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ABSTRACT
Traffic matrix estimation is well-studied, but in general has been
treated simply as a statistical inference problem. In practice, how-
ever, network operators seeking traffic matrix information have a
range of options available to them. Operators can measure traf-
fic flows directly; they can perform partial flow measurement, and
infer missing data using models; or they can perform no flow mea-
surement and infer traffic matrices directly from link counts. The
advent of practical flow measurement makes the study of these
tradeoffs more important. In particular, an important question is
whether judicious modeling, combined with partial flow measure-
ment, can provide traffic matrix estimates that are signficantly bet-
ter than previous methods at relatively low cost. In this paper we
make a number of contributions toward answering this question.
First, we provide a taxonomy of the kinds of models that may
make use of partial flow measurement, based on the nature of the
measurements used and the spatial, temporal, or spatio-temporal
correlation exploited. We then evaluate estimation methods which
use each kind of model. In the process we propose and evaluate
new methods, and extensions to methods previously proposed. We
show that, using such methods, small amounts of traffic flow mea-
surements can have significant impacts on the accuracy of traffic
matrix estimation, yielding results much better than previous ap-
proaches. We also show that different methods differ in their bias
and variance properties, suggesting that different methods may be
suited to different applications.

Categories and Subject Descriptors:
C.2.3 [Computer Communications]: Network Operations C.4.3 [Per-
formance of Systems]: Modeling Techniques
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Measurement Performance
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1. INTRODUCTION
Network operators need to know how traffic flows through their

network in order to make many of the design and management deci-
sions they face. The traffic is typically described by a traffic matrix
that captures the amount of traffic transmitted between every pair
of ingress and egress points in a network. Each element of a traffic
matrix is typically referred to as an Origin-Destination (OD) pair
(or flow). Network operators have expressed a pressing need to
obtain accurate traffic matrices since a multitude of their activities
need such traffic matrices as inputs. These activities include fail-
ure management, provisioning, traffic engineering, routing policy
design and load balancing.

In [8] the authors outline the reasons why today’s monitoring
technologies are unable to directly measure traffic matrices. For
those reasons, the research community in recent years, has pursued
statistical inference methods to estimate traffic matrices from read-
ily available (but inadequate) link traffic measurements.

The traffic matrix estimation problem posed as an inference prob-
lem can be briefly stated as follows. The relationship between the
traffic matrix, the routing and the link counts can be described by
a system of linear equationsy = Ax, wherey is the vector of
link counts,x is the traffic matrix organized as a vector, andA de-
notes a routing matrix in which elementAij is equal to 1 if OD
pair j traverses linki or zero otherwise. The elements of the rout-
ing matrix can have fractional values if traffic splitting is supported.
In networking environments today,y andA are readily available;
the link countsy can be obtained through standard SNMP mea-
surements and the routing matrixA can be obtained by computing
shortest paths using IGP link weights together with the network
topology information. The problem at hand is to estimate the traffic
matrixx. This is not straightforward because there are many more
OD pairs (unknown quantities) than there are link measurements
(known quantities). This is manifested by the matrixA having less
than full rank. Hence the fundamental problem is that of a highly
under-constrained, or ill-posed, system.

By looking back on the development of traffic matrix estima-
tion techniques, we see that most techniques have been motivated
by trying to tackle the fundamental issue of the problem being ill-
posed. The idea of introducing additional side information is a
common approach to solving ill-posed inverse problems. A first
generation of techniques was proposed in [11, 2]. Their approach
to handling the highly under-constrained problem was to introduce
additional constraints related to the second order moment of the
OD pairs. These methods used simple models for OD pairs (e.g.,
Poisson, Gaussian) that contained neither spatial nor temporal cor-
relationsin the OD flow model. A comparative study of these meth-
ods [6] revealed that these methods were highly dependent upon an
initial prior estimate of the traffic matrix. This illustrated the need
for improved OD flow models.



