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ABSTRACT
Network traffic arises from the superposition of Origin-Destination
(OD) flows. Hence, a thorough understanding of OD flows is essen-
tial for modeling network traffic, and for addressing a wide variety
of problems including traffic engineering, traffic matrix estimation,
capacity planning, forecasting and anomaly detection. However, to
date, OD flows have not been closely studied, and there is very little
known about their properties.

We present the first analysis of complete sets of OD flow time-
series, taken from two different backbone networks (Abilene and
Sprint-Europe). Using Principal Component Analysis (PCA), we
find that the set of OD flows has small intrinsic dimension. In fact,
even in a network with over a hundred OD flows, these flows can
be accurately modeled in time using a small number (10 or less) of
independent components or dimensions.

We also show how to use PCA to systematically decompose the
structure of OD flow timeseries into three main constituents: com-
mon periodic trends, short-lived bursts, and noise. We provide in-
sight into how the various constitutents contribute to the overall
structure of OD flows and explore the extent to which this decom-
position varies over time.

�A. Lakhina and M. Crovella are with the Depart-
ment of Computer Science, Boston University; email:
fanukool,crovellag@cs.bu.edu. K. Papagiannaki
and C. Diot are with Intel Research, Cambridge, UK; email:
fdina.papagiannaki,christophe.diotg@intel.com.
E. D. Kolaczyk is with the Department of Mathe-
matics and Statistics, Boston University; email: ko-
laczyk@math.bu.edu. N. Taft is with Intel Research,
Berkeley; email: nina.taft@intel.com. This work was
performed while M. Crovella was at Laboratoire d’Informatique de
Paris 6 (LIP6), with support from Centre National de la Recherche
Scientifique (CNRS), France and Sprint Labs. Part of this work
was also done while A. Lakhina, K. Papagiannaki and N. Taft were
at Sprint Labs and A. Lakhina was at Intel Research, Cambridge.
This work was supported in part by a grant from Sprint Labs,
ONR award N000140310043 and NSF grants ANI-9986397 and
CCR-0325701.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMETRICS/Performance’04,June 12–16, 2004, New York, NY, USA.
Copyright 2004 ACM 1-58113-664-1/04/0006 ...$5.00.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network Opera-
tions; C.4.3 [Performance of Systems]: Modeling Techniques

General Terms
Measurement, Performance

Keywords
Network Traffic Analysis, Traffic Engineering, Principal Compo-
nent Analysis

1. INTRODUCTION
Much of the work in network traffic analysis so far has fo-

cussed on studying traffic on a single link in isolation. How-
ever, a wide range of important problems faced by network re-
searchers today require modeling and analysis of traffic on all links
simultaneously, including traffic engineering, traffic matrix esti-
mation [18, 19, 27, 33, 34], anomaly detection [1, 6], attack detec-
tion [32], traffic forecasting and capacity planning [21].

Unfortunately, whole-network traffic analysis – i.e., modeling
the traffic on all links simultaneously – is a difficult objective, am-
plified by the fact that modeling traffic on a single link is itself a
complex task. Whole-network traffic analysis therefore remains an
important and unmet challenge.

One way to address the problem of whole-network traffic anal-
ysis is to recognize that the traffic observed on different links of a
network is not independent, but is in fact determined by a common
set of underlying origin destination (OD) flows and a routing ma-
trix. An origin destination flow is the collection of all traffic that
enters the network from a common ingress point and departs from
a common egress point. The superposition of these point-to-point
flows, as determined by routing, gives rise to all link traffic in a
network. Thus, instead of studying traffic on all links, a more di-
rect and fundamental focus for whole-network traffic study is the
analysis of the network’s set of OD flows.

However, even though OD flows are conceptually a more funda-
mental property of a network’s workload than link traffic, analyz-
ing them suffers from similar difficulties. The principal challenge
presented by OD flow analysis is that OD flows form a high dimen-
sional multivariate structure. For example, even a moderate-sized
network may carry hundreds of OD flows; the resulting set of time-
series has hundreds of dimensions. The high dimensionality of OD
flows is in fact a prime source of difficulty in addressing the whole-
network analysis problems listed above. Thus the central problem
one confronts in OD flow analysis is the so-called “curse of dimen-
sionality” [7].



In general, when presented with the need to analyze a high-
dimensional structure, a commonly-employed and powerful ap-
proach is to seek an alternate lower-dimensional approximation to
the structure that preserves its important properties. It can often
be the case that a structure that appears to be complex because of
its high dimension may be largely governed by a small set of in-
dependent variables and so can be well approximated by a lower-
dimensional representation. Dimension analysis and dimension re-
duction techniques attempt to find these simple variables and can
therefore be a useful tool to understand the original structures.

The most commonly used technique to analyze high dimensional
structures is the method of Principal Component Analysis[11]
(PCA, also known as the Karhunen-Loève procedure and singu-
lar value decompositon [28]). Given a high dimensional object and
its associated coordinate space, PCA finds a new coordinate space
which is the best one to use for dimension reduction of the given
object. Once the object is placed into this new coordinate space,
projecting the object onto a subset of the axes can be done in a way
that minimizes error. When a high-dimensional object can be well
approximated in this way in a smaller number of dimensions, we
refer to the smaller number of dimensions as the object’s intrinsic
dimensionality.

In this paper, we use PCA to explore the intrinsic dimensionality
and structure of OD flows using data collected from two different
backbone networks: Abilene and Sprint-Europe. Even though both
these networks have over a hundred origin-destination pairs, we
show that on long timescales (days to week), their structure can
be well captured using remarkably few dimensions. In fact, we
find that using between 5 and 10 dimensions, one can accurately
approximate the ensemble of OD flows in each network.

