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on Measurement and Modeling of Computer Systems, pp. 160-169, May 1996Self-Similarity in World Wide Web Tra�cEvidence and Possible Causes�Mark E. Crovella and Azer BestavrosComputer Science DepartmentBoston UniversityBoston, ma 02215fcrovella,bestg@cs.bu.eduAbstractRecently the notion of self-similarity has been shown to applyto wide-area and local-area network tra�c. In this paper weexamine the mechanisms that give rise to the self-similarityof network tra�c. We present a hypothesized explanation forthe possible self-similarity of tra�c by using a particular sub-set of wide area tra�c: tra�c due to the World Wide Web(WWW). Using an extensive set of traces of actual user exe-cutions of NCSA Mosaic, reecting over half a million requestsfor WWW documents, we examine the dependence structureof WWW tra�c. First, we show evidence that WWW traf-�c exhibits behavior that is consistent with self-similar tra�cmodels. Then we show that the self-similarity in such traf-�c can be explained based on the underlying distributions ofWWW document sizes, the e�ects of caching and user prefer-ence in �le transfer, the e�ect of user \think time", and thesuperimposition of many such transfers in a local area network.To do this we rely on empirically measured distributions bothfrom our traces and from data independently collected at overthirty WWW sites.1 IntroductionUnderstanding the nature of network tra�c is critical in orderto properly design and implement computer networks and net-work services like the World Wide Web. Recent examinationsof LAN tra�c [16] and wide area network tra�c [20] have chal-lenged the commonly assumed models for network tra�c, e.g.,the Poisson distribution. Were tra�c to follow a Poisson orMarkovian arrival process, it would have a characteristic burstlength which would tend to be smoothed by averaging over along enough time scale. Rather, measurements of real tra�cindicate that signi�cant tra�c variance (burstiness) is presenton a wide range of time scales.Tra�c that is bursty on many or all time scales can be de-scribed statistically using the notion of self-similarity, which is�This work was supported in part by NSF grants CCR-9501822 andCCR-9308344.Permission to make digital or hard copies of part or all of this work forpersonal or classroom use is granted without fee provided that copiesare not made or distributed for pro�t or commercial advantage and thatcopies bear this notice and the full citation on the �rst page. Copy-rights for components of this work owned by others than ACM must behonored. Abstracting with credit is permitted. To copy otherwise, torepublish, to post on servers or to redistribute to lists, requires priorspeci�c permission and/or a fee.SIGMETRICS 96-5/96 Philadelphia, PA, USAc1996 ACM

a property we associate with fractals|objects whose appear-ance is unchanged regardless of the scale at which they areviewed. In the case of stochastic objects like timeseries, self-similarity is used in the distributional sense: when viewed atvarying scales, the object's distribution remains unchanged.Since a self-similar process has observable bursts on all timescales, it exhibits long-range dependence; values at any instantare typically correlated with all future values. Surprisingly(given the counterintuitive aspects of long-range dependence)the self-similarity of Ethernet network tra�c has been rigor-ously established [16]. The importance of long-range depen-dence in network tra�c is beginning to be observed in studiessuch as [15], which show that packet loss and delay behavior isradically di�erent in simulations using real tra�c data ratherthan traditional network models.However, the reasons behind network tra�c self-similarityhave not been clearly identi�ed. In this paper we show that insome cases, network tra�c self-similarity can be explained interms of �le system characteristics and user behavior. In theprocess, we trace the genesis of network tra�c self-similarityback from the tra�c itself, through the actions of �le trans-mission, caching systems, and user choice, to the distributionsof �le sizes and user event interarrivals.To bridge the gap between studying network tra�c on onehand and high-level system characteristics on the other, wemake use of two essential tools. First, to explain self-similarnetwork tra�c in terms of individual transmission lengths, weemploy the mechanism introduced in [17] and described in [16].Those papers point out that self-similar tra�c can be con-structed by multiplexing a large number of ON/OFF sourcesthat have ON and OFF period lengths that are heavy-tailed,as de�ned in Section 2.2. Such a mechanism could correspondto a network of workstations, each of which is either silent ortransferring data at a constant rate.Our second tool in bridging the gap between transmissiontimes and high-level system characteristics is our use of theWorld Wide Web (WWW or Web) as an object of study. TheWeb provides a special opportunity for studying network traf-�c because it is a \closed" system: all tra�c arises as the resultof �le transfers from an easily studied set, and user activity iseasily monitored.To study the tra�c patterns of the WWW we collectedreference data reecting actual WWW use at our site. We in-strumented NCSA Mosaic [9] to capture user access patternsto the Web. Since at the time of our data collection, Mo-saic was by far the dominant WWW browser at our site, wewere able to capture a fairly complete picture of Web tra�con our local network; our dataset consists of more than halfa million user requests for document transfers, and includes



