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ABSTRACT
Anomalies are unusual and significant changes in a network’s traf-
fic levels, which can often span multiple links. Diagnosing anoma-
lies is critical for both network operators and end users. It is a
difficult problem because one must extract and interpret anomalous
patterns from large amounts of high-dimensional, noisy data.

In this paper we propose a general method to diagnose anoma-
lies. This method is based on a separation of the high-dimensional
space occupied by a set of network traffic measurements into dis-
joint subspaces corresponding to normal and anomalous network
conditions. We show that this separation can be performed effec-
tively by Principal Component Analysis.

Using only simple traffic measurements from links, we study
volume anomalies and show that the method can: (1) accurately
detect when a volume anomaly is occurring; (2) correctly identify
the underlying origin-destination (OD) flow which is the source of
the anomaly; and (3) accurately estimate the amount of traffic in-
volved in the anomalous OD flow.

We evaluate the method’s ability to diagnose (i.e., detect, iden-
tify, and quantify) both existing and synthetically injected volume
anomalies in real traffic from two backbone networks. Our method
consistently diagnoses the largest volume anomalies, and does so
with a very low false alarm rate.
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1. INTRODUCTION
Understanding the nature of traffic anomalies in a network is an

important problem. Regardless of whether the anomalies in ques-
tion are malicious or unintentional, it is important to analyze them
for two reasons:

• Anomalies can create congestion in the network and stress
resource utilization in a router, which makes them crucial to
detect from an operational standpoint.

• Some anomalies may not necessarily impact the network, but
they can have a dramatic impact on a customer or the end
user.

A significant problem when diagnosing anomalies is that their forms
and causes can vary considerably: from Denial of Service (DoS)
attacks, to router misconfigurations, to the results of BGP policy
modifications.

Despite a large literature on traffic characterization, traffic anoma-
lies remain poorly understood. There are a number of reasons for
this. First, identifying anomalies requires a sophisticated moni-
toring infrastructure. Unfortunately, most ISPs only collect simple
traffic measures, e.g.,average traffic volumes (using SNMP). More
adventurous ISPs do collect flow counts on edge links, but process-
ing the collected data is a demanding task. A second reason for
the lack of understanding of traffic anomalies is that ISPs do not
have tools for processing measurements that are fast enough to de-
tect anomalies in real time. Thus, ISPs are typically aware of major
events (worms or DoS attacks) after the fact, but are generally not
able to detect them while they are in progress. A final reason is that
the nature of network-wide traffic is high-dimensional and noisy,
which makes it difficult to extract meaningful information about
anomalies from any kind of traffic statistics.

In this paper we address the problem of diagnosing traffic anoma-
lies that may span multiple links in a network, using link-based
statistics. Our approach addresses the anomaly diagnosis problem
in three steps: it first uses a general method to detect anomalies in
network traffic, then employs distinct methods to identify and quan-
tify them. We believe that this three step approach is appropriate
for addressing the large variety of network traffic anomalies. This is
because the detection step can target different traffic characteristics
such as volume, number of flows, or routing events, while identifi-
cation and quantification are specific to each type of anomaly.

The goal of this paper is not to explain the cause of network
anomalies, but rather to provide a general technique to diagnose
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Figure 1: Examples of anomalies at the OD flow level (top row) that we want to diagnose from link traffic.

traffic anomalies. We believe that a necessary first step to discover-
ing the causes of anomalies is the correct detection, identification,
and quantification of anomalies.

The contributions of this paper are: (i) a general approach to
diagnose anomalies in network traffic, (ii) the application of this
method on simple link traffic statistics to isolate “volume anoma-
lies,” and (iii) the validation of this method using real data collected
on two different backbone networks.

Our method is based on a separation of the space of traffic mea-
surements into normal and anomalous subspaces, by means of Prin-
cipal Component Analysis. We evaluate the approach using traffic
collected from two large backbone networks. We apply the method
to both real and synthetically generated anomalies. Our results
show that our algorithms are effective at detection (with high detec-
tion rate and low false alarm rate); are quite accurate in identifying
the underlying OD flow responsible for the anomaly; and are also
accurate in estimating the number of bytes in the anomaly.

The paper is organized as follows. In Section 2, we introduce a
specific variant of traffic anomalies called volume anomalies and
explain why they are important. In Section 3, we describe the data
used to illustrate and validate this work. In Section 4, we explain
our general approach, which is to decompose the network operat-
ing conditions in two subspaces: normal and anomalous. In Sec-
tion 5, we show how to diagnose volume anomalies by analyzing
the anomalous subspace. In Section 6, we validate our approach
in two ways: we exploit access to underlying flow data to extract
true anomalies using timeseries methods, against which we eval-
uate detection and false alarm rates and we systematically inject
anomalies across time and flows to thoroughly evaluate the method.
In Section 7, we discuss further extensions and generalizations of
our approach to other types of network anomalies. We contrast our
approach from existing work on traffic anomalies in Section 8 and
conclude in Section 9.

2. VOLUME ANOMALIES
A typical backbone network is composed of nodes (also called

Points of Presence, or PoPs) that are connected by links. We de-
fine an Origin-Destination (OD) flow as the traffic that enters the
backbone at the origin PoP and exits at the destination PoP. The
path followed by each OD flow is determined by the routing tables.

Therefore, the traffic observed on each backbone link arises from
the superposition of these OD flows.

We will use the term volume anomalyto refer to a sudden (with
respect to timestep used) positive or negative change in an OD
flow’s traffic. Because such an anomaly originates outside the net-
work, it will propagate from the origin PoP to the destination PoP.

One could detect volume anomalies by collecting IP flow-level
traffic summaries on all input links at all PoPs, and applying tem-
poral decomposition methods to each OD flow in the manner of
[1, 14]. In general, this is impractical, for a number of reasons.
First, there can be hundreds of customer links in a network. Moni-
toring all input links to collect and aggregate flow level data is ex-
tremely resource intensive; for many ISPs this cost is prohibitive.
Second, each OD flow would need to be processed separately, re-
quiring estimation of associated parameters for each of the (poten-
tially hundreds of) temporal decompositions.

Instead, we develop a simpler and more practical technique for
diagnosing volume anomalies. Given that a volume anomaly prop-
agates through the network, we make use of the fact that we should
be able to observe it on all links it traverses. Thus we identify OD
flow based anomalies by observing only link counts. (If more de-
tailed information about IP source and destination of an anomaly is
then needed, our method can be used as a trigger to indicate which
routers need IP flow-level data collection initiated on temporary
basis.)