In order to explore the nature of this low dimensionality, we in-
troduce the notion of eigenflows. An eigenflow, derived from a
PCA of OD flows, is a timeseries that captures a particular source
of temporal variability (a “feature”) in the OD flows. Each OD flow
can be expressed as a weighted sum of eigenflows; the weights cap-
ture the extent to which each feature is present in the given OD flow.
We show that eigenflows fall into three natural classes: (i) deter-
ministic eigenflows, which capture the predictable periodic trends
in the OD flow timeseries, (ii) spike eigenflows, which capture the
occasional short-lived bursts in OD flows, (iii) noise eigenflows,
which account for traffic fluctuations appearing to have relatively
time-invariant properties across all OD flows. This taxonomy, sys-
tematically and quantitatively unearthed by PCA, can be viewed
as being parallel to characteristics observed in various analyses of
network traffic in the literature: periodic trends [21, 25], stochastic
bursts [26] and fractional Gaussian (or other) noise [17, 22]. Thus,
the systematic decomposition of a set of OD flows into its consti-
tutent eigenflows sheds light on the intrinsic structure of OD flows,
and consequently on the behavior of the network as a whole.

In fact, by categorizing eigenflows in this manner, we find that
we can obtain significant insight into the whole-network proper-
ties of data traffic. First of all, we find that each OD flow is well
captured by only a small set of eigenflows. Thus, each OD flow
has a certain small set of features. Furthermore, these features vary
in a predictable manner as a function of the amount of traffic car-
ried in the OD flow. In particular, we show quantitatively that the
largest OD flows in both networks are primarily deterministic and
periodic; OD flows of moderate strength are generally comprised
of both bursts and noise comparatively; and the weakest OD flows
are primarily bursty (for Sprint-Europe) and primarily noise (for
Abilene). This broad characterization of the nature of OD flows
provides a useful basis for organizing and interpreting studies of
whole-network traffic.

Finally, from a broader perspective, an important methodologi-
cal contribution of our work is the application of a dimension anal-
ysis technique to analyze the structure of network traffic. Although
we concentrate on timeseries of traffic counts, analogous problems
arise when studying delay or loss patterns in networks. Examining
intrinsic dimensionality and structure in the manner we outline in
this paper may be fruitful in studying other network properties as
well.

This paper is organized as follows. We begin in Section 2 with
a discussion of the high dimensionality of OD flows and provide
the necessary foundations of Principal Component Analysis. We
outline the steps taken to collect and construct OD flows from both
the Sprint-Europe and Abilene networks in Section 3. We then
apply PCA to OD flow timeseries from both networks and present
evidence of their low dimensionality in Section 4. We elaborate
on the notion of eigenflows and show how they can be interpreted,
understood and harnessed in Section 5. In Section 6, we examine
the temporal stability of the decomposition of OD flows into their
constitutent eigenflows. The low intrinsic dimensionality of OD
flows at long timescales suggests new approaches to a number of
network engineering problems. A discussion of these, our ongoing
work and related work is in Section 7. Concluding remarks are
presented in Section 8.

2. BACKGROUND
In order to facilitate discussion in subsequent sections, we first

introduce relevant notation. Let p denote the number of OD flows
in a network and t denote the number of successive time intervals of
interest. In this paper, we study networks which have on the order
of hundreds of OD Flows, over long timescales (days to weeks) and
over time intervals of 5 and 10 minutes so that t > p. Let X be
the t � p measurement matrix, which denotes the timeseries of all
OD flows in a network. Thus, each column i denotes the timeseries
of the i-th OD flow and each row j represents an instance of all
the OD flows at time j. We refer to individual columns of a matrix
using a single subscript, so OD flow i is denoted Xi. Note that X
thus defined has rank at most p. Finally, all vectors in this paper are
column vectors, unless otherwise noted.

2.1 OD Flows
An OD flow consists of all traffic entering the network at a given

point, and exiting the network at some other point. Each network
ingress and egress point serves a distinct customer population1.
Thus, each OD flow arises from the activity of a distinct user pop-
ulation.

The traffic actually observed on a network link arises from the
superposition of OD flows. The relationship between link and flow
traffic can be concisely captured in the routing matrixA. The ma-
trix A has size (# links) � (# flows), where Aij = 1 if flow j
traverses link i, and is zero otherwise. Then the vector of traffic
counts on links (y) is related to the vector of traffic counts in OD
flows (x) by y = Ax. Traffic engineering is the process of ad-
justing A, given some OD flow traffic x, so as to influence the link
traffic y in some desirable way. Thus accurate traffic engineering
and link capacity planning depends on a good understanding of the
properties of the OD flow vector x.

In a typical network with n PoPs (points of presence where traf-
fic may enter or exit the network) there are n2 PoP-pairs, and hence
n2 OD flows. Thus even in a moderate sized network with tens of
PoPs, there are hundreds of OD flows, meaning that x is a vector

1We assume for purposes of discussion that routing changes do not
affect where traffic for a particular population enters or exits.
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Figure 1: Illustration of PCA on a correlated, 2-D dataset.

residing in a high dimensional space. Successive OD flow traffic
measurements over time (X) then become a high dimensional mul-
tivariate timeseries.

Because each OD flow is the result of activity of distinct user
populations, it is not clear to what extent OD flows share common
characteristics. That is, it is not clear whether we should expect
the columns of X to be related (so that the effectiverank of X is
less than p). A particularly powerful approach to answering these
questions quantitatively is dimension analysis via PCA.

2.2 Principal Component Analysis
PCA is a coordinate transformation method that maps the mea-

sured data onto a new set of axes. These axes are called the prin-
cipal axes or components. Each principal component has the prop-
erty that it points in the direction of maximum variation or energy
(with respect to the Euclidean norm) remaining in the data, given
the energy already accounted for in the preceding components2. As
such, the first principal component captures the total energy of the
original data to the maximal degree possible on a single axis. The
next principal components then capture the maximum residual en-
ergy among the remaining orthogonal directions. In this sense, the
principal axes are ordered by the amount of energy in the data they
capture.

The method of PCA can be motivated by a geometric illustra-
tion. An application of PCA on a two dimensional dataset is shown
in Figure 1. The first principal axis points in the direction of max-
imum energy in the data. Generalization to higher dimensions, as
in the case of X , take the rows of X as points in Euclidean space,
so that we have a dataset of t points in IRp. Mapping the data onto
the first r principal axes places the data into an r-dimensional hy-
perplane.