detailed timing of requests and transfer lengths. In additionwe surveyed a number of WWW servers to capture documentsize information that we used to validate assumptions made inour analysis.The paper takes two parts. First, we consider the possi-bility of self-similarity of Web tra�c for the busiest hours wemeasured. To do so we use analyses very similar to those per-formed in [16]. These analyses support the notion that Webtra�c may show self-similar characteristics, at least when de-mand is high enough. This result in itself has implicationsfor designers of systems that attempt to improve performancecharacteristics of the WWW.Second, using our WWW tra�c, user preference, and �lesize data, we comment on reasons why the transmission timesand quiet times for any particular Web session are heavy-tailed, which is an essential characteristic of the proposedmechanism for self-similarity of tra�c. In particular, we ar-gue that many characteristics of WWW use can be modelledusing heavy-tailed distributions, including the distribution oftransfer times, the distribution of user requests for documents,and the underlying distribution of documents sizes available inthe Web. In addition, using our measurements of user inter-request times, we explore reasons for the heavy-tailed distri-bution of quiet times needed for self-similarity.2 Background2.1 De�nition of Self-SimilarityFor detailed discussion of self-similarity in timeseries data andthe accompanying statistical tests, see [2, 27]. Our discussionin this subsection and the next closely follows those sources.A self-similar time series has the property that when ag-gregated (leading to a shorter time series in which each pointis the sum of multiple original points) the new series has thesame autocorrelation function as the original. That is, givena stationary timeseries X = (Xt; t = 0; 1; 2:::), we de�ne them-aggregated series X(m) = (X(m)k : k = 1; 2; 3; :::) by sum-ming the original series X over nonoverlapping blocks of sizem. Then if X is self-similar, it has the same autocorrelationfunction r(k) = E[(Xt � �)(Xt+k � �)] as the series X(m) forall m. Note that this means that the series is distributionallyself-similar: the distribution of the aggregated series is thesame (except for changes in scale) as that of the original.As a result, self-similar processes show long-range depen-dence. A process with long-range dependence has an autocor-relation function r(k) � k�� as k ! 1, where 0 < � < 1.Thus the autocorrelation function of such a process decayshyperbolically (as compared to the exponential decay exhib-ited by traditional tra�c models). Hyperbolic decay is muchslower than exponential decay, and since � < 1, the sum ofthe autocorrelation values of such a series approaches in�nity.This has a number of implications. First, the variance of nsamples from such a series does not decrease as a function ofn (as predicted by basic statistics for uncorrelated datasets)but rather by the value n�� . Second, the power spectrum ofsuch a series is hyperbolic, rising to in�nity at frequency zero| reecting the \in�nite" inuence of long-range dependencein the data.One of the attractive features of using self-similar mod-els for time series, when appropriate, is that the degree ofself-similarity of a series is expressed using only a single pa-rameter. The parameter expresses the speed of decay of theseries' autocorrelation function. For historical reasons, the pa-rameter used is the Hurst parameter H = 1� �=2. Thus, for

self-similar series, 1=2 < H < 1. As H ! 1, the degree ofself-similarity increases. Thus the fundamental test for self-similarity of a series reduces to the question of whether H issigni�cantly di�erent from 1=2.In this paper we use four methods to test for self-similarity.These methods are described fully in [2] and are the samemethods described and used in [16]. A summary of the relativeaccuracy of these methods on synthetic datasets is presentedin [24].The �rst method, the variance-time plot, relies on the slowlydecaying variance of a self-similar series. The variance of X(m)is plotted against m on a log-log plot; a straight line with slope(�) greater than -1 is indicative of self-similarity, and the pa-rameter H is given by H = 1 � �=2. The second method,the R=S plot, uses the fact that for a self-similar dataset, therescaled range or R=S statistic grows according to a powerlaw with exponent H as a function of the number of pointsincluded (n). Thus the plot of R=S against n on a log-log plothas slope which is an estimate of H. The third approach, theperiodogram method, uses the slope of the power spectrum ofthe series as frequency approaches zero. On a log-log plot, theperiodogram slope is a straight line with slope �� 1 = 1� 2Hclose to the origin.While the preceding three graphical methods are useful forexposing faulty assumptions (such as non-stationarity in thedataset) they do not provide con�dence intervals. The fourthmethod, called theWhittle estimator does provide a con�denceinterval, but has the drawback that the form of the underly-ing stochastic process must be supplied. The two forms thatare most commonly used are fractional Gaussian noise (FGN)with parameter 1=2 < H < 1, and Fractional ARIMA (p; d; q)with 0 < d < 1=2 (for details