In the next section, we illustrate volume anomalies on link time
series taken from a backbone network. Then we propose a diagno-
sis technique in three steps that relies on the link statistics that are
already collected systematically by network operators.

2.1 An Illustration
The difficulty of the volume anomaly diagnosis problem stems in

part from the fact that it only uses link data (such as can be collected
via SNMP). From this link data, one must form inferences about
unusual events occurring in the underlying OD flows.

We illustrate this difficulty in Figure 1. The top plot on each side
of the figure shows an OD flow timeseries with an associated vol-
ume anomaly – this information is not available to our algorithms,
but we present it to show the nature of the anomalies we are con-
cerned with. The point at which each anomaly occurs is designated



by a circle on the timeline. Below the timeline are plots of link
traffic on the four links that carry the given OD flow. These four
plots represent the data that is available to our algorithm. Diagno-
sis of the anomaly consists of processing all link data so as to: (1)
correctly detect that at the time shown, the network is experiencing
an anomaly; (2) correctly isolate the four links shown as those ex-
periencing the anomaly; and (3) correctly estimate the size of the
spike in the OD flow.

We make three observations from these examples. First, while
the OD flows have pronounced spikes, the corresponding spike in
the link traffic is dwarfed, and difficult to detect even from visual
inspection. For instance, the traffic volume at the spike time on
links c-d and b-c in Example 1 is barely distinguishable. Second,
the temporal traffic patterns may vary substantially from one link
to another. In Example 2, link i-f has a smooth trend, whereas
the other links for the OD flow have more noisy traffic. Separating
the spike from the noise in the traffic on link c-b is visually more
difficult than separating the spike in link i-f. Thus isolating all the
links exhibiting an anomaly is challenging. Finally, mean traffic
levels vary considerably. In Example 1, the mean traffic level on
link c-d is more than twice that of link f-i. The varying traffic
levels makes it difficult to estimate the size of the volume anomaly
and hence its operational importance.1

2.2 Problem Definition
The problem of diagnosing a volume anomaly in an OD flow can

be separated into three steps: detection, identification and quantifi-
cation.

The detectionproblem consists of designating those points in
time at which the network is experiencing an anomaly. An effec-
tive algorithm for solving the detection problem should have a high
detection probability and a low false alarm probability.

The identificationproblem consists of selecting the true anomaly
type from a set of possible candidate anomalies. The method we
propose is extensible to a wide variety of anomalies. However, as
a first step in this paper, our candidate anomaly set is the set of all
individual OD flows.

Finally, quantificationis the problem of estimating the number
of additional or missing bytes in the underlying traffic flows. Quan-
tification is important because it gives a measure of the importance
of the anomaly.

For a successful diagnosis of a volume anomaly, one must be
able to detect the time of the anomaly, identify the underlying re-
sponsible OD flow, and quantify the size of the anomaly within that
flow.

3. DATA
Our technique operates on link traffic data, of the kind obtained

by SNMP. For validation purposes we also use OD flow data, but
this data is not an input to our algorithms. All these data have been
collected from two backbone networks, Sprint-Europe and Abilene.
Note that our anomaly diagnosis method is not limited to backbone
networks; it can be applied in any network where link counts are
available.

Sprint-Europe (henceforth Sprint) is the European backbone of
a US tier-1 ISP. This network has 13 PoPs and carries commercial
traffic for large customers (companies, local ISPs, etc.). Abilene is
the Internet2 backbone network. It has 11 PoPs and spans the conti-
nental USA. Traffic on Abilene is non-commercial, arising mainly
from major universities in the US.

1Both these examples were successfully diagnosed by the methods
in this paper.

# PoPs # Links Time Bin Period
Sprint-1 13 49 10 min Jul 07-Jul 13
Sprint-2 13 49 10 min Aug 11-Aug 17
Abilene 11 41 10 min Apr 07-Apr 13

Table 1: Summary of datasets studied.

We collected sampled flow data from each router in both net-
works. For Sprint, we used Cisco’s NetFlow [3] to collect ev-
ery 250th packet (periodic sampling). Packets are aggregated into
flows at the network prefix level, and reported in 5 minute bins. On
Abilene sampling is random, capturing 1% of all packets. Sam-
pled packets are then aggregated at the 5-tuple level (IP address
and port number for both source and destination, along with proto-
col type) every minute using Juniper’s Traffic Sampling [22]. We
found good agreement (within 1%-5% accuracy) between sampled
flow byte counts, adjusted for sampling rate, and the correspond-
ing SNMP byte counts on links with utilization more than 1 Mbps.
Most of the links from both networks fall in this category, and so
our sampled flow byte counts are likely to be reasonably accurate.
We aggregated both the Sprint and Abilene flow traffic counts into
bins of 10 minutes to avoid synchronization issues that could have
arisen in the data collection.

Traffic anomalies can last anywhere from milliseconds to hours.
Although our method can be used on data with any time granularity,
in this paper we work with data binned on 10 minute intervals. In
fact, the most prevalent anomalies in our datasets were those that
lasted less than 10 minutes and show up as a pronounced spike at
a single point in time, as depicted in Figure 1. Thus the anomalies
that we detect are those that are significant when traffic is viewed at
10 minute intervals. In Section 7 we will discuss some implications
of the particular timescale we use.

To construct OD flows from the raw flows collected, we identify
the ingress and egress PoPs of each flow. The ingress PoP can be
identified because we collect flows from eachingress link in both
networks. For egress PoP resolution, we use BGP and ISIS routing
tables as detailed in [8]. For Sprint, we supplemented routing ta-
bles with router configuration files to resolve customer IP address
spaces. Also, Abilene anonymizes the last 11 bits of the destina-
tion IP address. This is not a significant concern because there are
few prefixes less than 11 bits in the Abilene routing tables, and we
found very little traffic destined to these prefixes. Using this pro-
cedure, we collected two weeks of complete OD flow traffic counts
from Sprint and one week from Abilene. Table 1 summarizes our
datasets.

Our diagnosis method operates on link data, so in order to vali-
date against true OD flows we must obtain a set of link traffic counts
consistent with the sampled OD flow data collected. To obtain this,
we follow the method of [25] and construct link counts from OD
flow counts using a routing table taken from the network in opera-
tion.