Shifting from the geometric interpretation to a linear algebraic
formulation, calculating the principal components is equivalent to
solving the symmetric eigenvalue problem for the matrix XTX .
The matrix XTX is a measure of the covariance between flows.
Each principal component vi is the i-th eigenvector computed from
the spectral decomposition of XTX:

XTXvi = �ivi i = 1; :::; p (1)

where �i is the eigenvalue corresponding to vi. Furthermore, be-
cause XTX is symmetric positive definite, its eigenvectors are or-

2We will use the terms variation and energy interchangably in the
rest of the paper.

thogonal and the corresponding eigenvalues are nonnegative real.
By convention, the eigenvectors have unit norm and the eigenval-
ues are arranged from large to small, so that �1 � �2 � ::: � �p.

To see that calculating the principal components of X is equiva-
lent to computing the eigenvectors of XTX , consider the first prin-
cipal component. Let v1 denote the vector of size p corresponding
to the first principal component of X . As mentioned earlier, the
first principal axis, v1, captures the maximum energy of the data:

v1 = arg max
kvk=1

kXvk (2)

where kXvk is the energy of the data captured along v. The above
equation can be rewritten as:

v1 = arg max
kvk=1

kXvk

= argmax
v

kXvk
vTv

= argmax
v

vTXTXv

vTv
:

The quantity being maximized in the last equation above is the
Rayleigh Quotientof XTX . It can be shown that the eigenvector
corresponding to the largest eigenvalue of XTX (or the first eigen-
vector) maximizes its Rayleigh quotient (see, for instance [28]). In
this way, maximizing the energy ofX along the first principal com-
ponent v1 is equivalent to computing the first eigenvector of XTX .

Proceeding recursively, once the first k�1 principal components
have been determined, the k-th principal component corresponds to
the maximum energy of the residual. The residual is the difference
between the original data and the data mapped onto the first k � 1
principal axes. Thus, we can write the k-th principal component vk
as:

vk = arg max
kvk=1

k(X �
k�1X

i=1

Xviv
T
i )vk:

By a similar argument, computing the k-th principal component
is equivalent to finding the k-th eigenvector of XTX . Thus, in this
manner, computing the set of all principal components, fvigpi=1 is
equivalent to computing the eigenvectors of XTX .

Once the data have been mapped into principal component space,
it can be useful to examine the transformed data one dimension at a
time. Considering the data mapped onto the principal components,
we see that the contribution of principal axis i as a function of time
is given by Xvi. This vector can be normalized to unit length by
dividing by �i =

p
�i. Thus, we have for each principal axis i,

ui =
Xvi
�i

i = 1; :::; p (3)

The ui are vectors of size t and orthogonal by construction. The
above equation shows that all the OD flows, when weighted by
vi, produce one dimension of the transformed data. Thus vector ui
captures the temporal variation common to all flows along principal
axis i. Since the principal axes are in order of contribution to the
overall energy, u1 captures the strongest temporal trend common
to all OD flows, u2 captures the next strongest, and so on. Because
the set of fuigpi=1 capture the time-varying trends common to the
OD flows, we refer to them as the eigenflowsof X .

The set of principal components fvigpi=1 can be arranged in or-
der as columns of a principal matrix V , which has size p � p.
Likewise, we can form the t� p matrix U in which column i is ui.
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Figure 2: An eigenflow and its corresponding principal compo-
nent.

Then taken together, V , U , and �i can be arranged to write each
OD flow Xi as:

Xi

�i
= U(V T)i i = 1; :::; p (4)

where Xi is the timeseries of the i-th OD flow and (V T)i is the
i-th row of V . Equation (4) makes clear that each OD flow Xi

is in turn a linear combination of the eigenflows, with associated
weights (V T)i.

In Figure 2 we show typical examples of an eigenflow ui and its
corresponding principal axis vi. The eigenflow captures a pattern
of temporal variation common to the set of OD flows, and the extent
to which this particular temporal pattern is present in each OD flow
is given by the entries of vi. In this case, we can see that this
eigenflow’s feature is most strongly present in OD flow 84 (the
strongest peak in vi).

The elements of f�igpi=1 are called the singular values. Note
that each singular value is the square root of the corresponding
eigenvalue, which in turn is the energy attributable to the respec-
tive principal component:

kXvik = vTiX
TXvi = �iv

T
i vi = �i (5)

where the second equality holds from Equation 1, and the last
equality follows from the fact that vi has unit norm. Thus, the
singular values are useful for gauging the potential for reduced di-
mensionality in the data, often simply through their visual exam-
ination in a scree plot. Specifically, finding that only r singular
values are non-negligible, implies that X effectively resides on an
r-dimensional subspace of IRp. In that case, we can approximate
the original X as:

X 0 �
rX

i=1

�iuiv
T
i (6)

where r < p is the effective intrinsic dimension of X .
In the next section, we introduce the complete-sets of OD flow

timeseries from both networks that we have collected. In the sec-
tion that follows it (Section 4), we analyze the flows using PCA.

3. DATA

3.1 Networks Studied
This analysis of OD-pair flow properties is based on measure-

ments from two different backbone networks. However, it is not
specific to backbone networks and can be applied to different types
of networks.

Sprint-Europe (henceforth Sprint) is the European backbone of
a US tier-1 ISP. This network has 13 Points of presence (PoPs)
and carries commercial traffic for large customers (companies, lo-
cal ISPs, etc.). Abilene is the Internet2 backbone network. It has
11 PoPs and spans the continental USA. The traffic on Abilene is
non-commercial, arising mainly from major universities in the US.

3.2 Flow Data Collected
Measuring flow data by capturing every packet at high packet

rates can overwhelm available processing power. Therefore, we
collected sampled flow data from every router in both networks.
On the Sprint network, we used Cisco’s NetFlow [5] to collect ev-
ery 250th packet. Sampling is periodic, and results are aggregated
in flows at the network prefix level, every 5 minutes. On Abilene,
the sampling rate is random, capturing 1% of all packets using Ju-
niper’s traffic sampling tool [12]. The monitored flow granularity is
at the 5-tuple level (IP address and port number for both source and
destination, along with protocol type) and sampled measurements
are reported every minute. We aggregated the Sprint and Abilene
flow traffic counts into bins of size 10 minutes and 5 minutes re-
spectively to avoid possible collection synchronization issues.