Shortly thereafter a second generation of techniques [13, 14, 7,
9] emerged that made use of side-information coming from addi-
tional sources of SNMP data. This extra measurement data was
used to calibrate a model of OD flows. The calibrated model is
then incorporated inside some type of estimation procedure. The
OD flow model used in [13, 14] is that of a gravity model that cap-
tures the fraction of traffic destined to an egress node as a portion
of the total arriving traffic at an ingress node. They assume that
ingress and egress nodes are independent and calibrate the gravity
model using SNMP data from access and peering links. This data
is different from the SNMP data used inside the estimation which
comes from inter-router links. The method in [9] tackles the is-
sue of an ill-posed system via another approach. Their key idea is
to explicitly change the link weights, thereby changing the routing
and moving OD flows onto different paths. By doing this enough
times, they increase the rank of the routing matrix. The inter-router
SNMP data is then collected from each of the different routing con-
figurations used. The side information here can be thought as this
additional SNMP data coming from altered routing configurations.
This route change method uses all of the collected data to calibrate a
model for OD flows that is based on a Fourier expansion plus noise
model. This is a dynamic model intended to capture the temporal
evolution of OD flows. In fact, this method attacks the ill-posed
nature of the problem two ways simultaneously, that of increasing
the rank and of using an improved OD flow model. Their model
is a purely temporal one for OD flows, while the approach in [14]
uses a purely spatial model for the OD flows.

These second generation methods yielded improvements on first
generation techniques and also provided useful insights. However
these methods have not been able to push error rates sufficiently
low for carriers. With recent advances in flow monitoring tech-
niques, some of the issues involved in their use are dissipating.
Moreover, it is becoming better understood [8, 12] what sorts of
changes are needed to flow monitors in order to make obtaining
the flow data needed for traffic matrices less cumbersome to ob-
tain. Even assuming these changes will take place in the future, [8]
shows that the communications overhead will remain large. Hence
the authors propose the use of flow monitoring in a lightweight
fashion - that of turning flow monitors on only when (in time) and
where (which nodes) needed.

In this paper we further pursue this idea, generalize it to other
methods, and explore a much broader range of questions that arise
when one has the possibility of considering using partial flow mea-
surements for traffic matrix estimation. Starting with the premise
that we can do partial flow measurement, many important ques-
tions arise. Since such measurement data will contain information
about spatial and temporal correlations, we can ask what are good
OD flow models to exploit the temporal, spatial, or spatio-temporal
correlations? How much measurement should be done? What are
the improvements in error rate reduction that can be achieved for
a given level of measurement overhead? How well do these meth-
ods handle the dynamic nature of traffic matrices? What are the
strengths and weaknesses of different approaches with respect to
other traffic engineering applications that rely upon traffic matrix
data as an input? What are the tradeoffs in and limitations of infer-
ence methods coupled with partial flow measurement?

We address these questions by studying the behavior of five TM
estimation methods. We include two second generation methods;
that of [14] called thetomogravitymethod, and that of [9] which
we refer to as theroute changemethod. We label methods that use
partial flow measurements as third generation methods, and con-
sider three such methods. One method, called thefanoutmethod
hereafter, is the one proposed in [8]. We introduce a method that

relies upon Principal Component Analysis (PCA), called thePCA
method, that appears in this paper for the first time. The final
method makes use of Kalman filtering techniques and is hence re-
ferred to as theKalmanmethod. This method is also introduced
here for the first time.

If flow monitors are turned on network-wide for a period of time,
then they yield an exact copy of the traffic matrix for that period of
time. Whenall the flow monitors at a single PoP (router) are turned
on, this yields an exact copy of one row of a PoP-to-PoP (router-
to-router) traffic matrix. Because previous work [9, 8, 5] has found
strong diurnal patterns in traffic matrices, the third generation meth-
ods we study assume that when flow monitors are turned on, they
remain on for 24 hours. These OD flow measurements are then
used to calibrate a model. With this kind of rich side-information,
powerful models that capture spatial and temporal correlations via
measurement (not via assumption) can be designed.

A traffic matrix is a dynamic entity that includes many sources
of variability, including short-lived variations, long-lived variations
(e.g., resulting from multi-hour equipment failures), and permanent
sources of change (new customers/routers/link or removal of cus-
tomers/routers/links). It is thus natural to expect that any underly-
ing model of OD flows will need to adapt to these changes by being
recalibrated. Hence each of the three flow-based methods studied
herein include a mechanism to check for change. When changes
are detected, flow monitors are turned on again for 24 hours, and
the corresponding model is recalibrated.