4. SUBSPACE ANALYSIS OF LINK
TRAFFIC

Effective diagnosis of anomalies in traffic requires the ability to
separate them from normal network-wide traffic. In this section, we
show how to use Principal Component Analysis (PCA) to separate
normal and anomalous network-wide traffic conditions. We begin
by stating the relevant notation. We then introduce the basic ideas
behind PCA and apply it to the ensemble of link traffic timeseries.
Finally, we show how to use PCA to separate the space of link traf-



fic measurements into useful subspaces, representing normal and
anomalous traffic behavior. Our anomaly diagnosis method as de-
scribed in Section 5 builds on the subspace separation developed
here.

4.1 Notation
The traffic observed on each network link arises from the super-

position of OD flows. The relationship between link traffic and OD
flow traffic can be concisely captured in the routing matrixA. The
matrix A has size (# links) × (# OD-flows), where Aij = 1 if OD
flow j passes over link i, and is zero otherwise. Then the vector of
traffic counts on links (y) is related to the vector of traffic counts in
OD flows (x) by y = Ax [23].

Let m denote the number of links in the network and t denote
the number of successive time intervals of interest. We let Y be
the t × m measurement matrix, which denotes the timeseries of
all links. Thus, each column i denotes the timeseries of the i-th
link and each row j represents an instance of all the links at time
j. In this paper t is the number of 10 minute bins in a week long
timeseries (1008) and m is 41 or 49, depending on the network.

While Y denotes the set of links measurements over time, we
will also frequently work just with y, a vector of measurements
from a single timestep. Thus y is an arbitrary row of Y, transposed
to a column vector.

We refer to individual columns of a matrix using a single sub-
script, so the timeseries of measurements of link i is denoted Yi.
All vectors in this paper are column vectors, unless otherwise noted.

Finally, all vectors and matrices will be displayed in boldface;
matrices are denoted by upper case letters and vectors by lower
case letters.

4.2 PCA
PCA is a coordinate transformation method that maps a given

set of data points onto new axes. These axes are called the princi-
pal axes or principal components. When working with zero-mean
data, each principal component has the property that it points in
the direction of maximum variance remaining in the data, given
the variance already accounted for in the preceding components.
As such, the first principal component captures the variance of the
data to the greatest degree possible on a single axis. The next prin-
cipal components then each capture the maximum variance among
the remaining orthogonal directions. Thus, the principal axes are
ordered by the amount of data variance that they capture.

We will apply PCA on our link data matrix Y, treating each
row of Y as a point in IRm. However, before we can do so it is
necessary to adjust Y so that that its columns have zero mean. This
ensures that PCA dimensions capture true variance, and thus avoids
skewing results due to differences in mean link utilization. For the
rest of this paper, Y will denote the mean-centered link traffic data.

Applying PCA to Y yields a set of m principal components,
{vi}m

i=1. The first principal component v1 is the vector that points
in the direction of maximum variance in Y:

v1 = arg max
‖v‖=1

‖Yv‖

where ‖Yv‖2 is proportional to the variance of the data measured
along v. Proceeding iteratively, once the first k − 1 principal com-
ponents have been determined, the k-th principal component cor-
responds to the maximum variance of the residual. The residual is
the difference between the original data and the data mapped onto
the first k − 1 principal axes. Thus, we can write the k-th principal
component vk as:
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Figure 2: Fraction of total link traffic variance captured by
each principal component.

vk = arg max
‖v‖=1

‖(Y −
k−1X
i=1

Yviv
T
i )v‖.

An important use of PCA is to explore the intrinsic dimension-
ality of a set of data points. By examining the amount of vari-
ance captured by each principal component, ‖Yvi‖2, we can ask
whether most of the variability in the data can be captured in a space
of lower dimension. If we find that only the variance along the
first r dimensions is non-negligible, then we can conclude that the
pointset represented by Y effectively resides in an r-dimensional
subspace of IRm.

We can observe the phenomenon of low effective dimensionality
in our link data. In Figure 2, we plot the fraction of total variance
captured by each principal component of Y, for all three of our
datasets. This plot reveals that even though both networks have
more than 40 links, the vast majority of the variance in each link
timeseries can be well captured by 3 or 4 principal components.
This low effective dimensionality of link timeseries is consistent
with the finding that the underlying OD flows themselves have low
intrinisic dimensionality [16]. In fact, the low effective dimension-
ality of link traffic forms the basis for the success of the subspace
methods we describe in the following sections.

4.3 Subspace construction via PCA
Once the principal axes have been determined, the dataset can be

mapped onto the new axes. The mapping of the data to principal
axis i is given by Yvi. This vector can be normalized to unit length
by dividing it by ‖Yvi‖. Thus, we have for each principal axis i,

ui =
Yvi

‖Yvi‖ i = 1, ..., m.

The ui are vectors of size t and are orthogonal by construction.
The above equation shows that all the link counts, when weighted
by vi, produce one dimension of the transformed data. Thus vector
ui captures the temporal variation common to the entire ensemble
of link traffic timeseries along principal axis i. Since the principal
axes are in order of contribution to overall variance, u1 captures the
strongest temporal trend common to all link traffic, u2 captures the
next strongest, and so on. Specifically as Figure 2 shows, the set
{ui}4

i=1 captures most of the variance and hence the most signif-
icant temporal patterns common to the ensemble of all link traffic
timeseries.
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Figure 3: Projections onto principal components showing normal and anomalous traffic variation.

The subspace method works by separating the principal axes into
two sets, corresponding to normaland anomalousvariation in traf-
fic. The space spanned by the set of normal axes is the normal
subspace S and the space spanned by the anomalous axes is the
anomalous subspace S̃.

Figure 3 illustrates the difference between normal and anoma-
lous traffic variation, as captured in the PCA decomposition. The
figure shows sample projections of the Sprint-1 dataset onto se-
lected principal components. On the left, we show projections onto
the first two principal components (u1 and u2), which capture the
most significant variation in the data. These timeseries are periodic
and reasonably deterministic, and clearly capture the typical diurnal
patterns which are common across traffic on all links. Note that u1

and u2 are roughly 180 degrees out of phase, meaning that the two
can be used in linear combination to roughly construct of sinusoid
of any phase. Thus the extraction of common temporal patterns via
PCA does not require the underlying traffic timeseries to have the
same periodic phase (e.g.,as reflected in traffic in the same time-
zone). The subspace method assigns these traffic variations to the
normal subspace.

We also show projections u6 and u8 on the right side of Fig-
ure 3. In contrast to u1 and u2, these projections of the data exhibit
significant anomalous behavior. These traffic “spikes” indicate un-
usual network conditions, possibly induced by a volume anomaly
at the OD flow level. The subspace method treats such projections
of the data as belonging to the anomalous subspace.