Using sampled flow data has two major drawbacks. First, when
a link is lightly utilized, sampling every N -th packet undersamples
some flows. However, we found excellent agreement (within 1%-
5% accuracy) between sampled flow bytecounts, adjusted for sam-
pling rate, and the corresponding SNMP bytecounts on links with
utlization more than 1 Mbps. Most of the links from both networks
fall in this category, and so our sampled flow bytecounts are likely
to be accurate. Another problem with measuring flows by sampling
packets on any link is that some flows are not sampled altogether.
As [8, 10] show, these unsampled flows have a small number of
packets, carry very few bytes and so will have negligible impact on
our aggregated flow bytecounts.

3.3 From Raw Flows to OD Flows
To obtain Origin-Destination flows from the raw flows collected,

we have to identify the ingress and egress points of each flow. The
ingress points can be identified because we collect data from each
ingress link in both networks. For egress point resolution, we use
BGP and ISIS routing tables as detailed in [2, 9]3. Using this pro-
cedure, we obtained the datasets summarized in Table 1.

# Pairs Type Time Bin Period
Sprint-1 169 Net. Prefix 10 min Jul 07-Jul 13
Sprint-2 169 Net. Prefix 10 min Aug 04-Aug 10
Sprint-3 169 Net. Prefix 10 min Aug 11-Aug 17
Abilene 121 IP 5-Tuple 5 min Apr 07-Apr 13

Table 1: Summary of datasets studied.

3For Sprint, we supplemented routing tables with router configu-
ration files to resolve customer IP address spaces. Also, Abilene
anonymizes the last 11 bits of the destination IP. This is not a sig-
nificant concern because there are few prefixes less than 11 bits in
the Abilene routing tables, and we found very little traffic destined
to these prefixes.
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Figure 3: Reconstructing OD flow timeseries with 5 principal components (left and center plots: Sprint-1; right plot: Abilene).

4. ANALYZING OD FLOWS
As described in Section 2, the foundation of our approach is

to use PCA to decompose an ensemble of OD flows into its con-
stituent set of eigenflows. In this section, we present the results
of that process. We first show that only a small set of eigenflows
is necessary for reasonably accurate construction of OD traffic –
meaning that OD flows in fact form a multivariate timeseries of
low effective dimension. Then we examine the structure of OD
flows, that is, how each OD flow is decomposed into constituent
eigenflows.

4.1 Low Dimensionality of OD Flows
As described in Section 2.2, the energy contributed by each

eigenflow to aggregate network traffic is summarized in the scree
plot. We form scree plots by applying PCA to the Sprint and Abi-
lene datasets. In Figure 4 we show the scree plots for each dataset.

The figure shows the surprising result that the vast majority of
traffic variability is contributed by the first few eigenflows; further-
more, this effect is consistent in both networks. Both curves have
a very sharp knee, showing that a handful of eigenflows, between
5 and 10, contribute to most of the traffic variability. In different
terms, this result shows that the OD flow timeseries together form a
structure with effective dimension between 5 and 10 – much lower
than the number of OD pairs (over 100 in each case).

As an illustration of this low dimensionality of OD flows, we
plot a sample of OD flows using a low-dimensional reconstruction.
We do so by representing each OD flow using only the first five
eigenflows. This construction is given by Equation 6, with r = 5.
The results are shown in Figure 3. The figure shows that even if we
omit over 100 dimensions from the original data, we can capture
the temporal characteristics of these OD flows remarkably well.

What is the reason for this low dimensionality in OD flow data?
There are at least two ways in which this sort of low-dimensionality
can arise. First, if the magnitude of variation among dimensions in
the original data differs greatly, then the data may have low effec-
tive dimension for that reason alone. This is the case if variation
along a small set of dimensions in the original data is dominant.
Second, a multivariate timeseries may exhibit low dimensionality if
there are common underlying patterns or trends across dimensions
– in other words, if dimensions show non-negligible correlation.

We can distinguish these cases in OD flow analysis by normaliz-
ing the OD flows before performing PCA. The standard approach
is to normalize each dimension to zero mean and unit variance. For
OD flow data we have:

�Xi = Xi � �i i = 1; :::; p

20 40 60 80 100 120 140 160

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Singular Values

M
ag

ni
tu

de

Sprint−1
Sprint−2
Sprint−3
Abilene

Figure 4: Scree plot for OD flows.
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Figure 5: Scree plot for Normalized OD flows.

where �i � �(Xi) is the sample mean of Xi. If we find that
OD flows still exhibit low dimensionality after normalization, we
can infer that the remaining effect is due to the common temporal
patterns among flows.

The results of applying PCA to normalized versions of all
datasets is shown in Figure 5. The most striking feature of this
figure is that the sharp knee from Figure 4 remains, in nearly the
same location. It is also clear that the relative significance of the
first few eigenflows has diminished somewhat.

Taken together, these observations suggest that while differences
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in flow size contribute to the low-dimensionality of flows, that cor-
relations among flows (common underlying flow patterns) play a
significant role. As the discussion in Section 2.2 points out, these
common underlying flow patterns are in fact the eigenflows.

Normalization ensures that the common trends captured by the
eigenflows are not skewed due to differences in mean OD flow
rates. Since we are primarily interested in the common temporal
patterns, we will focus all subsequent analysis on the normalized
flows.

4.2 Structure of OD Flows
To understand how eigenflows contribute common patterns of

variability across OD flows, we return to the discussion of PCA
from Section 2.2. A row i of the principal matrix V specifies the ex-
tent to which each eigenflow (scaled by its corresponding singular
value) contributes to OD flow i. This is summarized in Equation 4.
Thus we can examine rows of V to discern the structureof the set
of OD flows – how each OD flow is composed of eigenflows, and
how any two OD flows are similar or dissimilar expressed in terms
of eigenflows.