see [2, 4]). These two models dif-fer in their assumptions about the short-range dependences inthe datasets; FGN assumes no short-range dependence whileFractional ARIMA can assume a �xed degree of short-rangedependence.Since we are concerned only with the long-range depen-dence of our datasets, we employ the Whittle estimator asfollows. Each hourly dataset is aggregated at increasing levelsm, and the Whittle estimator is applied to each m-aggregateddataset using the FGN model. The resulting estimates of Hand con�dence intervals are plotted as a function of m. Thisapproach exploits the property that any long-range dependentprocess approaches FGN when aggregated to a su�cient level.As m increases short-range dependences are averaged out ofthe dataset; if the value of H remains relatively constant wecan be con�dent that it measures a true underlying level ofself-similarity.2.2 Heavy-Tailed DistributionsThe distributions we use in this paper have the property ofbeing heavy-tailed. A distribution is heavy-tailed ifP [X > x] � x��; as x!1; 0 < � < 2:That is, regardless of the behavior of the distribution for smallvalues of the random variable, if the asymptotic shape of thedistribution is hyperbolic, it is heavy-tailed.The simplest heavy-tailed distribution is the Pareto distri-bution. The Pareto distribution is hyperbolic over its entirerange; its probability mass function isp(x) = �k�x���1; �; k > 0; x � k:and its cumulative distribution function is given byF (x) = P [X � x] = 1� (k=x)�



The parameter k represents the smallest possible value of therandom variable.Our results are based on estimating the values of � fora number of empirically measured distributions, such as thelengths of World Wide Web �le transmission times. To do so,we employ log-log complementary distribution (LLCD) plots.These are plots of the complementary cumulative distribution�F (x) = 1� F (x) = P [X > x] on log-log axes. Plotted in thisway, heavy-tailed distributions have the property thatd log �F (x)d log x = ��; x > �for some �. In practice we obtain an estimate for � by plottingthe LLCD plot of the dataset and selecting a value for � abovewhich the plot appears to be linear. Then we select equally-spaced points from among the LLCD points larger than � andestimate the slope using least-squares regression. Equally-spaced points are used because the point density varies overthe range used, and the preponderance of data points near themedian would otherwise unduly inuence the least-squares re-gression.In all our � estimates for �le sizes we use � = 1000 meaningthat we consider tails to be the portions of the distributionsfor �les of 1,000 bytes or greater.An alternative approach to estimating tail weight, used in[28], is the Hill estimator [11]. The Hill estimator does not givea single estimate of �, but can be used to gauge the generalrange of �s that are reasonable. We used the Hill estimatorto check that the estimates of � obtained using the LLCDmethod were within range; in all cases they were.2.2.1 Testing for In�nite VarianceThere is evidence that, over their entire range, many of the dis-tributions we study may be well characterized using lognormaldistributions [19]. However, lognormal distributions do nothave in�nite variance, and hence are not heavy-tailed. In ourwork, we are not concerned with distributions over their entirerange|only their tails. As a result we don't use goodness-of-�ttests to determine whether Pareto or lognormal distributionsare better at describing our data. However, it is important toverify that our datasets exhibit the in�nite variance charac-teristic of heavy tails. To do so we use a simple test based onthe Central Limit Theorem (CLT), which states that the sumof a large number of i.i.d. samples from any distribution with�nite variance will tend to be normally distributed. To testfor in�nite variance we proceed as follows. First, form the m-aggregrated dataset from the original dataset for large valuesof m (typically in the range 10 to 1000). Next, we inspect thetail behavior of the aggregated datasets using the LLCD plot.For datasets with �nite variance, the slope will increasinglydecline as m increases, reecting the underlying distribution'sapproximation of a normal distribution. For datasets with in-�nite variance, the slope will remain roughly constant withincreasing m.An example is shown in Figure 1. The �gure shows the CLTtest for aggregation levels of 10, 100, and 500 as applied to twosynthetic datasets. On the left the dataset consists of 10,000samples from a Pareto distribution with � = 1:0. On theright the dataset consists of 10,000 samples from a lognormaldistribution with � = 2:0; � = 2:0. These parameters werechosen so as to make the Pareto and lognormal distributionsappear approximately similar for log10(x) in the range 0 to4. In each plot the original LLCD plot for the dataset is thelowermost line; the upper lines are the LLCD plots of the