A variety of procedures can be applied to separate the two types
of projections into normal and anomalous sets. Based on exam-
ining the differences between typical and atypical projections (left
and right sides of Figure 3), we developed a simple threshold-based
separation method that we found to work well in practice. Specif-
ically, our separation procedure examines the projection on each
principal axis in order; as soon as a projection is found that exceeds
the threshold (e.g., contains a 3σ deviation from the mean), that
principal axis and all subsequent axes are assigned to the anoma-
lous subspace. All previous principal axes then are assigned to the
normal subspace. This procedure resulted in placing the first four
principal components in the normal subspace in each case; as can
be seen from Figure 2, this means that all dimensions showing sig-
nificant variance are assigned to the normal subspace.

Having separated the space of all possible link traffic measure-
ments into the subspaces S and S̃, we can then decompose the
traffic on each link into its normal and anomalous components. We
show how to use this idea to diagnose volume anomalies in the next
section.

5. DIAGNOSING VOLUME ANOMALIES
The methods we use for detecting and identifying volume anoma-

lies draw from theory developed for subspace-based fault detection
in multivariate process control [5, 6, 11]. Our notation in the fol-
lowing subsections follows [5].

5.1 Detection
Detecting volume anomalies in link traffic relies on the separa-

tion of link traffic y at any timestep into normal and anomalous
components. We will refer to these as the modeledand residual
parts of y.

The key idea in the subspace-based detection step is that, once
S and S̃ have been constructed, this separation can be effectively
performed by forming the projectionof link traffic onto these two
subspaces. That is, we seek to decompose the set of link measure-
ments at a given point in time y:

y = ŷ + ỹ

such that ŷ corresponds to modeled and ỹ to residual traffic. We
form ŷ by projecting y onto S , and we form ỹ by projecting y onto
S̃.

To accomplish this, we arrange the set of principal components
corresponding to the normal subspace (v1,v2, ..., vr) as columns
of a matrix P of size m× r where r denotes the number of normal
axes (chosen as described in Section 4.3). We can then write ŷ and
ỹ as:

ŷ = PPTy = Cy and ỹ =
`
I− PPT

´
y = C̃y

where the matrix C = PPT represents the linear operator that
performs projection onto the normal subspace S , and C̃ likewise
projects onto the anomaly subspace S̃.

Thus, ŷ contains the modeled traffic and ỹ the residual traffic. In
general, the occurrence of a volume anomaly will tend to result in
a large change to ỹ.

A useful statistic for detecting abnormal changes in ỹ is the
squared prediction error (SPE):

SPE ≡ ‖ỹ‖2 = ‖C̃y‖2

and we may consider network traffic to be normal if

SPE ≤ δ2
α

where δ2
α denotes the threshold for the SPE at the 1 − α confi-

dence level. A statistical test for the residual vector known as the
Q-statisticwas developed by Jackson and Mudholkar and is given
in [11] as:

δ2
α = φ1

»
cα

p
2φ2h2

0

φ1
+ 1 +

φ2h0(h0 − 1)

φ2
1

– 1
h0
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Figure 4: Timeseries plots of state vector squared magnitude (‖y‖2, upper) and residual vector squared magnitude (‖ỹ‖2, lower) for
two weeks of Sprint data.

where

h0 = 1 − 2φ1φ3

3φ2
2

, and φi =
mX

j=r+1

λi
j ; for i = 1, 2, 3

and where λj is the variance captured by projecting the data on the
j-th principal component (‖Yvj‖2), and cα is the 1−α percentile
in a standard normal distribution. Jackson and Mudholkar’s result
holds regardless of how many principal components are retained in
the normal subspace.

Note that in this setting, the 1 − α confidence limit corresponds
to a false alarm rate of α, if the assumptions under which this result
is derived are satisfied. The confidence limit for the Q-statistic is
derived under the assumption that the sample vector y follows a
multivariate Gaussian distribution. However, Jensen and Solomon
point out that the Q-statistic changes little even when the underly-
ing distribution of the original data differs substantially from Gaus-
sian [12]. While we believe that normal traffic in our datasets is
reasonably well described as multivariate Gaussian, we have not
closely examined the data for violations of this assumption. How-
ever, we find that the Q-statistic gives excellent results in practice,
perhaps due to the robustness noted by Jensen and Solomon.

An important property of this approach is that it does not depend
on the mean amount of traffic in the network. Thus, one can apply
the same test on networks of different sizes and utilization levels.

In Figure 4 we illustrate the effectiveness of subspace separa-
tion of y and ỹ on two of our datasets. The upper half of the fig-
ures shows timeseries plots of ‖y‖2 over week-long periods. On
these plots, we have marked with circles the locations where vol-
ume anomalies are known to occur (based on inspection of the un-
derlying flows, as will be described in Section 6.2). It is clear that
the magnitude of the state vector y is dominated by effects other
than the anomalies, and that it is quite difficult to see the effects of
anomalies on the traffic volume as a whole.

In the lower half of each plot we show timeseries plots of the
SPE, ‖ỹ‖2, over the same one-week periods. For each dataset, the
values of the Q statistic δ2

α at the 1 − α = 99.5% and 99.9% confi-
dence levels are also shown as dotted lines. The lower plots show
how the projection of the state vector onto the residual subspace S̃
very effectively captures the anomalous traffic while capturing little
normal traffic, and so makes the statistical detection of anomalies
much easier.

This figure shows how sharply the subspace method is able to
separate anomalous traffic patterns (lower plots) from the mass of
traffic (upper plots). It also gives some insight into why (as we will
show in Section 6) the method yields such high detection rates com-
bined with low false alarm rates. As can be seen in the lower plots,
the distinct separation of anomalies from normal traffic means that
almost all anomalies result in values of ‖ỹ‖2 greater than δ2

α, while
very few of the normal traffic measurements yield ‖ỹ‖2 greater
than δ2

α.

5.2 Identification
In the subspace framework, a volume anomaly represents a dis-

placement of the state vector y away from S . The particular direc-
tion of the displacement gives information about the nature of the
anomaly. Thus our general approach to anomaly identification is to
ask which anomaly out of a set of potential anomalies is best able
to describe the deviation of y from the normal subspace S .

We denote the set of all possible anomalies as {Fi, i = 1, ..., I}.
This set should be chosen to be as complete as possible, because it
defines the set of anomalies that can be identified.

For simplicity of exposition, we will consider only one-dimensional
anomalies; that is, anomalies in which the additional per-link traffic
can be described as a linear function of a single variable. However,
in Section 7 we show that it is straightforward to generalize the
approach to multi-dimensional anomalies.