Our contributions are multiple. First, we classify each method
based on the type of correlation (spatial, temporal or spatio-temporal)
they draw on to model OD flows. We clarify the amount, type and
cost of supporting information they require. This taxonomy helps
us better understand and explain the performance of each method.
Second, we evaluate all of the methods in a unified fashion - on
the same set of data, using the same error metrics. We find that the
third generation methods (Fanout, Kalman, and PCA) outperform
the second generation methods overall, and can yield accurate esti-
mates for many of the smaller OD flows that are traditionally more
difficult to handle. This is somewhat expected because the third
generation methods rely on rich priors obtained from direct mea-
surements. However, what is more surprising is that with only 10-
20% additional measurements, we can reduce the errors by more
than half. Thus, large gains in accuracy can come at a low mea-
surement cost, which underscores the feasibility of the next gen-
eration of combined measure-and-infer techniques for computing
traffic matrices.

Our third contribution is an examination of how each method re-
sponds to dynamic changes in the traffic matrix (TM). We observe
that the tomogravity method, because of its memoryless model, ac-
commodates large and sudden changes best. However, because the
spatial correlations it uses in modelling are less accurate than those
obtained from measurement, the tomogravity method suffers from
biased estimates, producing less accurate estimates of the overall
mean behavior of OD flows. Conversely, the third generation meth-
ods are able to capture the long term mean behavior of OD flows
but track large and sudden changes in an OD flow less well. Our
fourth contribution provides a closer look at estimation bias by re-
lying on the key notions of estimation bias versus error variance.
We find that, in stark contrast to the third generation methods, the
tomogravity estimates are biased, but have low error variance. This
suggests that tomogravity may be better suited for applications re-
quiring responsive change detection, such as anomaly detection,
whereas the hybrid measure-and-infer methods are well suited for
capacity planning, that requires faithful estimates of the overall
mean estimates.



The comparative part of our study differs from the comparative
study in [4] because their study considers first and second genera-
tion methods, whereas ours is focused on second and third genera-
tion methods. Also they do not examine adaptivity and bias. To the
best of our knowledge this is the first traffic matrix paper to exam-
ine the performance of estimation methods in terms of adaptivity
and bias. These turn out to be important aspects because there is
a tradeoff between the two, and because adaptivity and bias can be
used to explain some of the results we see in the distribution of tem-
poral and spatial errors. Moreover, our results indicate that partial
flow measurements may be necessary to overcome bias.

The rest of this paper is organized as follows. Each of the five
methods used herein is summarized in Section 2. Our performance
analysis of errors, overheads, adaptivity and bias is presented in
Section 3. We conclude our work in Section 4.

2. METHODS
In this section we briefly describe each of the five methods con-

sidered in this paper. We highlight three key aspects of each method:
the type of OD flow model used, the type of data (or side infor-
mation) brought in to calibrate the model, and the method of esti-
mation. Focusing on these three aspects of each method is help-
ful in understanding the differences and similarities between vari-
ous methods without getting lost in the details. We classify each
model as being either spatial, temporal or spatio-temporal. A spa-
tial model is one that captures dependencies among OD flows, but
has no memory. In temporal models an OD flow model is depen-
dent on its past behavior, but independent of other OD flows. Spa-
tial models thus capture correlations across OD flows, while tem-
poral models capture correlations in time. Clearly, spatio-temporal
models are those that incorporate both types of correlation.

The three third-generation methods presented here use different
underlying OD flow models. The common feature of these methods
is that they rely on data from flow monitors to calibrate their mod-
els. All of these methods assume that flow monitors are initially
turned on network-wide for a period of 24 hours for initial model
calibration. The flow monitors can then be turned off until further
notice. All of these methods include simple schemes for change
detection, and when changes are detected, flow monitors are turned
back on for another period of 24 hours.

Our validation data had an estimate of the traffic matrix at each
10 minute time interval. Hence all methods estimate the traffic ma-
trix on a time scale of 10 minutes (the underlying time unitt).

2.1 Notation
To facilitate subsequent discussion, we introduce the relevant no-

tational convention used in this paper. As mentioned in the intro-
ductionx represents the traffic matrix at a specific point in time,
organized as a column vector withN elements. Likewise,y is the
column vector of traffic onL links at a point in time, andA is the
L × N routing matrix. We will also frequently refer to the traf-
fic matrix over time and we useX to denote this structure;X is a
T ×N matrix where each columnj corresponds to the timeseries
of OD flow j. Similarly, Y is theT by L multivariate timeseries
of link traffic. To represent the traffic matrix (or link traffic) at a
particular timet, we usext (or yt). To identify thej-th OD pair
at timet, we usext(j), and when needed,x(i, j, t) represents the
traffic at time t for the OD pair sourced at nodei and destined
to nodej. We will reserve the termŝx andX̂ for the estimated
traffic demands. In general, we will use boldfaced uppercase let-
ters to denote matrices, boldfaced lowercase letters to denote vector
quantities and italic lowercase letters to denote scalars. Finally, all
vectors are column vectors unless otherwise stated.