aggregated datasets. Increasing aggregation level increases theaverage value of the points in the dataset (since the sums arenot normalized by the new mean) so greater aggregation levelsshow up as higher lines in the plot. The �gure clearly showsthe qualitative di�erence between �nite and in�nite variancedatasets. The Pareto dataset is characterized by parallel lines,while the lognormal dataset is characterized by lines that seemroughly convergent.3 Related WorkThe �rst step in understanding WWW tra�c is the collec-tion of trace data. Previous measurement studies of the Webhave focused on reference patterns established based on logsof proxies [10, 23], or servers [21]. The authors in [5] capturedclient traces, but they concentrated on events at the user in-terface level in order to study browser and page design. Incontrast, our goal in data collection was to acquire a completepicture of the reference behavior and timing of user accessesto the WWW. As a result, we collected a large dataset ofclient-based traces. A full description of our traces (which areavailable for anonymous FTP) is given in [8].Previous wide-area tra�c studies have studied FTP, TEL-NET, NNTP, and SMTP tra�c [19, 20]. Our data comple-ments those studies by providing a view of WWW (HTTP)tra�c at a \stub" network. In addition, our measurements ofWeb �le sizes are in general agreement with those reported in[1]. Since WWW tra�c accounts for more than 25% of thetra�c on the Internet and is currently growing more rapidlythan any other tra�c type [12], understanding the nature ofWWW tra�c is important and is expected to increase in im-portance.The benchmark study of self-similarity in network tra�c is[14, 16], and our study uses many of the same methods usedtherein. However, the goal of that study was to demonstratethe self-similarity of network tra�c; to do that, many largedatasets taken from a multi-year span were used. Our focus isnot on establishing self-similarity of network tra�c (althoughwe do so for the interesting subset of network tra�c that isWeb-related); instead we concentrate on examining the rea-sons behind that self-similarity. As a result of this di�erentfocus, we do not analyze tra�c datasets for low, normal, andbusy hours. Instead we focus on the four busiest hours in ourlogs. While these four hours are self-similar, many less-busyhours in our logs do not show self-similar characteristics. Wefeel that this is only the result of the tra�c demand present inour logs, which is much lower than that used in [14, 16]; thisbelief is supported by the �ndings in that study, which showedthat the intensity of self-similarity increases as the aggregatetra�c level increases.Our work is most similar in intent to [28]. That paperlooked at network tra�c at the packet level, identi�ed the owsbetween individual source/destination pairs, and showed thattransmission and idle times for those ows were heavy-tailed.In contrast, our paper is based on data collected at the appli-cation level rather than the network level. As a result we areable to examine the relationship between transmission timesand �le sizes, and are able to assess the e�ects of caching anduser preference on these distributions. These observations al-low us to build on the conclusions presented in [28] by showingthat the heavy-tailed nature of transmission and idle times isnot primarily a result of network protocols or user preference,but rather stems from more basic properties of informationstorage and processing: both �le sizes and user \think times"are themselves strongly heavy-tailed.
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All PointsFigure 1: Comparison of CLT Test for Pareto (left) and Lognormal (right) Distributions4 Examining Web Tra�c Self-SimilarityIn this section we show evidence that WWW tra�c can be self-similar. To do so, we �rst describe how we measured WWWtra�c; then we apply the statistical methods described in Sec-tion 2 to assess self-similarity.4.1 Data CollectionIn order to relate tra�c patterns to higher-level e�ects, weneeded to capture aspects of user behavior as well as networkdemand. The approach we took to capturing both types ofdata simultaneously was to modify a WWW browser so as tolog all user accesses to the Web. The browser we used wasMosaic, since its source was publicly available and permissionhas been granted for using and modifying the code for researchpurposes. A complete description of our data collection meth-ods and the format of the log �les is given in [8]; here we onlygive a high-level summary.We modi�ed Mosaic to record the Uniform Resource Lo-cator (URL) [3] of each �le accessed by the Mosaic user, aswell as the time the �le was accessed and the time required totransfer the �le from its server (if necessary). For complete-ness, we record all URLs accessed whether they were servedfrom Mosaic's cache or via a �le transfer; however the traf-�c timeseries we analyze in this section consist only of actualnetwork transfers.At the time of our study (January and February 1995)Mosaic was the WWW browser preferred by nearly all usersat our site. Hence our data consists of nearly all of the WWWtra�c at our site. Since the time of our study, the preferredbrowser has become Netscape [6], which is not available insource form. As a result, capturing an equivalent set of WWWuser traces at the current time would be signi�cantly moredi�cult.The data captured consists of the sequence of WWW �lerequests performed during each session. Each �le request isidenti�ed by its URL, and session, user, and workstation ID;associated with the request is the time stamp when the requestwas made, the size of the document (including the overheadof the protocol) and the object retrieval time. Timestampswere accurate to 10 ms. Thus, to provide 3 signi�cant digitsin our results, we limited our analysis to time intervals greaterthan or equal to 1 sec. To convert our logs to tra�c timeseries, it was necessary to allocate the bytes transferred ineach request equally into bins spanning the transfer duration.Although this process smooths out short-term variations in thetra�c ow of each transfer, our restriction to time series with

