granted

for using and modifying the code for research purposes. A complete description of our data collection

methods and the format of the log �les is given in [6]; here we only give a high-level summary.

We modi�ed Mosaic to record the Uniform Resource Locator (URL) [3] of each �le accessed by

the Mosaic user, as well as the time the �le was accessed and the time required to transfer the �le

from its server (if necessary). For completeness, we record all URLs accessed whether they were

served from Mosaic's cache or via a �le transfer; however the tra�c timeseries we analyze in this

section consist only of actual network transfers.

At the time of our study (January and February 1995) Mosaic was the WWW browser preferred

by nearly all users at our site. Hence our data consists of nearly all of the WWW tra�c at our site.

Since the time of our study, users have come to prefer commericial browsers which are not available

in source form. As a result, capturing an equivalent set of WWW user traces at the current time

would be more di�cult.

The data captured consists of the sequence of WWW �le requests performed during each session,

where a session is one execution of NCSA Mosaic. Each �le request is identi�ed by its URL, and

session, user, and workstation ID; associated with the request is the time stamp when the request

was made, the size of the document (including the overhead of the protocol) and the object retrieval

time. Timestamps were accurate to 10 ms. Thus, to provide 3 signi�cant digits in our results, we

limited our analysis to time intervals greater than or equal to 1 sec. To convert our logs to tra�c

time series, it was necessary to allocate the bytes transferred in each request equally into bins

spanning the transfer duration. Although this process smooths out short-term variations in the

tra�c 
ow of each transfer, our restriction to time series with granularity of 1 second or more|

combined with the fact that most �le transfers are short [6]|means that such smoothing has little

e�ect on our results.

To collect our data we installed our instrumented version of Mosaic in the general computing

environment at Boston University's Computer Science Department. This environment consists

principally of 37 SparcStation-2 workstations connected in a local network. Each workstation has

its own local disk; logs were written to the local disk and subsequently transferred to a central

repository. Although we collected data from 21 November 1994 through 8 May 1995, the data used

in this paper is only from the period 17 January 1995 to 28 February 1995. This period was chosen

because departmental WWW usage was distinctly lower (and the pool of users less diverse) before
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Sessions 4,700

Users 591

URLs Requested 575,775

Files Transferred 130,140

Unique Files Requested 46,830

Bytes Requested 2713 MB

Bytes Transferred 1849 MB

Unique Bytes Requested 1088 MB

Table 1: Summary Statistics for Trace Data Used in This Study

the start of classes in early January; and because by early March 1995, Mosaic had ceased to be

the dominant browser at our site. A statistical summary of the trace data used in this study is

shown in Table 1.

4.2 Self-Similarity of WWW Tra�c

Using the WWW tra�c data we obtained as described in the previous section, we show evidence

consistent with the conclusion that WWW tra�c is self-similar on time scales of one second and

above. To do so, we show that for four busy hours from our tra�c logs, the Hurst parameter H

for our datasets is signi�cantly di�erent from 1/2.

We used the four methods for assessing self-similarity described in Section 2: the variance-

time plot, the rescaled range (or R/S) plot, the periodogram plot, and the Whittle estimator. We

concentrated on individual hours from our tra�c series, so as to provide as nearly a stationary

dataset as possible.

To provide an example of these approaches, analysis of a single hour (4pm to 5pm, Thursday 5

Feb 1995) is shown in Figure 1. The �gure shows plots for the three graphical methods: variance-

time (upper left), rescaled range (upper right), and periodogram (lower center). The variance-time

plot is linear and shows a slope that is distinctly di�erent from -1 (which is shown for comparison);

the slope is estimated using regression as -0.48, yielding an estimate for H of 0.76. The R/S plot

shows an asymptotic slope that is di�erent from 0.5 and from 1.0 (shown for comparision); it is

estimated using regression as 0.75, which is also the corresponding estimate of H. The periodogram

plot shows a slope of -0.66 (the regression line is shown), yielding an estimate of H as 0.83. Finally,

the Whittle estimator for this dataset (not a graphical method) yields an estimate of

As discussed in Section 2.2, the Whittle estimator is the only method that yields con�dence

intervals on H, but it requires the the form of the underlying timeseries be provided. We used the

Fractional Gaussian Noise model, so it is important to verify that the underlying series behaves
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Figure 1: Graphical Analysis of a Single Hour

like FGN; namely, that is has a Normal marginal distribution and that additional short-range

dependence is not present. We can test whether lack of normality or short-range dependence is

biasing the Whittle estimator by m-aggregating the timeseries for successively large values of m,

and determining whether the Whittle estimator remains stable, since aggregating the series will

disrupt short-range correlations and tend to make the marginal distribution closer to the Normal.