Inspecting the rows of V for a number of our datasets yields
some surprising observations about how OD flows are structured in
terms of eigenflows4. Our first observation is that each OD flow is
comprised of only a handful of significant eigenflows. We demon-
state this as follows.

Considering any given row of V , we are interested in how many
entries are significantly different from zero. We can make this pre-
cise by setting a threshold and counting how many entries in the
row exceed this threshold in absolute value. A resonable threshold
is 1=

p
p, since a perfectly equal mixture of all eigenflows would

result in a row of V with all entries equal and, applying this rea-
soning across all rows simultaneously, the constraints that columns
of V have unit norm must be enforced.

In Figure 6, we plot the CDF of the number of entries per row of
V that exceed this threshold for our Sprint-1 and Abilene datasets.
The figure shows that, regardless of dataset, most rows of V have
less than 20 significant entries, and no row has more than 35 sig-
nificant entries. In terms of OD flows, this means that any given
OD flow is composed of no more than 35 significant eigenflows,
and generally many fewer. This surprising result means that we

4Exhaustive presentation of such voluminous data is impractical in
the current context, but the reader is invited to inspect [16] which
displays all rows of V for both Sprint-1 and Abilene datasets.
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Figure 7: Indices of the eigenflows constituting each OD flow.

can think of each OD flow as having only a small set of “features.”
Thus, we should expect different OD flows to differ considerably
in the nature of the temporal variation that they exhibit.

Our second observation concerns howOD flows differ. We note
that, in general, there is a relationship between the size of an OD
flow (its mean rate) and the eigenflows that comprise it. To examine
this relationship, we can inspect where the above-threshold entries
of the V matrix occur. Figure 7 shows the above-threshold entries
of the V matrix for the Sprint-1 and Abilene datasets. In the figure,
there is a dot for each entry in the V matrix that exceeds 1=

p
p in

absolute value. Note that the columns of the V matrix are organized
by convention in decreasing singular value order, and we have or-
dered the rows in order of decreasing OD flow rate as well. Thus
the top row in each plot indicates the eigenflows that are significant
in forming the strongest OD flow, and the bottom row indicates the
significant eigenflows for the weakest OD flow.

The figure shows two things: first, in general, the significant en-
tries in most rows of V are clustered in a restricted range (this ef-
fect is more pronounced in the Sprint data than in the Abilene data).



Mon Tue Wed Thu Fri Sat Sun
0.022

0.024

0.026

0.028

0.03

0.032

0.034

0.036

0.038

E
ig

en
flo

w
 1

Mon Tue Wed Thu Fri Sat Sun

−0.06

−0.04

−0.02

0

0.02

0.04

E
ig

en
flo

w
 2

Mon Tue Wed Thu Fri Sat Sun
0.012

0.014

0.016

0.018

0.02

0.022

0.024

0.026

0.028

E
ig

en
flo

w
 1

Mon Tue Wed Thu Fri Sat Sun
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

E
ig

en
flo

w
 2

Mon Tue Wed Thu Fri Sat Sun

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

E
ig

en
flo

w
 8

Mon Tue Wed Thu Fri Sat Sun

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

E
ig

en
flo

w
 2

0

Mon Tue Wed Thu Fri Sat Sun
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

E
ig

en
flo

w
 6

Mon Tue Wed Thu Fri Sat Sun

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

E
ig

en
flo

w
 1

0

Mon Tue Wed Thu Fri Sat Sun
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

E
ig

en
flo

w
 2

9

Mon Tue Wed Thu Fri Sat Sun

−0.1

−0.05

0

0.05

0.1

E
ig

en
flo

w
 3

9

Mon Tue Wed Thu Fri Sat Sun

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

E
ig

en
flo

w
 4

9

Mon Tue Wed Thu Fri Sat Sun

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

E
ig

en
flo

w
 5

3

(a) Sprint-1 (b) Abilene

Figure 8: Eigenflow examples. Top Row: Deterministic Eigenflows; Middle Row: Spike Eigenflows; Bottom Row: Noise Eigenflows.

Second, larger flows tend to be comprised mainly of the most sig-
nificant eigenflows, and smaller flows tend to be comprised mainly
of less significant eigenflows.

In some ways, the results shown in Figure 7 are not surprising.
The largest OD flows will tend to dominate the definition of the
most significant eigenflows, and so the steady upward trend in the
plot is more or less to be expected. However the tight clustering
of the significant eigenflows for any OD flow means that if there
are qualitative differences between eigenflows in different ranges,
then these qualitative differences will be reflected in the OD flows.
Indeed, in the next section we show that this is in fact the case.

5. UNDERSTANDING EIGENFLOWS
The analysis of OD flows presented in the last section has em-

phasized the central role of eigenflows in understanding OD flow
properties. Thus we turn now to eigenflows; we inspect them, de-
scribe the three types most often seen, and show how understanding
those types in light of the results in the previous section can yield
general insight into OD flow properties.

5.1 A Taxonomy of Eigenflows
We start by inspecting the complete sets of eigenflows for a

number of our datasets5. Surprisingly, across all of the eigen-
flows we examined, there appear to be only three distinctly dif-
ferent types. Representative examples of each eigenflow type from
both the Sprint-1 and Abilene datasets are shown in Figure 8.

The top row shows examples of eigenflows that exhibit strong

5As in Section 4.2, the raw data is too voluminous to present, but
plots of the complete set of eigenflows for both datasets are avail-
able at [16].

periodicities. The periodicities clearly reflect diurnal activity, as
well as the difference between weekday and weekend activity. Be-
cause these eigenflows appear to be relatively predictable, we refer
to them as d-eigenflows(for “deterministic”).

The second row of Figure 8 shows examples of eigenflows that
exhibit strong, short-lived spikes. These s-eigenflows(for “spike”)
show isolated values that can be many standard deviations (e.g., 4
or 5 standard deviations) from the eigenflow mean. These clearly
capture the occasional traffic bursts and dips that are a common
feature of network data traffic.