Sessions 4,700Users 591URLs Requested 575,775Files Transferred 130,140Unique Files Requested 46,830Bytes Requested 2713 MBBytes Transferred 1849 MBUnique Bytes Requested 1088 MBTable 1: Summary Statistics for Trace Data Used in ThisStudygranularity of 1 second or more|combined with the fact thatmost �le transfers are short|means that such smoothing haslittle e�ect on our results.To collect our data we installed our instrumented versionof Mosaic in the general computing environment at BostonUniversity's Computer Science Department. This environ-ment consists principally of 37 SparcStation-2 workstationsconnected in a local network. Each workstation has its ownlocal disk; logs were written to the local disk and subsequentlytransferred to a central repository. Although we collected datafrom 21 November 1994 through 8 May 1995, the data usedin this paper is only from the period 17 January 1995 to 28February 1995. This period was chosen because departmen-tal WWW usage was distinctly lower (and the pool of usersless diverse) before the start of classes in early January; andbecause by early March 1995, Mosaic had ceased to be thedominant browser at our site. A statistical summary of thetrace data used in this study is shown in Table 1.4.2 Self-Similarity of WWW Tra�cUsing the WWW tra�c data we obtained as described in theprevious section, we show evidence that WWW tra�c mightbe self-similar. First, we show that WWW tra�c contains traf-�c bursts observable over four orders of magnitude. Second,we show that for four busy hours from our tra�c logs, theHurst parameter H for our datasets is signi�cantly di�erentfrom 1/2, consistent with a conclusion of self-similarity.4.2.1 Burstiness at Varying Time ScalesOne of the most important aspects of self-similar tra�c is thatthere is no characteristic size of a tra�c burst; as a result,the aggregation or superimposition of many such sources doesnot result in a smoother tra�c pattern. One way to assess
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Figure 2: Tra�c Bursts over Four Orders of Magnitude; Upper Left: 1000, Upper Right: 100, Lower Left: 10, and Lower Right:1 Second Aggegrations. (Actual Transfers)this e�ect is by visually inspecting time series plots of tra�cdemand.In Figure 2 we show four time series plots of the WWWtra�c induced by our reference traces. The plots are producedby aggregating byte tra�c into discrete bins of 1, 10, 100, or1000 seconds.The upper left plot is a complete presentation of the entiretra�c time series using 1000 second (16.6 minute) bins. Thediurnal cycle of network demand is clearly evident, and dayto day activity shows noticeable bursts. However, even withinthe active portion of a single day there is signi�cant burstiness;this is shown in the upper right plot, which uses a 100 secondtimescale and is taken from a typical day in the middle of thedataset. Finally, the lower left plot shows a portion of the 100second plot, expanded to 10 second detail; and the lower rightplot shows a portion of the lower left expanded to 1 seconddetail. These plots show signi�cant bursts occurring at thesecond-to-second level.4.2.2 Statistical AnalysisWe used the four methods for assessing self-similarity describedin Section 2: the variance-time plot, the rescaled range (orR/S) plot, the periodogram plot, and the Whittle estimator.We concentrated on individual hours from our tra�c series, soas to provide as nearly a stationary dataset as possible.To provide an example of these approaches, analysis of asingle hour (4pm to 5pm, Thursday 5 Feb 1995) is shown inFigure 3. The �gure shows plots for the three graphical meth-ods: variance-time (upper left), rescaled range (upper right),and periodogram (lower center). The variance-time plot is lin-

ear and shows a slope that is distinctly di�erent from -1 (whichis shown for comparison); the slope is estimated using regres-sion as -0.48, yielding an estimate for H of 0.76. The R/S plotshows an asymptotic slope that is di�erent from 0.5 and from1.0 (shown for comparision); it is estimated using regressionas 0.75, which is also the corresponding estimate of H. Theperiodogram plot shows a slope of -0.66 (the regression line isshown), yielding an estimate of H as 0.83. Finally, the Whittleestimator for this dataset (not a graphical method) yields anestimate of H = 0:82 with a 95% con�dence interval of (0.77,0.87).As discussed in Section 2.1, the Whittle estimator is theonly method that yields con�dence intervals on H, but short-range dependence in the timeseries can introduce inaccura-cies in its results. These inaccuracies are minimized by m-aggregating the timeseries for successively large values of m,and looking for a value of H around which the Whittle esti-mator stabilizes.The results of this method for four busy hours are shown inFigure 4. Each hour is shown in one plot, from the busiest hourin the upper left to the least busy hour in the lower right. Inthese �gures the solid line is the value of the Whittle estimateof H as a function of the aggregation level m of the dataset.The upper and lower dotted lines are the limits of the 95%con�dence interval on H. The three level lines represent theestimate of H for the unaggregated dataset as given by thevariance-time, R-S, and periodogram methods.The �gure shows that for each dataset, the estimate of Hstays relatively consistent as the aggregation level is increased,and that the estimates given by the three graphical methods