The results of this method for four busy hours are shown in Figure 2. Each hour is shown in

one plot, from the busiest hour (largest amount of total tra�c) in the upper left to the least busy

hour in the lower right. In these �gures the solid line is the value of the Whittle estimate of H

as a function of the aggregation level m of the dataset. The upper and lower dotted lines are the

limits of the 95% con�dence interval on H. The three level lines represent the estimate of H for

the unaggregated dataset as given by the variance-time, R-S, and periodogram methods.

The �gure shows that for each dataset, the estimate of H stays relatively consistent as the

aggregation level is increased, and that the estimates given by the three graphical methods fall well
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Figure 2: Whittle Estimator Applied to Aggregated Datasets

within the range of H estimates given by the Whittle estimator. The estimates of H given by these

plots are in the range 0.7 to 0.8, consistent with the values for a lightly loaded network measured

in [14]. Moving from the busier hours to the less-busy hours, the estimates of H seem to decline

somewhat, and the variance in the estimate of H increases, which are also conclusions consistent

with previous research.

Thus the results in this section show evidence that WWW tra�c at stub networks might be

self-similar, when tra�c demand is high enough. We expect this to be even more pronounced on

backbone links, where tra�c from a multitude of sources is aggregated. In addition, WWW tra�c

in stub networks is likely to become more self-similar as the demand for, and utilization of, the

WWW increase in the future.
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5 Explaining Web Tra�c Self-Similarity

While the previous section showed evidence that Web tra�c can show self-similar characteristics,

it provides no explanation for this result. This section provides a possible explanation, based on

measured characteristics of the Web.

5.1 Superimposing Heavy-Tailed Renewal Processes

Our starting point is the method of constructing self-similar processes described in [30] which is a

re�nement of work done by Mandelbrot [15] and Taqqu and Levy [28]. A self-similar process may

be constructed by superimposing many simple renewal reward processes, in which the rewards are

restricted to the values 0 and 1, and in which the inter-renewal times are heavy-tailed. As described

in Section 2, a heavy-tailed distribution has in�nite variance and the weight of its tail is determined

by the parameter � < 2.

This construction can be visualized as follows. Consider a large number of concurrent processes

that are each either ON or OFF. The ON and OFF periods for each process strictly alternate,

and either the distribution of ON times is heavy tailed with parameter �1, or the distribution of

OFF times is heavy tailed with parameter �2, or both. At any point in time, the value of the time

series is the number of processes in the ON state. Such a model could correspond to a network of

workstations, each of which is either silent or transferring data at a constant rate. For this model, it

has been shown that the result of aggregating many such sources is a self-similar fractional Gaussian

noise process, with H = (3�min(�1; �2))=2 [30].

Adopting this model to explain the self-similarity of Web tra�c requires an explanation for

the heavy-tailed distribution of either ON or OFF times. In our system, ON times correspond

to the transmission durations of individual Web �les (although this is not an exact �t, since the

model assumes constant transmission rate during the ON times), and OFF times correspond to the

intervals between transmissions. So we need to ask whether Web �le transmission times or quiet

times are heavy-tailed, and if so, why.

Unlike tra�c studies that concentrate on network-level and transport-level data transfer rates,

we have available application-level information such as the names and sizes of �les being trans-

ferred, as well as their transmission times. Thus to answer these questions we can analyze the

characteristics of our client logs.
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Figure 3: Log-Log Complementary Distribution (left) and Hill Estimator (right) for Transmission

Times of Web Files

5.2 Examining Transmission Times

5.2.1 The Distribution of Web Transmission Times

Our �rst observation is that the distribution of Web �le transmission times shows non-negligible

probabilities over a wide range of �le sizes. Figure 3 (left side) shows the LLCD plot of the durations

of all 130,140 transfers that occurred during the measurement period. The shape of the upper tail

on this plot, while not strictly linear, shows only a slight downward trend over almost four orders of

magnitude. This is evidence of very high variance (though perhaps not in�nite) in the underlying

distribution.