Then each anomaly Fi has an associated vector θi which defines
the manner in which this anomaly adds traffic to each link in the
network. We assume that θi has unit norm, so that in the presence
of anomaly Fi, the state vector y is represented by

y = y∗ + θifi

where y∗ represents the sample vector for normal traffic conditions
(and which is unknown when the anomaly occurs), and fi repre-
sents the magnitude of the anomaly.

Given some hypothesized anomaly Fi, we can form an estimate
of y∗ by eliminating the effect of the anomaly, which corresponds
to subtracting some traffic contribution from the links associated
with anomaly Fi. The best estimate of y∗ assuming anomaly Fi is
found by minimizing the distance to the normal subspace S in the
direction of the anomaly:

f̂i = arg min
fi

‖ỹ − θ̃ifi‖



where ỹ = C̃y and θ̃i = C̃θi. This gives f̂i = (θ̃T
i θ̃i)

−1 θ̃T
i ỹ.

Thus the best estimate of y∗ assuming anomaly Fi is:

y∗
i = y − θif̂i

= y − θi(θ̃
T
i θ̃i)

−1 θ̃T
i ỹ

= (I− θi(θ̃
T
i θ̃i)

−1 θ̃T
i C̃)y (1)

To identify the best hypothesis from our set of potential anoma-
lies, we choose the hypothesis that explains the largest amount of
residual traffic. That is, we choose the Fi that minimizes the pro-
jection of y∗

i onto S̃.
Thus, in summary, our identification algorithm consists of:

1. for each hypothesized anomaly Fi, i = 1, ..., I , compute y∗
i

using Equation (1)

2. choose anomaly Fj as j = arg mini ‖C̃y∗
i ‖.

As discussed in Section 2.2, in this paper we consider only the
set of anomalies that arise due to unusual traffic in a single OD flow.
Thus the possible anomalies are {Fi, i = 1, ..., n} where n is the
number of OD flows in the network. In this case, each anomaly
adds (or subtracts) an equal amount of traffic to each link it affects.
Then θi is defined as column i of the routing matrix A, normalized
to unit norm: θi = Ai/‖Ai‖.
5.3 Quantification

Having formed an estimate of the particular volume anomaly,
Fi, we now proceed to estimate the number of bytes the constitute
this anomaly.

The estimated amount of anomalous traffic on each link due to
the chosen anomaly Fi is given by

y′ = y − y∗
i .

Then the estimated sum of the additional traffic is proportional to
θT

i y′. Since the additional traffic flows over multiple links, one
must normalize by the number of links affected by the anomaly.

In the current case, where anomalies are defined by the set of
OD flows, our quantification relies on A. We use Ā to denote the
routing matrix normalized so that each column of A has unit sum,
that is: Āi = AiP

Ai
. Then given identification of anomaly Fi, our

quantification estimate is:

ĀT
i y′.

5.4 Necessary and Sufficient Conditions for
Detectability

Some anomalies may lie completely within the normal subspace
S and so cannot be detected by the subspace method. Formally,
this can occur if C̃θi = 0 for some anomaly Fi. In fact this is
very unlikely as it requires the anomaly and the normal subspace S
to be perfectly aligned. However, the relative relationship between
the anomaly θi and the normal subspace can make anomalies of a
given size in one direction harder to detect than in other directions.

A sufficient condition for detectability in our context is given
in [5]. Specializing their results to the case of one-dimensional
anomalies, we can guarantee detectability of anomaly Fi if:

fi >
2δα

‖C̃θi‖
If a single-flow anomaly Fi consists of bi additional or missing
bytes, then this threshold becomes

bi >
2δα

‖C̃θi‖ ‖Ai‖

This shows that, the larger the projection of the normalized anomaly
vector in the residual subspace, the lower the threshold for de-
tectability at a given confidence level.

In practice, the normal subspace S will tend to capture the direc-
tions of maximum variability in the data, meaning that it will tend
to be more closely aligned with those flows that have the largest
variances. Thus, anomalies of a given size will tend to be harder
to detect in flows with large variance, as compared to flows with
small variance. We quantitatively explore this effect for our data in
Section 6.3.

6. VALIDATION
In this section, we evaluate the subspace anomaly diagnosis method

using the datasets introduced in Section 3.

6.1 Methodology
Our validation approach is centered on answering two questions:

(1) how well can the method diagnose actual anomalies observed
in real data? and (2) how does the time and location of the anomaly
affect performance of the method?

To answer the first question, we proceed as follows: using time-
series analysis on OD flow data, we first isolate a set of “true”
anomalies. This allows us to then evaluate the subspace method
quantitatively. In particular, it allows us to measure both the detec-
tion probability and the false alarm probability.

To answer the second question, we injected anomalies of differ-
ent sizes in OD flows and applied our procedure to diagnose these
known anomalies from link data. We perform this repeatedly for
each timestep and for each anomaly so as to form a complete pic-
ture of how diagnosis effectiveness varies with the time and loca-
tion of the anomaly.

In each case, we quantify the performance of each step in our
diagnosis procedure as follows. Detection success is measured by
two metrics: the detection rate and the false alarm rate. The de-
tection rate is the fraction of true anomalies detected. The false
alarm rate is the fraction of normal measurements that trigger an
erroneous detection. Identification success is captured in the iden-
tification rate, which is the fraction of detected anomalies that are
correctly identified. Finally, quantification success is measured by
computing the mean absolute relative error between our estimate
and the true size of all the volume anomalies identified.

6.2 Actual Volume Anomalies
To identify the set of “true” anomalies in our data (as a precur-

sor to our validation step), we look for unusual deviations from
the mean in each OD flow. There are two general classes of tech-
niques to detect such changes in a non-stationary timeseries. The
first class of methods identifies anomalies in an online manner,
based on gross deviations from forecasted behavior. Simple in-
stances of such a strategy are the exponential weighted moving av-
erage (EWMA) and Holt-Winters forecasting algorithms, both used
in [2, 14]; more sophisticated examples are ARIMA-based Box-
Jenkins forecasting models [14]. A second class of methods pro-
cess data in batches and are based on signal analysis techniques,
such as the wavelet analysis scheme used in [1]. Such schemes
model the timeseries mean by isolating low-frequency components;
anomalies are then flagged at those points in time that deviate sig-
nificantly from the modeled behavior of the mean.