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log10(frequency)Figure 3: Graphical Analysis of a Single Hourfall well within the con�dence intervals on H. The estimatesof H given by these plots are in the range 0.7 to 0.8, consistentwith the values for a lightly loaded network measured in [16].Moving from the busier hours to the less-busy hours, the esti-mates of H seem to decline somewhat, and the variance in theestimate of H increases, which are also conclusions consistentwith previous research.Thus the results in this section show evidence that WWWtra�c at stub networks might be self-similar, when tra�c de-mand is high enough. We expect this to be even more pro-nounced at routers, where tra�c from a multitude of sourcesis aggregated. In addition, WWW tra�c in stub networksis likely to become more self-similar as the demand for, andutilization of the WWW increase in the future.5 Explaining Web Tra�c Self-SimilarityWhile the previous section showed evidence that WWW tra�ccan show self-similar characteristics, it provides no explanationfor this result. This section provides a possible explanation,based on measured characteristics of the Web.5.1 Superimposing Heavy-Tailed Renewal ProcessesOur starting point is the method of constructing self-similarprocesses described by Mandelbrot [17] and Taqqu and Levy[26] and summarized in [16]. A self-similar process may be con-structed by superimposing many simple renewal reward pro-cesses, in which the rewards are restricted to the values 0 and1, and in which the inter-renewal times are heavy-tailed. Asdescribed in Section 2, heavy-tailed distributions have in�nitevariances and the weight of their tails is determined by theparameter � < 2. As the number of such sources grows large,such a construction yields a self-similar fractional Gaussiannoise process with H = (3� �)=2.This construction can be visualized as follows. Consider alarge number of concurrent processes that are each either ONor OFF. At any point in time, the value of the time series isthe number of processes in the ON state. If the distribution ofON and OFF times for each process is heavy-tailed, then thetime series will be self-similar. Such a model could correspondto a network of workstations, each of which is either silent ortransferring data at a constant rate.Adopting this model to explain the self-similarity of WWWtra�c requires an explanation for the heavy-tailed distributionof ON and OFF times. In our system, ON times correspondto the transmission durations of individual WWW �les, andOFF times correspond to the intervals between transmissions.

So we need to ask whether WWW �le transmission times andquiet times are heavy-tailed, and if so, why.Unlike some previous wide-area tra�c studies that concen-trate on network-level data transfer rates, we have availableapplication-level information such as the names and sizes of�les being transferred, as well as their transmission times. Inaddition, our system is \closed" in the sense that all our tra�cconsists of Web �le transfers. Thus to answer these questionswe can analyze the characteristics of our client logs.5.2 Examining Web Transmission Times5.2.1 The Distribution of Web Transmission TimesOur �rst observation is that WWW �le transmission times ap-pear to show heavy-tailed characteristics. Figure 5 (left side)shows the LLCD plot of the durations of all 130140 trans-fers that occurred during the measurement period. The �gureshows that for values greater than about -0.5, the distribu-tion is nearly linear { consistent with a hyperbolic upper tail.However, the data does appear to have some curvature; theresiduals are all negative, then positive, then negative again.It's not clear whether this deviation from an exact power-lawwould be reected in a larger dataset, or whether it representsa true divergence from power-law behavior; as a result it ishard to draw de�nitive conclusions about power-law behaviorfrom this plot. Although this plot is not conclusive, we shownext that despite these deviations, this distribution shows ev-idence of in�nite variance, which is also characteristic of thepower-law distribution.An important question is whether it is a correct model ofthe data to �t a line to the upper tail in Figure 5 (implyingin�nite variance). To answer this question we use the CLTTest as described in Section 2.2.1. The results for our datasetof transmission times is shown in Figure 6. The �gure clearlyshows that as we aggregate the dataset, the slope of the taildoes not change appreciably. That is, under the CLT Test,transmission times behave like the Pareto distribution (leftside of Figure 1) rather than the Lognormal distribution (rightside of Figure 1). While tests such as the CLT Test cannot beconsidered a proof, we conclude that our assumption of in�nitevariance seems justi�ed for this dataset.A least squares �t to evenly spaced data points greater than-0.5 (shown in the �gure, right side, R2 = 0:98) has a slope of -1.21, which yields an estimate of � = 1:21 for this distribution,with standard error �� = 0:028.2 The result of aggregating alarge number of ON/OFF processes in which the distribution2The �� values given here and below are the standard error of � asa coe�cient in the least-squares �t used to estimate �.