From this plot is not clear whether actual ON times in the Web would show heavy tails, because

our assumption equating �le transfer durations with actual ON times is an oversimpli�cation (e.g.,

the pattern of packet arrivals during �le transfers may show large gaps). However, if we hypothesize

that the underlying distribution is heavy tailed, then this property would seem to be present

for values greater than about 0.5, which corresponds roughly to largest 10% of all transmissions

(log10(P [X > x]) < �1).

A least squares �t to evenly spaced data points greater than �0:5 (R2 = 0:98) has a slope of

�1:21, which yields �̂ = 1:21. The right side of Figure 3 shows the value of the Hill estimator for

varying k, again restricted to the upper 10% tail. The Hill plot shows that the estimator seems to

settle to a relatively constant estimate, consistent with �̂ � 1:2.

Thus, although this dataset does not show conclusive evidence of in�nite variance, it is suggestive

of a very high or in�nite variance condition in the underlying distribution of ON times. Note that

the result of aggregating a large number of ON/OFF processes in which the distribution of ON
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Figure 4: LLCD and Hill Estimator For Sizes of Web File Transfers

times is heavy-tailed with � = 1:2 should yield a self-similar process with H = 0:9, while our data

generally shows values of H in the range 0.7 to 0.8.

5.2.2 Why are Web Transmission Times Highly Variable?

To understand why transmission times exhibit high variance, we now examine size distributions

of Web �les themselves. First, we present the distribution of sizes for �le transfers in our logs.

The results for all 130,140 transfers is shown in Figure 4, which is a plot of the LLCD and the

Hill estimator for the set of transfer sizes in bytes. Again, choosing the point at which power-law

behavior begins is di�cult, but the �gure shows that for �le sizes greater than about 10,000 bytes,

transfer size distribution seems reasonably well modeled by a heavy-tailed distribution. This is the

range over which the Hill estimator is shown in the Figure.

A linear �t to the points for which �le size is greater than 10,000 yields �̂ = 1:15 (R2 = 0:99).

The Hill estimator shows some variability in the interval between 1 and 1.2, but its estimates seem

consistent with �̂ � 1:1.

Interestingly, the authors in [20] found that the upper tail of the distribution of data bytes in

FTP bursts was well �t to a Pareto distribution with 0:9 � � � 1:1. Thus our results indicate that

with respect to the upper-tail distribution of �le sizes, Web transfers do not di�er signi�cantly from

FTP tra�c; however our data also allow us to comment on the reasons behind the heavy-tailed

distribution of transmitted �les.

An important question then is why �le transfers show a heavy-tailed distribution. On one

hand, it is clear that the set of �les requested constitutes user \input" to the system. It's natural

to assume that �le requests therefore might be the primary determiner of heavy-tailed �le transfers.

If this were the case, then perhaps changes in user behavior might a�ect the heavy-tailed nature of
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Figure 5: LLCD of File Requests (left) and Unique Files (right)

�le transfers, and by implication, the self-similar properties of network tra�c.

In fact, in this section we argue that the set of �le requests made by users is not the primary

determiner of the heavy-tailed nature of �le transfers. Rather, �le transfers seem to be more stongly

determined by the set of �les available in the Web.

To support this conclusion we present characteristics of two more datasets. First, we present the

distribution of the set of all requests made by users. This set consists of 575,775 �les, and contains

both the requests that were satis�ed via the network and the requests that were satis�ed from

Mosaic's cache. Second, we present the distribution of the set of unique �les that were transferred.

This set consists of 46,830 �les, all di�erent. These two distributions are shown in Figure 5.

The �gure shows that both distributions appear to be heavy-tailed. For the set of �le requests,

we estimated the tail to start at approximately sizes of 10,000 bytes; over this range the slope

of the LLCD plot yields a �̂ of about 1.22 (R2 = 0:99) while the Hill estimator varies between

approximately 1.0 and 1.3. For the set of unique �les, we estimated the tail to start at approximately

30,000 bytes. The slope estimate over this range is �̂ of about 1.12 (R2 = 0:99) and the Hill

estimator over this range varies between 1.0 and 1.15.

The relationship between the three sets can be seen more clearly in Figure 6, which plots all

three distributions on the same axes. This �gure shows that the set of �le transfers is intermediate

in characteristics between the set of �le requests and the set of unique �les. For example, the

median size of the set of �le transfers lies between the median sizes for the sets of �le requests and

unique �les.