Finally, the lowest row of Figure 8 shows examples of eigenflows
that appear roughly stationary and Gaussian. These n-eigenflows
(for “noise”) capture the remaining random variation that arises as
the result of multiplexing many individual traffic sources. The ma-
jority of eigenflows in both datasets appear to be of this type.

These categories of eigenflows are only heuristically distin-
guished. It is not our intent to suggest that any eigenflow can be
unambiguously categorized in this manner. Nonetheless, we ob-
serve that these categories are in fact very distinct, and that almost
all eigenflows can be easily placed into one of these categories.

To demonstrate that these categories are distinct and that most
eigenflows fall clearly into one of the three categories, we evaluate
each flow according to the following criteria:

1. Does the eigenflow have a strong peak in its Fourier spectrum
at 12 or 24 hours? A strong peak is defined here as a power
value at that frequency greater than any other value in the
power spectrum.

2. Does the eigenflow contain at least one outlier that exceeds 5
standard deviations from its mean?

3. Does the eigenflow have a marginal distribution that appears
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Figure 9: Classifying eigenflows by using three tests.

to be nearly Gaussian? We judge whether an eigenflow
meets this criterion by examining its distribution on a qq-
plot, which plots quantiles of the data against quantiles of
the Normal distribution; a straight line indicates a close fit of
the data to the Normal.

Examples of applying these criteria to eigenflows from both
datasets are shown in Figure 9. Figure 9(a) shows that the eigen-
flows that we visually identify as d-eigenflows indeed have a dis-
tinct power spectrum peak at 24 hours. In Figure 9(b) we show
visually identified s-eigenflows that have 5-sigma excursions from
the mean. And in Figure 9(c) we show eigenflows that are visually
categorized as n-eigenflows appear to have marginal distributions
that are nearly Gaussian.

We used these tools to examine all eigenflows from both
datasets6. Eigenflows for which more than one of the criterion
above held true were categorized as “indeterminate.” In the Sprint-
1 dataset, only 4 were indeterminate (contributing 0.012% to over-
all energy); in the Abilene dataset, only 2 were indeterminate (con-
tributing 0.26% to overall energy). For all of the remaining eigen-
flows, one and only one criterion above held true.

Thus, by using the criteria above, we can (again, heuristically)
place almost every eigenflow into one of the three categories. When
we do so, we find that we can obtain considerable insight into the
properties of the OD flows.

A clear benefit of this categorization is that it cleanly decom-
poses any given OD flow into its principal features. That is, we can
reconstruct each OD flow in terms of three constituents: the con-
tributions made by d-eigenflows, s-eigenflows, and n-eigenflows.
When we do so, each constituent tends to capture a distinct fea-
ture of the OD flow: its (deterministic) mean, its sharp bursts away
from the mean, and its apparently-stationary random variation. An
example of this decomposition is shown in Figure 10. The figure
shows the original flow along with its three constituent features as
captured by its component eigenflows. The separation of bursts and
random noise from the nonstationary variation of the mean is quite
sharp. Furthermore, the isolation of bursts from background noise
is also quite distinct. While a similar result could likely have been
obtained by applying (probably sophisticated) timeseries models,
we note that we have made no modeling assumptions here other
than the simple categorization of eigenflows. Rather, the power be-
hind this method comes from the extraction of common variation
patterns acrossOD flows as the information needed to identify and
separate different kinds of variability within a single OD flow.

6Plots similar to Figure 9 for each eigenflow can be found at [16].

1

1.5

2
x 10

7

Original

0.6
0.8

1
1.2
1.4
1.6
1.8

x 10
7

d−eigenflows

−5

0

5

x 10
6

s−eigenflows

Mon Tue Wed Thu Fri Sat Sun

−5

0

5

x 10
6

n−eigenflows

Figure 10: Decomposition of OD flow timeseries into the sum
of its three constituent eigenflows.

The features isolated in distinct eigenflows conform to charac-
teristics that have been found in studies of other network traf-
fic. Specifically, the presence of diurnal trends has been noted
in [21, 25] for SNMP link data, the presence of stochastic bursts
has been found in IP flow data by [26] and finally, the well-known
fractional gaussian noise structure was first found in link level traf-
fic by [17]. While previous studies have generally concentrated
on identifying and describing these features from a model-based
standpoint, this result shows that systematically isolating the com-
mon patterns of flow variability without recourse to elaborate mod-
eling results in essentially the same set of features.

Given the apparent power deriving from categorizing eigenflows,
it is worth investigating the relative role that the three types play in
decomposing OD traffic. As a first step, we note that the different
eigenflow types appear in different regions when the eigenflows are
ordered by overall importance (i.e.,by singular value). To illustrate
this effect, we show in Figure 11 the classification for each eigen-
flow in the Sprint-1 and Abilene datasets. The figure shows that
in both datasets, d-eigenflows mainly appear as approximately the
first six eigenflows. The next 5-6 eigenflows in order tend to be



Eigenflow type Sprint-1 Abilene
d-eigenflow 92.17% 69.79%
s-eigenflow 5.59% 18.60%
n-eigenflow 2.24% 11.61%

Table 2: Contribution of eigenflow type to overall traffic.

s-eigenflows. The only difference between the datasets is in nature
of the least significant eigenflows (eigenflows numbered 12 and be-
yond): in Abilene, the least significant eigenflows are almost all of
the noise type, while in Sprint-1 the least significant eigenflows are
more spike-type than noise. We leave an exploration of these dif-
ferences for future work.

Figure 11 provides insight into the relative roles played by differ-
ent sources of variability in our OD flow data. The figure shows that
the most important source of variation is the nonstationary changes
in the mean due to periodic trends. After these periodic trends,
traffic bursts or spikes are next in importance. Finally, the least
significant contribution to traffic variability in these datasets comes
from noise. These conclusions are confirmed in a more quantitative
way by the data in Table 2, which shows the fraction of total energy
in each dataset that can be assigned to each of the three eigenflow
types.

20 40 60 80 100 120 140 160
 

d−eigenflow

s−eigenflow

n−eigenflow

 

Sprint Eigenflows in order

20 40 60 80 100 120
 

d−eigenflow

s−eigenflow

n−eigenflow

 

Abilene Eigenflows in order

Figure 11: Occurence of eigenflow type in order of importance.
Top: Sprint-1; Bottom: Abilene.