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directly encode a notion of �le length.To test this hypothesis we studied the distribution of WWW�le sizes. First, we looked at the distribution of sizes for �letransfers in our logs. The results for all 130140 transfers isshown in Figure 7, which is a plot of the LLCD of transfersizes in bytes. Although the slight curvature again preventsde�nitive conclusions, the �gure shows that for �le sizes greaterthan about 1000 bytes, transfer size distribution seems reason-ably well modeled by a Pareto distribution; the linear �t to thepoints for which �le size is greater than 1000 yields an estimate� = 1:06 (R2 = 0:98; �� = 0:020). The fact that the distribu-tion of transfer sizes in bytes is heavier-tailed (� = 1:06) thanthe distribution of transfer durations in seconds (� = 1:21)indicates that large �les are transferred somewhat faster perbyte than are small �les; this may be a result of the �xedoverhead of TCP connection establishment and the slow-startcongestion control mechanism of TCP.
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Log10(Transmission Time in Seconds)Figure 5: LLCD of Transmission Times of WWW FilesInterestingly, the authors in [20] found that the upper tailof the distribution of data bytes in FTP bursts was well �t toa Pareto distribution with 0:9 � � � 1:1. Thus our resultsindicate that with respect to the upper-tail distribution of �lesizes, Web tra�c does not di�er signi�cantly from FTP tra�c;however our data also allow us to comment on the reasonsbehind the heavy-tailed distribution of transmitted �les.There are a number of reasons why the sizes of Web �lesthat were transferred in our logs might follow a heavy-taileddistribution. First, the distinctive distribution of transfer sizesmight be determined mainly by user preferences. Second, thedistribution of transfer sizes might be determined by the ef-fect of Mosaic's caching algorithms, since transfers only reectthe user requests that miss in Mosaic's cache. Finally, thedistribution of transfer sizes might be based on the underly-ing distribution of �les available on the Web. Surprisingly, we�nd that the latter reason is the fundamental one in creatingthe heavy-tailed distribution of transfer sizes. In fact, the dis-tribution of �les found on the Web is strongly heavy-tailed,and the e�ects of caching and user preference transform a lessheavy-tailed distribution of user requests into a set of cachemisses that strongly resembles the heavy-tailed distribution ofavailable �les.To demonstrate this fact we �rst show the distribution ofthe 46,830 unique �les transferred in our logs. This distri-bution is shown in Figure 8 as a LLCD plot. As before,some curvature of the plot prevents a conclusive identi�ca-tion of power-law behavior. However, the �gure suggests ahyperbolic tail for �le sizes greater than 1000 bytes. On theright, the least-squares �t is shown to the sampled distribu-tion. The measured value of � for this distribution is 1.05(R2 = 0:98; �� = 0:028), not signi�cantly di�erent from themeasured � for all �les transferred; the CLT Test plot (notshown) also shows the parallel lines suggestive of in�nite vari-ance.We considered the possibility that the heavy-tailed distri-bution of unique WWW �les might be an artifact of our tracesand not representative of reality. For comparison purposes wesurveyed 32 Web servers scattered throughout North America.These servers were chosen because they provided a usage re-port based on www-stat 1.0 [22]. These usage reports provideinformation su�cient to determine the distribution of �le sizeson the server (for �les accessed during the reporting period).In each case we obtained the most recent usage reports (as ofJuly 1995), for an entire month if possible.Remarkably, the distribution of available �les across the 32Web servers surveyed resulted in a value of � = 1:06 (R2 =0:96; �� = 0:33) which is very nearly the same as that of �les

requested by our users. The distribution of available Web �lesis shown in Figure 9. Note that although Figures 8 and 9appear to be very similar, they are based on completely dif-ferent datasets. Thus, from a distributional standpoint, ourdata indicates that transferred �les can be considered to be arandom sample of the �les that are available on Web servers.Note that since www-stat reports only list �les that have beenaccessed at least once during a reporting period, our compari-son is between �les transferred in our traces, and the set of all�les accessed at least once on the selected Web servers.If WWW �les are in fact heavy-tailed, one possible ex-planation might be that the explicit support for multimediaformats may encourage larger �le sizes, thereby increasing thetail weight of distribution sizes. While we �nd that multime-dia does increase tail weight to some degree, in fact it is notthe root cause of the heavy tails. This can be seen in the ploton the right side of Figure 9.The right side of Figure 9 was constructed by categoriz-ing all server �les into one of seven categories, based on �leextension. The categories we used were: images, text, audio,video, archives, preformatted