The reason for this e�ect can be seen as the natural result of caching. If caches were in�nite

in size and shared by all users, the set of �le transfers would be identical to the set of unique

�les, since each �le would miss in the cache only once. If �nite caches are performing well, we can
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Figure 6: LLCD plots of the Di�erent Distributions

expect that they are attempting to approximate the e�ects of an in�nite cache. Thus the e�ect of

caching (when it is e�ective) is to adjust the distributional characteristics of the set of transfers to

approximate those of the set of unique �les. In the case of our data, it seems that NCSA Mosaic

was able to achieve a reasonable approximation of the performance of an in�nite cache, despite

its �nite resources: from Table 1 we can calculate that NCSA Mosaic achieved a 77% hit rate

(1 � 130140=575775), while a cache of in�nite size (shared by all users) would achieve a 92% hit

rate (1� 46830=575775).

What, then, determines the distribution of the set of unique �les? To help answer this question

we surveyed 32 Web servers scattered throughout North America. These servers were chosen

because they provided a usage report based on www-stat 1.0 [23]. These usage reports provide

information su�cient to determine the distribution of �le sizes on the server (for �les accessed

during the reporting period). In each case we obtained the most recent usage reports (as of July

1995), for an entire month if possible. While this method is not a random sample of �les available

in the Web, it su�ced for the purpose of comparing distributional characteristics.

In fact, the distribution of all the available �les present on the 32 Web servers closely matches

the distribution of the set of unique �les in our client traces. The two distributions are shown on

the same axes in Figure 7. Although these two distributions appear very similar, they are based

on completely di�erent datasets. That is, it appears that the set of unique �les can be considered,

with respect to sizes, to be a sample from the set of all �les available on the Web.

This argument is based on the assumption that cache management policies do not speci�cally

exclude or include �les based on their size; and that unique �les are sampled without respect
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Figure 7: LLCD plots of the Unique Files and Available Files

to size from the set of available �les. While these assumptions may not hold in other contexts,

the data shown in Figures 6 and 7 seems to support them in this case. Thus we conclude that

as long as caching is e�ective, the set of �les available in the Web is likely to be the primary

determiner of the heavy-tailed characteristics of �les transferred|and that the set of requests made

by users is relatively less important. This suggests that available �les are of primary importance

in determining actual tra�c composition, and that changes in user request patterns are unlikely to

result in signi�cant changes to the self-similar nature of Web tra�c.

5.2.3 Why are Available Files Heavy-Tailed?

If available �les in the Web are in fact heavy-tailed, one possible explanation might be that the

explicit support for multimedia formats may encourage larger �le sizes, thereby increasing the tail

weight of distribution sizes. While we �nd that multimedia does increase tail weight to some degree,

in fact it is not the root cause of the heavy tails. This can be seen in Figure 8.

Figure 8 was constructed by categorizing all server �les into one of seven categories, based on

�le extension. The categories we used were: images, text, audio, video, archives, preformatted text,

and compressed �les. This simple categorization was able to encompass 85% of all �les. From this

set, the categories images, text, audio, and video accounted for 97%. The cumulative distribution

of these four categories, expressed as a fraction of the total set of �les, is shown in Figure 8. In

the �gure, the upper line is the distribution of all accessed �les, which is the same as the available

�les line shown in Figure 7. The three intermediate lines are the components of that distribution

attributable to images, audio, and video. The lowest line (at the extreme right-hand point) is the
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Figure 8: LLCD of File Sizes Available on 32 Web Sites, By File Type

component attributable to text (HTML) alone.

The �gure shows that the e�ect of adding multimedia �les to the set of text �les serves to

translate the tail to the right. However, it also suggests that the distribution of text �les may

itself be heavy-tailed. Using least-squares �tting for the portions of the distributions in which

log10(x) > 4, we �nd that for all �les available �̂ = 1:27 but that for the text �les only, �̂ = 1:59.

The e�ects of the various multimedia types are also evident from the �gure. In the approximate

range of 1,000 to 30,000 bytes, tail weight is primarily increased by images. In the approximate

range of 30,000 to 300,000 bytes, tail weight is increased mainly by audio �les. Beyond 300,000

bytes, tail weight is increased mainly by video �les.