5.2 Decomposing OD Flows
We can refine our understanding of the nature of variability in

OD traffic by using this categorization of eigenflows to decompose
each OD flow. Such a decomposition of OD flows gives insight into
how traffic features vary from one OD flow to the next.

To do so, we determine the relative contribution of each eigen-
flow type to each OD flow. The results are shown in Figure 12. In
this figure, OD flows are ordered by mean rate, decreasing from left
to right. For each flow we plot the fraction of its energy contributed
by d-, s-, and n-eigenflows. (We have averaged adjacent values in
this figure to improve legibility.)

The figure shows that the PCA based decomposition of OD flows
exposes how the properties of OD flows vary. We can see that high-
volume OD flows are dominated by periodic, deterministic trends.
As we move to the right of the figure, the relative contribution of
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Figure 12: Fraction of total energy captured by eigenflow type
for all OD flows.

deterministic components decreases, and a distinction in the struc-
ture of OD flows from the two networks emerges. For Sprint, we
find that the lower-volume an OD flow, the more it tends to be dom-
inated entirely by spikes. And, regardless of the volume of the OD
flow, a relatively constant proportion of its energy can be attributed
to noise. On the other hand, the lower volume Abilene flows are
dominated by noise and some periodic trends. Furthermore, regard-
less of the volume of the OD flow, a relatively constant proportion
of its energy is due to traffic bursts. Thus, we can relate the statis-
tical properties (temporal features) of an OD flow in a particularly
simple way to the flow’s overall traffic volume.

These results provide a powerful organizing tool for thinking
about collections of OD flows. They draw attention to the signif-
icant statistical differences between high-volume and low-volume
OD flows and between the structure of traffic in different networks.
They suggest that a simple model may not be appropriate for all
OD flows across a network. And they allow researchers and en-
gineers to relate the properties of OD flows to the nature of the
source and destination user or customer populations, through those
populations’ influences on OD flow traffic volume.

6. TEMPORAL STABILITY OF FLOW
STRUCTURE

The previous sections have shown that PCA can unearth impor-
tant structure in OD flow data. For many practical applications, it



will be important to know the extent to which this structure varies
in time.

The question we are concerned with in this section is whether
the decomposition of OD flows into eigenflows, as determined by
the set of pricipal components, is useful for analyzing data that
was not part of the input to the PCA procedure. In general, we
envision applications that may benefit from using PCA in an on-
line manner as follows. Given OD flow data observed over some
time period [t0; t1), obtain the principal components fvig. Subse-
quently, at some time t2 > t1, use fvig to decompose a new set
of OD flow observations into eigenflows. Does the subsequent de-
composition preserve useful properties of the eigenflows? We can
ask two specific versions of this question: First, does the subse-
quent decomposition still have relatively low effective dimension-
ality? And second, if the original decomposition has categorized
eigenflows by type, is that categorization still useful in the subse-
quent decomposition? Although space does not permit us to answer
these questions thoroughly, we give some initial results here.

To answer the first question, we proceed as follows. One way to
assess whether a set of OD flows has low effective dimension is to
measure the error resulting from approximating the set of flows us-
ing a small number of dimensions. Using two consecutive weeks of
OD flow data X1 and X2, we start by analyzing X1 using PCA and
obtaining its pricipal components fvig. We use fvig to construct
the top 20 eigenflows forX1, and we alsouse fvig in the same way
to construct a corresponding set of 20 pseudo-eigenflows for X2.
We use the term pseudo-eigenflowsfor the linear combinations of
the OD flows of X2 obtained using the fvig of X1, to remind us
that they are not the result of applying PCA directly to X2, but may
still approximately have the desirable properties of the eigenflows
of X2. In each case, we form approximate versions of the origi-
nal data using only the top 20 pseudo-eigenflows, yielding X 0

1 and
X 0
2: We then measure the per-flow sum of squared error of each

approximation:

SSE1 = jjX1 �X 0
1jj and SSE2 = jjX2 �X 0

2jj
and the mean relative error of each approximation:

R1 = avg(jX1 �X 0
1j=X1) and R2 = avg(jX2 �X 0

2j=X2):

Based on the results in Section 4.1, we expect the error for X1

to be small in general, because we know that OD flows can be ac-
curately approximated using a small number of eigenflows. Fur-
thermore, we expect the per-flow error for X2 to be larger than the
corresponding error for X1, since the fvig used in approximating
X2 were not necessarily optimal. However, what is not clear is how
much worse the error will be for X2 than for X1.

We performed this analysis on datasets from the Sprint network,
with X1 consisting of data for the week of 04 August to 10 August
(Sprint-2 dataset) and X2 consisting of data for the next week, i.e.,
11 August to 17 August (Sprint-3 dataset). The results are shown
in Figure 13. Figure 13(a) shows the sum of squared error per OD
flow, with flows ordered by decreasing mean rate from left to right.
Figure 13(b) shows the mean relative error per OD flow.

The plots show that overall, the error induced by using the pre-
vious week’s principal components to analyze the current week’s
OD flows is not great. The relative approximation error for X1 for
the 20 or so heaviest (most important) flows is in the range of 5%.
The relative approximation error for X2, using the principal com-
ponents ofX1, is in the range (for the same flows) of approximately
10%. Thus, the first week’s principal components appear to remain
good choices for forming a low-dimensional representation of the
subsequent consecutive week.

The second question we ask is whether the categorization of
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Figure 13: Exploring the temporal stability of Principal Com-
ponents.

eigenflows remains consistent enough from week to week to be use-
ful. To answer this question we again decompose X2 into pseudo-
eigenflows, and we designate a pseudo-eigenflow a d-eigenflow if
it was a d-eigenflow in the decomposition of X1. This allows us
to “detrend” X2 without applying PCA to it directly. Detrending a
particular set of flows is then accomplished through a simple matrix
multiplication.