It should be pointed out that no scheme is ideal for isolating and
quantifying spikes in a timeseries, and that some schemes are sen-
sitive to a suite of configuration parameters and/or modeling as-
sumptions. Thus, to obtain sets of true anomalies, we employed a
candidate method from each class of techniques.
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Figure 5: Results of applying our method on link traffic to diagnose volume anomalies found in OD flows by the Fourier approach.
From top to bottom: Sprint-1, Sprint-2, and Abilene.

From the class of forecasting based techniques, we select EWMA
and apply it on each individual OD flow timeseries to isolate anoma-
lies. EWMA (also known as exponential smoothing) is a simple
algorithm that predicts the next value in a given timeseries based
on recent history. Specifically, if zt denotes the traffic in OD flow
at time t, then the EWMA prediction for time t+1 is given by ẑt+1

as:

ẑt+1 = αzt + (1 − α)ẑt

where 0 ≤ α ≤ 1 is a parameter that controls the relative weight
placed on past values. We selected values for α based on apply-
ing a multi-grid parameter search (as in [14]) performed on sample
training data, and found that values of 0.2 ≤ α ≤ 0.3 isolated the
spikes in our data well. Anomalies can then be quantified by tak-
ing the difference between the forecasted and the actual value, i.e.,
|zt − ẑt|.2
2A problem with using such an EWMA-based approach (and most

From the class of signal analysis techniques, we draw on Fourier
analysis to capture the diurnal trends that most OD flows exhibit
over long periods of time. Specifically, we approximate the time-
series of each OD flow as a weighted sum of eight Fourier basis
functions. These basis functions correspond to traffic variations
with period 7 days, 5 days, 3 days, 24 hours, 12 hours, 6 hours, 3
hours, and 1.5 hours. The size of an anomaly then is the difference
between the actual value and the modeled value, |zt − ẑt| where ẑt

is the Fourier approximation of the OD flow at time index t.
We confirmed that every OD flow anomaly that we could visually

isolate was also discovered by both these approaches. However, we
did find several instances where both schemes mistakenly marked a

moving average schemes) to identify single-timestep spikes, is that
the scheme often mistakenly marks the time after a spike as an ad-
ditional spike. To avoid this problem, we ran EWMA in both direc-
tions, estimated the size of the spike in each direction and reported
the minimum of the two estimates.



Validation Dataset Anomaly Size Detection False Alarm Identification Quantification
Fourier Sprint-1 2.0 × 107 9/9 1/999 9/9 15.6%
Fourier Sprint-2 2.0 × 107 7/11 0/997 6/7 21.0%
Fourier Abilene 8.0 × 107 5/6 10/1002 3/5 33.0%
EWMA Sprint-1 2.0 × 107 4/5 6/1003 4/4 16.8%
EWMA Sprint-2 2.0 × 107 3/4 4/1004 2/3 20.8%
EWMA Abilene 8.0 × 107 2/3 13/1005 1/2 17.7%

Table 2: Results from actual volume anomalies diagnosed, all at 99.9% confidence level.

point in time as an anomaly (e.g.,because of irregular periodicities
in the underlying OD flow.) We did not remove these erroneous
anomalies, so as to avoid introducing any bias in the set of anoma-
lies. As a result there are some misidentified anomalies in our set of
“true” anomalies, and in the text that follows we note where these
affect our results.

We now present the results of evaluating our method against the
set of volume anomalies obtained by applying the EWMA and
Fourier methods. Recall that while both Fourier and EWMA are
applied on the OD flow level, our diagnosis method operates on the
link data.

In Figure 5(a) (left hand column) we present the top 40 anoma-
lies isolated by the Fourier scheme for our three datasets. The first
point to note is that in each dataset, there is a sharp knee in the
rank-ordered plot of anomaly sizes. This suggests that the largest
anomalies are qualitatively different from the large set of nearly
equal anomalies to the right of the knee. In fact, the question of
how large a spike should be in order to be considered an anomaly
can be addressed in this way. We choose the anomalies that “stand
out” to the left of the knee as the important set to detect. For the
Sprint datasets this means that anomalies of greater than 2 × 107

bytes are important to detect; for the Abilene dataset, the value is
8 × 107 bytes.

Figure 5(a) also shows the performance of the subspace detection
method, applied with a 99.9% confidence limit. (Detected anoma-
lies are the light bars.) The plots show that above the cutoff value,
the subspace method detects and identifies nearly every anomaly.3

In addition, virtually none of the spikes below the cutoff (the non-
anomalies), were detected; thus the scheme has low false alarm
rates.

Figure 5(b) shows the same set of anomalies, but the light bars
here indicate those anomalies for which the underlying flow was
successfully identified. It shows that nearly every anomaly that was
detected was successfully identified. (We did not attempt identifi-
cation on anomalies that were not detected.) The accuracy of these
results are consistent across all three datasets.

Finally, Figure 5(c) compares the anomaly size to the estimated
size obtained via quantification, for the successfully identified flows.
These results are sensitive to error in anomaly size determination
in the Fourier analysis, so actual performance may in fact be bet-
ter than what is shown here. Nonetheless, the results show that
quantification can in general estimate the anomaly size reasonably
accurately.

In Table 2 we report more detailed diagnosis results from both
validation methods. To interpret these numbers it is useful to note
that each dataset has 1008 points in time. For Sprint-1, only 9 of
these 1008 timepoints are anomalies, all of which are detected and
identified correctly, with only one false alarm reported. In fact, vi-

3The missing anomaly at bar 4 of Sprint-2 was detected at the
99.5% confidence level. This was a case where Fourier overesti-
mated the size of the anomaly.

sually inspecting the false alarms revealed that most of them were
classified as such because Fourier and EWMA underestimated the
size of the anomaly. A reason for the higher false alarm rates in
Abilene is that the nature of traffic (sampled 5-tuple IP flows) col-
lected from this network is generally more noisy and so anomalies
are more often missed by the smoothing of Fourier and EWMA.
Therefore the actual rates might be better in reality.

The table confirms quantitatively that identification and quan-
tification are reasonably accurate across all our datasets. Average
quantification estimates for all but one dataset are within 21% of
the true size of the anomaly, which is sufficiently accurate for op-
erational settings [25].

To summarize, our results here demonstrate that regardless of the
dataset or the validation method employed, the subspace diagnosis
procedure shows high detection rates and low false alarm rates.

6.3 Synthetic Volume Anomalies
A second approach to quantify the effectiveness of the subspace

method is to evaluate it on anomalies injected into the OD flows of
Sprint-1 and Abilene.