The fact that �le size distributions have very long tails has been noted before, particularly in

�lesystem studies [1, 9, 17, 22, 24, 26], however they have not explicitly examined the tails for

power-law behavior and measurements of � values have been absent. As an example, we compare

the distribution of Web �les found in our logs with an overall distribution of �les found in a survey

of Unix �lesystems. While there is no truly \typical" Unix �le system, an aggregate picture of

�le sizes on over 1000 di�erent Unix �le systems was collected by Irlam in 1993.3 In Figure 9 we

compare the distribution of document sizes we found in the Web with that data. The Figure plots

the two histograms on the same, log-log scale.

Surprisingly, Figure 9 shows that in our Web data, there is a stronger preference for small �les

than in Unix �le systems.4 The Web favors documents in the 256 to 512 byte range, while Unix

3This data is available from http://www.base.com/gordoni/ufs93.html.
4However, not shown in the �gure is the fact that while there are virtually no Web �les smaller than 100 bytes,
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Figure 9: Comparison of Unix File Sizes with Web File Sizes

�les are more commonly in the 1KB to 4KB range. More importantly, the tail of the distribution

of Web �les is not nearly as heavy as the tail of the distribution of Unix �les. Thus, despite the

emphasis on multimedia in the Web, we conclude that Web �le systems are currently more biased

toward small �les than are typical Unix �le systems.

In conclusion, these observations seem to show that heavy-tailed size distributions are not

uncommon in various data storage systems. It seems that the possibility of very large �le sizes

may be non-negligible in a wide range of contexts; and that in particular this e�ect is of central

importance in understanding the genesis of self-similar tra�c in the Web.

5.3 Examining Quiet Times

In subsection 5.1, we attributed the self-similarity of Web tra�c to the superimposition of heavy-

tailed ON/OFF processes, where the ON times correspond to the transmission durations of indi-

vidual Web �les and OFF times correspond to periods when a workstation is not receiving Web

data. While ON times are the result of a positive event (transmission), OFF times are a negative

event that could occur for a number of reasons. The workstation may not be receiving data because

it has just �nished receiving one component of a Web page (say, text containing an inlined image)

and is busy interpreting, formatting and displaying it before requesting the next component (say,

the inlined image). Or, the workstation may not be receiving data because the user is inspecting

the results of the last transfer, or not actively using the Web at all. We will call these two condi-

tions \Active OFF" time and \Inactive OFF" time. The di�erence between Active OFF time and

there are a signi�cant number of Unix �les smaller than 100 bytes, including many zero- and one-byte �les.
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Figure 10: LLCD Plot of OFF times Showing Active and Inactive Regimes

Inactive OFF time is important in understanding the distribution of OFF times considered in this

section.

To extract OFF times from our traces, we adopt the following de�nitions. Within each Mosaic

session, let ai be the absolute arrival time of URL request i. Let ci be the absolute completion time

of the transmission resulting from URL request i. It follows that (ci � ai) is the random variable

of ON times (whose distribution was shown in Figure 3) whereas (ai+1� ci) is the random variable

of OFF times. Figure 10 shows the LLCD plot of (ai+1 � ci).

In contrast to the other distributions we study in this paper, Figure 10 shows that the distri-

bution of OFF times is not well modeled by a distribution with constant �. Instead, there seem to

be two regimes for �. The region from 1 ms to 1 sec forms one regime; the region from 30 sec to

3000 sec forms another regime; in between the two regions the curve is in transition.

The di�erence between the two regimes in Figure 10 can be explained in terms of Active OFF

time versus Inactive OFF time. Active OFF times represent the time needed by the client machine

to process transmitted �les (e.g. interpret, format, and display a document component). It seems

reasonable that OFF times in the range of 1 ms to 1 sec are not primarily due to users examining

data, but are more likely to be strongly determined by machine processing and display time for

data items that are retrieved as part of a multi-part document. This distinction is illustrated in

Figure 11. For this reason Figure 10 shows the 1 ms to 1 sec region as Active OFF time. On

the other hand, it seems reasonable that very few embedded components would require 30 secs or

more to interpret, format, and display. Thus we assume that OFF times greater than 30 secs are

primarily user-determined, Inactive OFF times.

This delineation between Active and Inactive OFF times explains the two notable slopes in

Figure 10; furthermore, it indicates that the heavy-tailed nature of OFF times is primarily due to
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Figure 12: Histogram of inter-arrival time of URL requests

Inactive OFF times that result from user-induced delays, rather than from machine-induced delays

or processing.