text, and compressed �les. Thissimple categorization was able to encompass 85% of all �les.From this set, the categories images, text, audio, and videoaccounted for 97%. The cumulative distribution of these fourcategories, expressed as a fraction of the total set of �les, isshown on the right side of Figure 9. In the �gure, the upperline is the distribution of all �les, which is the same as the plotshown in Figure 9. The three intermediate lines, from upperto lower, are the components of that distribution attributableto images, audio, and video, respectively. The lowest line isthe component attributable to text (HTML) alone.The �gure shows that the e�ect of adding multimedia �lesto the set of text �les serves to increase the weight of the tail.However, it also suggests that the distribution of text �lesmay itself be heavy-tailed. Using least-squares �tting for theportions of the distributions in which Log10(x) > 3, we �ndthat for all �les available � = 1:06 (as previously mentioned)but that for the text �les only, � = 1:36 (R2 = 0:98; �� =0:032). The e�ects of the various multimedia types are alsoevident from the �gure. In the approximate range of 1,000 to30,000 bytes, tail weight is primarily increased by images. Inthe approximate range of 30,000 to 300,000 bytes, tail weightis increased mainly by audio �les. Beyond 300,000 bytes, tailweight is increased mainly by video �les.Finally, we consider the potential e�ects of caching in gen-eral, and Mosaic caching in particular. To evaluate the poten-tial e�ects of caching in general, we used our traces to measurethe relationship between the number of times any particular
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Text FilesFigure 9: LLCD of File Sizes of 32 Web Sitesdocument is accessed and the size of the document. In [7],we showed that there is an inverse correlation between �lesize and �le reuse. This relationship suggests that systemsthat perform caching on WWW objects will tend to increasethe tail weight of the data tra�c resulting from misses in thecache as compared to the tra�c without caching.To test this hypothesis for the particular case of Mosaic, wemeasured the distribution of all 575,775 URLs requested in ourlogs, whether the URL was served from Mosaic's cache or viaa network transfer. The results yield an estimate of tail weightfor URLs requested of � = 1:16 (R2 = 0:99; �� = 0:021). Thisshows that the actual set of requests made by users is not asheavy-tailed as the distribution of transferred �les, but thatthe e�ect of caching is to transform the set of requests into aset of transfers that is quite similar to the set of available �les.5.3 Examining Quiet TimesIn subsection 5.2, we attributed the self-similarity of Web traf-�c to the superimposition of heavy-tailed ON/OFF processes,where the ON times correspond to the transmission durationsof individual Web �les and OFF times correspond to periodswhen a workstation is not receiving Web data.In [7], we present analyses similar to those in this papershowing that OFF times exhibit two regimes. The importantregime is determined by user behavior and appears to exhibitheavy-tailed characteristics with � approximately 1.5. Com-paring the distributions of ON and OFF times, we �nd thatthe ON time distribution is much heavier tailed than the OFFtime distribution. Thus we feel that the distribution of �lesizes in the Web (which determine ON times) is likely the pri-

mary determiner of Web tra�c self-similarity.36 ConclusionIn this paper we've shown evidence that tra�c due to WorldWide Web transfers shows characteristics that are approxi-mately consistent with self-similarity. More importantly, we'vetraced the genesis of Web tra�c self-similarity; although ourdata are inconclusive, we've shown that transmission timesmay be heavy-tailed, primarily due to the distribution of Web�le sizes. In addition, we show evidence that silent times alsomay be heavy-tailed, primarily due to the inuence of user\think time". In addition, we've shown that the distributionof user requests is lighter-tailed than the set of available �les;but that the action of caching serves to make the distribu-tion of actual �les transferred similar to the more heavy-taileddistribution of available �les.These results seem to trace the causes of Web tra�c self-similarity back to basic characteristics of information organi-zation and retrieval. The heavy-tailed distribution of �le sizeswe have observed seems similar in spirit to Pareto distribu-tions noted in the social sciences, such as the distribution oflengths of books on library shelves, and the distribution ofword lengths in sample texts (for a discussion of these e�ects,see [18] and citations therein). In fact, in other work [8] weshow that the rule known as Zipf's Law (degree of popularityis exactly inversely proportional to rank of popularity) appliesquite strongly to Web documents. The heavy-tailed distribu-3This conclusion is supported by recent work by Taqqu, which showsthat the value of Hurst parameter H is determined by whichever distri-bution is heavier-tailed.[25]
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