We first select two injection sizes, large and small. The large
injections are set to match the largest anomalies seen in the each
dataset (i.e.,values above the cutoff in Figure 5). The small injec-
tions are set at values slightly below the cutoff in Figure 5 and so
constitute non-anomalies that we do not want to detect. This al-
lows us to quantify false alarm rates across all timepoints and all
OD flows. For Sprint-1, we set large at 3 × 107 bytes and small at
1.5 × 107 bytes. For Abilene, we set large at 1.2 × 108 bytes and
small at 5 × 107 bytes.

Then, in multiple experiments, we insert a spike of each size in
every OD flow and at every point in time over the period of a day.
For each permutation of spike size, timestep and OD flow selected,
we generate the corresponding set of link traffic counts. We then
apply our procedure and note whether it successfully diagnoses the
injected anomaly.

The first set of these results are presented in Figure 6 which
shows mean detection rates (rates are computed over OD flows) as a
timeseries for the large injections in Sprint-1. This plot shows that
the method’s detection rate is fairly constant, regardless of when
the anomaly was injected. Thus the diagnosis procedure works
equally well across time, and is not affected by the underlying non-
stationarity in traffic.

Evaluation results across OD flows are presented in Figure 7,
which shows the histogram of detection rates (rates are computed
over time) for both sized injections for Sprint-1. Figure 7(a) shows
that the method detects the large (and therefore the most important)
injections very well. On the other hand, Figure 7(b) shows that the
small injected spikes rarely trigger detections, which is as desired.
Together, these plots confirm that the subspace method has a high
detection and a low false alarm rate.

In Figure 8, we present a scatter plot of mean detection rate (rates



Network Injection Size Detection Identification Quantification
Sprint Large (3.0 × 107) 93% 85% 18%
Abilene Large (1.2 × 108) 90% 69% 21%
Sprint Small (1.5 × 107) 15% 14% 11%
Abilene Small (5.0 × 107) 5% 3% 18%

Table 3: Results on diagnosing synthetic volume anomalies.

0h 6h 12h 18h 24h
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
et

ec
tio

n 
R

at
e

Time

Figure 6: Timeseries of detection rates on large injections
(Sprint-1).
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Figure 7: Detection rate histograms from injecting synthetic
spikes (Sprint-1).

are computed over time) against the mean OD flow rate for the
large injections for Sprint-1. This plot shows that for a fixed size
anomaly, the method tends to detect the injections on the smaller
OD flows better than on larger OD flows. There are two reasons
for this. First, the larger variance OD flows are likely better aligned
with S , as explained in Section 5.4. Second, an inserted spike can
be canceled out by a large negative spike in the OD flow, an effect
more likely to occur on a high variance OD flow.

Corresponding experiments for Abilene and for identification
and quantification yield similar results. Summary results from all
these experiments for both Sprint-1 and Abilene are presented in
Table 3. The first two rows quantify the method’s ability to diag-
nose large injections, and shows very good detection, identification
and quantification rates. The next two rows capture the method’s
ability to avoid the small injected spikes, representing false anoma-
lies. These results show that regardless of the underlying network,
OD flow and the time of the injected spike, the subspace method is
able to diagnose the volume anomaly with high accuracy and low
false alarm rates.
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Figure 8: Scatter plots of detection rate of large injections and
mean OD flow rate (Sprint-1).

7. DISCUSSION
In this section we consider issues related to deployment of the

subspace method and its potential extensions.

7.1 Computational Complexity
Since the subspace method operates on link measurements, it

imposes relatively low cost in data collection. We envision that
the method may therefore be used as a first-level online monitor-
ing tool, capable of raising an alarm and directing attention to par-
ticular OD flows as the focus of attention. The diagnosis of an
anomaly may then trigger sophisticated, fine-scale (but more ex-
pensive) measurements to further isolate the cause of the anomaly.

To be used in this manner, the method must impose low compu-
tational demand. Computing all the principal components of link
traffic Y is in fact equivalent to solving the symmetric eigenvalue
problem for the covariance matrix, YTY. The standard proce-
dure for this relies on computing the singular value decomposition
(SVD) of Y. The computation complexity of a complete SVD of
a t × m matrix is O(tm2) [9]. However, the computation is typi-
cally not expensive for reasonable-sized datasets. For our 1008 ×
49 matrices the computation requires less than two seconds on a
1.0 GHz Intel-based laptop.

To apply the subspace method online, one processes each arrival
of new traffic measurements using the matrix PPT , which is de-
rived from the SVD. Previous work has shown that (for OD flows)
this matrix can be reasonably stable from week to week [16]. Thus
one need only compute the SVD occasionally, rather than at each
timestep.

Finally, it is conceivable that the straightforward SVD procedure
could become a bottleneck if applied to data with a larger set of
sources and destinations, e.g., IP-level flow data. However, such
cases may still be manageable using one of the methods that ex-
ist for updating previously computed decompositions as new data
arrives [20].



7.2 Extensions
There are a number of ways in which the work described in this

paper can be extended.
The choice made here to identify only single-flow anomalies is in

fact somewhat arbitrary. An important generalization is to the case
in which an anomaly involves multiple flows having different traffic
intensities. This can occur when an anomaly involves multiple OD
flows, when it arises from routing changes, or when it arises from
network abuse (e.g,DDoS attacks). To handle this case, we may
proceed as follows (see also [5]). We replace θi with a matrix Θi

having as many columns as there are flows that participate in the
anomaly; each column of Θi consists of the (normalized) column
of A corresponding to a participating flow. We then replace fi with
a vector fi which will capture the intensity of the anomaly in each
flow. The identification algorithms remain the same (in particular,
Equation (1) is unchanged).

It is also possible to consider applying the subspace method to
other metrics on links for which the �2 norm is an appropriate mea-
sure. For example, we may choose to look at the number of IP flows
passing over a link, or the average packet size. We believe that the
method we have outlined in this paper is applicable to such met-
rics as well. In [15], we extend the subspace method to diagnose
anomalies in a broader variety of traffic data.

7.3 Alternate Basis Sets for Y

Seen in a general light, the subspace method constructs an al-
ternate basis set for representing link measurements that makes the
separation of “normal” and “anomalous” conditions easier. It does
so by making use of spatialcorrelation (correlation across links) in
network measurements.

The same general strategy of seeking a useful alternate basis set
for data representation lies behind previous approaches to anomaly
detection as well [1, 2, 14]. However, these previous approaches
have made use of correlation in the temporaldomain – for example,
using the wavelet transform, or using exponential smoothing.