Another way of characterizing these two regimes is through the examination of the inter-arrival

times of URL requests|namely, the distribution of ai+1 � ai. Figure 12 shows that distribution.

The \dip" in the distribution in Figure 12 re
ects the presence of two underlying distributions.

The �rst is the inter-arrival of URL requests generated in response to a single user request (or user

click). The second is the inter-arrival of URL requests generated in response to two consecutive

user requests. The di�erence between these distributions is that the former is a�ected by the distri-

bution of ON times and the distribution of Active OFF times, whereas the latter is a�ected by the

distribution of ON times, Active OFF times, and Inactive OFF times. A recent study [7] con�rmed

this observation by analyzing and characterizing the distribution of document request arrivals at

access links. This study, which was based on two data sets di�erent from ours,5 concluded that

the two regimes exhibited in Figure 10 could be empirically modeled using a Weibull distribution

5Namely, the Web tra�c monitored at a corporate �rewall during two 2-hour sessions.
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for the inter-arrival of URL requests during the active regime, and a Pareto distribution for the

Inactive OFF times.

For self-similarity via aggregation of heavy-tailed renewal processes, the important part of the

distribution of OFF times is its tail. Measuring the value of � for the tail of the distribution (OFF

times greater than 30 sec) via the slope method yields �̂ = 1:50 (R2 = 0:99). Thus we see that the

OFF times measured in our traces may be heavy-tailed, but with lighter tails than the distribution

of ON times. In addition, we argue that any heavy-tailed nature of OFF times is a result of user

think time rather than machine-induced delays.

Since we saw in the previous section that ON times were heavy-tailed with � � 1:0 to 1.3, and

we see in this section that OFF times are heavy tailed with � � 1:5, we conclude that ON times

(and, consequently, the distribution of available �les in the Web) are more likely responsible for

the observed level of tra�c self-similarity, rather than OFF times.

6 Conclusion

In this paper we've shown evidence that tra�c due to World Wide Web transfers shows character-

istics that are consistent with self-similarity. More importantly, we've traced the genesis of Web

tra�c self-similarity along two threads: �rst, we've shown that transmission times may be heavy-

tailed, primarily due to the distribution of available �le sizes in the Web. Second, we've shown that

silent times also may be heavy-tailed, primarily due to the in
uence of user \think time."

Comparing the distributions of ON and OFF times, we �nd that the ON time distribution is

heavier tailed than the OFF time distribution. The model presented in [30] indicates that when

comparing the ON and OFF times, the distribution with the heavier tail is the determiner of

actual tra�c self-similarity levels. Thus we feel that the distribution of �le sizes in the Web (which

determine ON times) is likely the primary determiner of Web tra�c self-similarity. In fact, the

work presented in [18] has shown that the transfer of �les whose sizes are drawn from a heavy-tailed

distribution is su�cient to generate self-similarity in network tra�c.

These results seem to trace the causes of Web tra�c self-similarity back to basic characteristics of

information organization and retrieval. The heavy-tailed distribution of �le sizes we have observed

seems similar in spirit to Pareto distributions noted in the social sciences, such as the distribution

of lengths of books on library shelves, and the distribution of word lengths in sample texts (for a

discussion of these e�ects, see [16] and citations therein). In fact, in other work [6] we show that

the rule known as Zipf's Law (degree of popularity is exactly inversely proportional to rank of

popularity) applies quite strongly to Web documents. The heavy-tailed distribution of user think

times also seems to be a feature of human information processing (e.g., [21]).

These results suggest that the self-similarity of Web tra�c is not a machine-induced artifact;
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in particular, changes in protocol processing and document display are not likely to fundamentally

remove the self-similarity of Web tra�c (although some designs may reduce or increase the intensity

of self-similarity for a given level of tra�c demand).

A number of questions are raised by this study. First, the generalization from Web tra�c

to aggregated wide-area tra�c is not obvious. While other authors have noted the heavy-tailed

distribution of FTP transfers [20], extending our approach to wide-area tra�c in general is di�cult

because of the many sources of tra�c and determiners of tra�c demand.

A second question concerns the amount of demand required to observe self-similarity in a tra�c

series. As the number of sources increases, the statistical con�dence in judging self-similarity

increases; however it isn't clear whether the important e�ects of self-similarity (burstiness at a

wide range of scales and the resulting impact on bu�ering, for example) remain even at low levels

of tra�c demand.
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