2.2 Tomogravity Method
In [13] and [14], the authors developed a method for estimating

traffic matrices that starts by building a prior TM using a gravity
model approach. The basic principle of the gravity model is to as-
sume proportionality relationships. For ease of exposition, we omit
the time index in our notation. Letx(i, ∗) denote the total traffic
entering an ingress nodei. If nodei is a router, this corresponds to
the incoming traffic on all the access and peering links. Letx(∗, j)
denote the total traffic departing the network from nodej. Again,
if node j is a router, this includes all the traffic departing the AS
in question on either access or peering links. The gravity model
postulates that

x(i, j) = x(i, ∗) x(∗, j)P
j x(∗, j) (1)

This implies that the total amount of data nodei sends to nodej
is proportional to the amount of traffic departing the network atj
relative to the total amount of traffic departing the entire network.
The authors of [13] call this the simple gravity model. This model
essentially assumes complete independence between sources and
destinations. However in typical IP backbones, there are two poli-
cies that lead to deviations from pure independence. Due to hot
potato routing policies, traffic from a customer edge traveling to-
wards a peer will be sent to the nearest exit point. The second
policy is that there should be no traffic transiting the network from
one peer to another.

Hence the authors define the generalized gravity model to cap-
ture these policies. This is interpreted as a conditional indepen-
dence of source and destination, conditioned on additional side in-
formation identifying link types. LetA denote the set of access
links, andP denote the set of peering links. The generalized grav-
ity model is defined as follows.

x′(i, j) =

8>>>><>>>>:
0, for i ∈ P, j ∈ P

x(i,∗)P
i∈A x(i,∗)x(∗, j) for i ∈ A, j ∈ P

x(i, ∗) x(∗,j)P
j∈A x(∗,j)

for i ∈ P, j ∈ A
ρ x(i,∗)P

i∈A x(i,∗)x(∗, j) for i ∈ A, j ∈ A

(2)

whereρ is a normalization constant (see [13]).
Using an information theoretic perspective, the authors show

that a gravity model is a prior capturing complete independence
between sources and destinations and therefore is equivalent to a
maximum entropy formulation. The gravity model is then used in-
side a convex optimization problem that combines a miniminum
mean square error approach with a maximum entropy approach.
This combination is achieved using a regularization strategy that is
common approach for dealing with ill-posed problems. They for-
mulate the optimization problem as

min ||y −Ax||22 + λ2 K(x||x′) subject tox > 0 (3)

where|| · ||2 denotes theL2 norm andλ > 0 denotes a regular-
ization parameter.K(x||x′) is the Kullback-Leibler divergence
which is a well known measure of distance between probability
distributions. The K-L divergence is used here as a way to write
the mutual information, as the goal is to minimize the mutual infor-
mation. Since the optimization is written as a minimization prob-
lem, they minimize the mutual information (rather than maximize
the entropy). The idea is thus that among all the traffic matrices
that satisfy the link constraints, the method picks one closest to the
gravity model. The overall method works as a two step process
within each time intervalt: first an initial estimatex′ is calculated
using (2), and then the optimization problem in (3) is solved.



The model used in this method is a spatial one that describes
a relationship between OD flows. The gravity model essentially
captures a node’s fanout for each node. Thefanout for a source
node is simply the fraction of its total traffic that it sends to a given
destination. For each source node, the sum of its fanout must equal
one. So actually, although the gravity model assumes independence
acrossnodes, it does not assume independence amongOD flows.
All the OD flows sharing a common source are interdependent be-
cause of this requirement that the fanouts sum to one. Similarly
for OD flows sharing a destination node. The gravity model is not
a temporal model because at any moment in time the calculation
of the gravity model does not depend on history. The data used to
calibrate the gravity model comes from SNMP data on access and
peering links. The estimation part of this method uses SNMP link
counts from inter-router linksY, a routing matrixA, and solves
the minimization problem in (3) to produce an estimate forX.