However it is reasonable to ask how temporal correlation com-
pares to spatial correlation as a tool for constructing such alternate
basis sets in the multivariate case. This is an especially appropriate
question since we made use of time-domain methods in construct-
ing our “true” anomalies in Section 6.2.

For example, one method we used for constructing “true” anoma-
lies was extracting the periodicity of OD flows (especially daily
variation) from each OD flow using frequency-domain filtering via
Fourier analysis. Since each link’s traffic is a linear combination
of traffic in all flows, we might consider that the same frequencies
filtered from each link timeseries might yield good results for de-
tecting anomalies in link data.

While a detailed exploration of this issue is beyond our scope,
we contrast here the results of extracting “normal” link behavior
via frequency-domain filtering, exponential smoothing, and sub-
space separation. To do this, we apply to each timeseries of link
data the same Fourier-based filtering and EWMA smoothing that
we applied to flow data in Section 6.2. In each case, this allows
the separation of link measurements y into modeled and residual
components. We then plot the squared norm of the residual vector
as a function of time. These plots are shown in Figure 9. In this
figure, the upper plot (showing the subspace method results) is the
same as the lower plot in Figure 4(a).

The figure shows that the anomaly detection problem is much
easier using the subspace method than using the EWMA and Fourier-
based methods. In the case of the subspace method, it is possible
to find a threshold such that all anomalies appear above the thresh-
old, while very few normal data points appear above the threshold –
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Figure 9: Comparing squared magnitude of Subspace, Fourier
and EWMA residual vectors.

in other words, achieving high detection probability and low false
alarm rate. The EWMA and Fourier methods are quite different;
the anomalous data points do not stand sharply out from the nor-
mal data, and there is no threshold having high detection probabil-
ity that does not also have high false alarm rate.

It is also striking that noticeable periodic behavior remains, even
when the most significant frequencies are removed. This shows that
periodic behavior in network traffic can be rather complex and dif-
ficult to model using only a small set of frequencies. The subspace
method avoids this difficulty by not being restricted to a fixed set
or number of frequencies. Quite complex behavior can be captured
in the first few principal components, as shown in Figure 3(a).

Finally, it is important to note that temporal and spatial correla-
tion are both valuable sources of predictability in network traffic,
and there is room for methods that attempt to exploit both simul-
taneously. In particular, it is possible to use the subspace method
across multiple time scales by applying PCA to the wavelet trans-
form of measured data [19]. In principle, such a method can allow
the detection of anomalies at all timescales.

8. RELATED WORK
A number of techniques have been proposed to detect anomalies

in traffic volume. Some examples include [1, 2, 7, 14, 21]. As dis-
cussed in Section 7, all these schemes operate on single-timeseries
traffic, measured for example from a network link, and indepen-
dent of traffic on other links in a network. Thus, these techniques
exploit temporal patterns within a single traffic timeseries to expose
anomalies. In contrast, our scheme exploits correlation properties
across links to detect network-wideanomalies.

Another distinguishing feature of our approach is that it does not
require detailed modeling assumptions about the underlying nor-
mal traffic behavior. Previous methods have principally relied on
timeseries models to approximate normal traffic [2, 10, 14] or have
relied on building models of the data during a training period [24].
For example, the commonly used Holt-Winters algorithm builds
a model for normal traffic based on parameter settings and a pri-
ori knowledge of the periodic structure in traffic. In contrast, our
scheme does not rely on any parameter settings and normal traffic
behavior is captured directly in the data, by extracting the common
features across all links.

Isolating faults in networks (which is a more general problem
than traffic anomaly detection) has also attracted some attention in



the past. A review of research in this area is [17]; noteworthy ex-
amples include [10] and [13]. The approach of [10] relies on an
autoregressive (AR) model of signals, coupled with Bayes nets for
detecting faults, but no significant validation is given. The meth-
ods of [13] rely on an exhaustive analysis of how faults might be
detected through a variety of matching algorithms. Once a fault is
found, the best explanation for it is obtained by relying on heuris-
tics, some of which are unsubstantiated. In contrast, our approach
is more systematic, relying on statistical tools; it requires no mod-
eling assumptions, and has been successful validated on data from
two modern backbone networks.

The problem of identification in our anomaly diagnosis frame-
work bears resemblance to the problem of traffic matrix estima-
tion as formulated in [23]. However, traffic matrix estimation is
concerned with the problem of estimating all underlying OD flow
intensities from link data, which is a much harder problem. As a
result, most traffic matrix estimation work to date has concentrated
on estimating mean values of large flows [18, 25]. In contrast, our
work addresses estimation of anomalous values occurring in any
flow.

The authors in [4] study a problem similar to the volume anomaly
diagnosis problem and propose a solution method based on Bayesian
models of anomaly events, but no evaluation is given.

Finally, as has been noted earlier in the paper, our methodology
draws strongly on techniques from subspace-based fault diagnosis,
such as those used in chemical engineering [5, 6]. Those methods
exploit correlation patterns among state variables in an industrial
process control setting, whereas we focus on covariance patterns
across link traffic timeseries.

9. CONCLUSIONS
In this paper we have proposed an approach called the subspace

method to diagnose network-wide traffic anomalies. The method
can detect, identify and quantify traffic anomalies. The subspace
method uses Principal Component Analysis to separate network
traffic into a normal component that is dominated by predictable
traffic, and an anomalous component which is more noisy and con-
tains the significant traffic spikes.

We evaluate the method on volume anomalies, which are a spe-
cific instance of network-wide traffic anomalies resulting from un-
usual changes in the traffic of an OD flow. We showed how to use
our method to diagnose volume anomalies from simple and read-
ily available link measurements. We quantified the efficacy of our
approach on OD flow data collected from two backbone networks,
and showed that the subspace method can successfully diagnose
volume anomalies with high detection rate and small false alarm
rate.

Although the evaluation in this paper is in terms of volume anoma-
lies, the subspace method is not specific to them. The strength of
the method lies in its use of correlations in timeseries data from
multiple links. This allows it to treat diagnosis of network-wide
traffic anomalies as a spatialproblem. Such an approach can there-
fore be extended to other types of network-wide data, and thus other
types of network-wide anomalies.

Our ongoing work is centered on extending the methodology
proposed here to diagnose additional network-wide anomalies, in-
cluding routing related anomalies. Once effective mechanisms for
diagnosing anomalies are built, we can begin to understand the
causes of the anomalies. Finally, we plan to incorporate these algo-
rithms in a toolset that can be used by network operators to better
diagnose, understand and ultimately prevent network-wide anoma-
lies.
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