To illustrate the effectiveness of this online style of detrending,
we use it to identify unusual events in X2. The approach is shown
in Figure 14. On the top of the figure are plots of two OD flows
taken from X2. Below each OD flow we show the same OD flow
with deterministic components, as identified using the decompo-
sition of X1, removed. The result of removing the deterministic
components appears to be a timeseries without much variation in
mean, and therefore suitable for simple thresholding to identify un-
usual events. We adopt the arbitrary threshold of 4 standard devia-
tions; based on this theshold, we show that unusual events (values
far from the mean) can be easily identified in the original OD flow.

Taken together, these results suggest that the useful properties
obtained from decomposition into eigenflows show a degree of sta-
bility from week to week that may be useful. While further inves-
tigation is needed to determine the extent in time over which such
properties are stable for any given application, we believe that the
results shown here are promising.
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7. RELATED WORK
Although, to our knowledge, dimensional analysis using PCA

has not been previously applied to network traffic measurements, it
is a well-established tool for analyzing dimensionality and structure
in other disciplines. Areas where it has been successfully employed
in this way include face recognition [13], brain imaging [30], me-
teorology [23] and fluid dynamics [15].

Modeling traffic timeseries on a single link has attracted con-
siderable research. Examples of recent studies that characterize
timeseries of link traffic in backbone networks over long timescales
are [24, 25].

In contrast, there is little prior work on OD flows, despite their
engineering importance. Directly measuring OD flows requires ad-
ditional and intensive monitoring on many routers, a task that de-
mands considerable resources for high speed networks. Recently,
however, network operators and researchers have started to use
sampling schemes to measure OD flows [9]. It is the recent avail-
ability of such data that makes a study like ours now possible.

Two measurement studies that depart from the link-level traffic
characterization and examine inter-PoP flows in a commercial Tier-
1 backbone instead are [2, 9]. The authors of [2] observed many
different types of OD flows, which behaved differently depending
on link speed, type of relationship (peer or customer) and popular-
ity. The implication is that it is difficult to devise a single model (or
even a family of models) that characterizes a general PoP to PoP
level flow.

Although there is little work that is closely related to ours, the
work we report here has implications for a number of related net-
working problems. Our principal results (low dimensionality of OD
flows, and differences in OD flow characteristics based on rate) can
inform other work in a number of contexts. Here we briefly contrast
our proposed approach with existing methods for a few candidate
problems.
Traffic Matrix Estimation: The traffic matrix estimation problem,
as originally formulated in [31], is an ill-posed linear inverse prob-
lem of the form y = Ax, where one seeks to estimate x, the vector
of OD flows, given y, the vector of link traffic, and the routing
matrix A (as defined in Section 2.1). The central difficulty of this
problem stems from the fact that the apparent dimensionalilty of

x is much larger than that of y. Most of the methods proposed to
date (e.g., [4, 18, 19, 27, 29, 31, 33, 34]) estimate x over hour-long
stationary periods, when OD pairs are presumed to be independent.
Our work demonstrates that on the timescales of days, which is the
timescale of interest for many applications of traffic engineering,
the effective dimensionality of OD flows is much smaller. In such
scenarios therefore, the traffic matrix estimation problem may be
more tractable and yield to direct solution methods.
Anomaly detection in timeseries: Anomalies in OD flow time-
series are difficult to identify without manual inspection. Simple
thresholding schemes cannot be applied because the timeseries are
nonstationary. A number of change detection methods have been
proposed that rely on wavelet denoising techniques [1] and devi-
ations from forecasted behavior [3, 14] to identify outliers. An
alternative approach is to detrend the flow timeseries using its d-
eigenflows and then perform simple threshold tests on the resulting
timeseries. The elements of this approach were briefly examined in
Section 6 (Figure 14).
Traffic Forecasting: The state of the art in traffic forecasting for IP
networks relies on forecasting models built on predictable trends of
traffic, which are in turn isolated using wavelets [21]. An alterna-
tive approach to a wavelet-based isolation of trends in an OD flow
is to simply use its d-eigenflows. Having done so, we can build
forecasting models for the d-eigenflows and forecast the traffic for
the entire set of OD flows. An advantage of such a PCA-based ap-
proach is that it allows simultaneous examination and forecasting
of the entire ensemble of OD flow timeseries.
Traffic Engineering: The finding that large OD flows are mainly
periodic and small OD flows are predominantly noise has been ob-
served by others anecdotally [33]. Using PCA, we can system-
atically evaluate this effect with a fair amount of precision. An
understanding of the structure of collections of OD flows has use
in traffic engineering tasks, such as identifying the predictable and
heaviest flows [20].

An investigation of some of these problems constitutes our
ongoing work.



8. CONCLUSIONS
In this paper, we have analyzed the structure of complete sets

of Origin-Destination flow timeseries from two different networks:
the European Sprint backbone network and the Abilene Internet2
backbone.

The first question we asked was whether complete sets of OD
flows can be captured with low dimensional representations. Prior
work suggested that because OD flows number on the order of hun-
dreds in medium-sized networks and because each OD flow serves
a different customer population, they are complicated structures
to collectively model. Using Principal Component Analysis, we
found that the hundreds of OD flows from both networks can be
accurately described in time using 5-10 independent dimensions.

This surprising low dimensionality motivated us to ask a second
question: how best can we understand the ways in which an en-
semble of OD flows are similar and the ways in which they differ.
We found that by examining the eigenflows, which are the com-
mon patterns of variation underlying OD flows, we could develop
considerable understanding of the structure of OD flows. We found
that the set of OD flows shows three features: deterministic trends,
spikes and noise. Furthermore, the largest OD flows most strongly
exhibit deterministic trends and the smallest OD flows are domi-
nated by noise (for Abilene) and spikes (for Sprint). Thus using
PCA, we were able to quantitatively decompose the structure of
each OD flow into its constitutent features.

Our last objective was to examine the extent to which the struc-
ture of OD flows unearthed by PCA varies over time. We found
using the results of PCA of a previous week to decompose the
structure of OD flows in the current week introduced very little
error. Thus, the low-dimensional coordinate space formed by PCA
shows some evidence of stability over time.
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