2.3 Route Change Method
We now summarize the method developed in [7, 9] where the

latter paper uses the algorithm in the first as part of its overall
methodology. In [7], the authors proposed the idea of changing
the link weights and then taking new SNMP measurements under
this new routing image. This strategy increases the number of con-
straints on the system because additional link counts, collected un-
der different routing scenarios, yield new equations into the linear
system, that will increase the rank of the system if they are linearly
independent of the existing equations. In [7] the authors proposed
a heuristic algorithm for computing link weight changes needed in
order to obtain a full rank system. The advantage here is that with
a full rank system, there is a huge potential to reduce errors. How-
ever, for such systems to be practical the number of times carriers
have to change link weights needs to be kept small. Note that the
problem is not yet solved by obtaining a full rank system because
the additional measurements will be collected over time scales of
multiple hours and thus the traffic matrix itself will change.

In order to capture this multi-hour evolution, the authors as-
sume the diurnal pattern to be cyclo-stationary, while the fluctua-
tion process, (i.e. random noise around the diurnal pattern), to be a
zero mean stationary process with covariance matrixQ. According
to such assumptions, the authors proposed a Fourier expansion of
the diurnal pattern and the OD flow model is formalized as follows.

x(i, j, t) =
X

h

θh(i, j)bh(t) + w(i, j, t) (4)

where the first term is the Fourier expansion for the diurnal trends,
and the second term captures the stationary fluctuations. Herebh(t)
denotes theh-th basis function whileθh(i, j) refers to the coeffi-
cients corresponding to OD pair sourced at nodei and destined to
nodej.

By coupling route changes with temporal models for OD flows,
the authors devise a new method for estimating the first and sec-
ond order statistics of OD flows under both stationary and cyclo-
stationary conditions. In order to do this, the authors develop an
expanded system description ofy = Ax where the routing matrix,
now a function of time, is modified to include many block matri-
ces that incorporate the different routing images. The linear system
is also modified to incorporate the models forX; this has an im-
pact on the pseudo-inverse solution used on the expanded full rank
system to obtain a traffic matrix estimate. In this context, the esti-
mation of the first order statistics collapses to the estimation of the
diurnal pattern, i.e. theθh in Equation 4, while the estimation of
the second order statistics becomes that of estimating the covari-
ance matrixQ of the fluctuations process.

The OD flow model being used here is a temporal model in

which each OD flow is dependent on its past. This is not a spatial
model in that it is assumed that OD flows are independent of one
another. This model operates on a different timescale than other
methods. Let’s say for the sake of example, that it takes 3 days to
carry out each of the routing configurations. In this method, all the
SNMP data from inter-router links is collected during this 3 day
period, as well as each of the routing matrices that apply for each
snapshot. The estimation step (using a pseudo-inverse method) is
applied once for the three day period and estimates of the traffic
matrix for each 10 minute slot of those 3 days are produced. In
this method, the calibration of the OD flow model (i.e., determin-
ing the coefficients of the OD flow model) are done simultaneously
with the estimation of the traffic matrix itself. Hence the side-
information used for the OD flow models is the SNMP data from
multiple snapshots.

To make this approach applicable for real operators, the authors
coupled their ability to estimate the variance of each OD flow, with
the observation (from empirical data) that flows with large variance
are the flows with large average rate. By doing so, they were able
to identify the top largest flows. This in turn enables them to re-
duce the number of routing configurations required for the overall
process.

2.4 Fanout Method
The method in [8] is a purely data-driven method that relies on

measurements alone to obtain the traffic matrix. No routing matrix
is used, and no inference is performed. A node fanout is defined as
the vector capturing the fraction of incoming traffic that each node
forwards to each egress node inside the network, where a node can
be a PoP, a router or a link. Letf(i, j, t) = x(i,j,t)P

j x(i,j,t)
denote

the fraction of traffic entering nodei that will egress the network
at nodej at timet. A node’s baseline fanout is then given by the
vector f(i, ∗, t) = {f(i, j, t) ∀j} at time t. In both [8] and [4]
the authors independently found that node fanouts exhibit strong
diurnal patterns, and are remarkably predictable at the cycle of one
day. This stability of fanouts means that the fanout of nodei, at say
2:00pm on one day, can be used to predict rowi of the traffic matrix
at 2:00pm on subsequent days. This direct measurement technique
exploits the finding of predictable fanouts.

Initially, the method assumes that flow monitors are turned on
network-wide for a period of 24 hours. Using this data, the base-
line fanouts can be computed for each node. Assuming the flow
monitor measures the OD flows every 10 minutes, then in a 24 hour
period, we have 144 measurement intervals in the baseline. Given
the fanout for each 10 minute window within a day, we use the
fanout from this first day at a particular timet to predict the traffic
matrix on other day at the same timet. For example, the measured
fanouts at 3:10pm on the day of netflow collection are used to pre-
dict the TM at 3:10pm on other days. The traffic matrix estimate is
obtained by

x̂(i, j, t) = f̂(i, j, t)x(i, ∗, t) (5)

wherex(i, ∗, t) denotes the total incoming traffic into nodei, and
f̂(i, j, t) = f(i, j, d+t%144) whered denotes the number of days
ago that the fanout was calibrated.x(i, ∗, t) can be obtained by
summing the SNMP link counts on all incoming access and peering
links at the node. Hence the traffic matrix is obtained simply via
multiplying the fanouts by SNMP link counts.

The observation on the stability of fanouts is critical, since the
idea is for each node to measure its own fanout and to ship it to the
Network Operations Center (NOC). The NOC has all the SNMP
data readily available, and can thus produce the complete traffic
matrix (given the fanouts from all nodes) using the above equation.



If the fanouts are stable for a period of a few days, then many days
can go by before a node needs to ship a new fanout to the NOC.

Because the traffic matrix is a dynamic entity, the fanouts will
change over time. This method thus includes a heuristic scheme
for detecting changes in fanouts. Once a change is detected, then
the fanouts need to be recalibrated, i.e., another 24 hours of netflow
are needed. Each node randomly selects one 10 minute interval
within the next 24 hours, and recomputes its fanout only for that
10 minute interval. The relative change between the newly mea-
sured fanout and the fanout vector corresponding to the same 10
minute interval in the baseline captures the diversion from the base-
line. The diversion for nodei at timet is defined as∆(i, ∗, t) =

||f̂(i, ∗, t)− f(i, ∗, t)||. If ∆(i, j, t) > δfi,j,t, for a randomly cho-
sen time interval, then the entire rowf(i, ∗) is re-measured for the
following 24 hours. Otherwise another interval is randomly se-
lected within the next 24 hours, and the process re-iterates.

We point out here that this procedure for checking diversion from
the baseline is performed on a per node basis. If one node detects
a fanout diversion, then a new collection of flow volume data is
initiatedonly on that node. This means that a network-wide recol-
lection of flow data is not needed. If some router fanouts change
frequently, they will be updated often; whereas those exhibiting
great stability may not get updated for weeks at a time. With this
approach, only the portion the TM experiencing a dynamic change
needs to undergo a recalibration.

The advantage of the fanout method over a full direct measure-
ment method in which each node measures its own row of the traf-
fic matrix in an ongoing basis, is the reduction in communications
overhead. The saving comes by shipping fanouts only once every
few days, rather than traffic matrix elements every 10 minutes.
Moreover, flow monitors need not be on all the time, but are in-
stead only turned on as needed.

This method is modeling OD flows via their fanout behavior. The
model is a spatial model in the same way the gravity model was;
namely that OD flow fanouts sharing the same source are correlated
(due to the requirement that fanouts at a source node must sum to
one). Similarly, correlation exists among OD flows with a common
destination. However, it is clear from Equation (5) that this model
is also a temporal model since an estimate depends upon the history
of a fanout. The fanout method thus uses a spatio-temporal model
for OD flow fanouts. The data used to compute the fanouts comes
from flow measurements, as will be the case for all of our third gen-
eration methods. To summarize, this method uses no inference, but
rather direct calculation to produce traffic matrix estimates. These
are considered estimates because the fanouts are an approximation,
when used outside the measurement period.

2.5 Principal Components Method
The Principal Components Method attacks the traffic matrix es-

timation problem by studying the intrinsic dimensionality of the set
of OD flows. Recall that the central difficulty of the traffic matrix
estimation problem stems from the fact that the apparent dimen-
sionality of OD flows,X, is much larger than the available link
traffic measurements,Y. In [5] the authors used Principal Compo-
nent Analysis (PCA) to study the intrinsic dimensionality of the set
of all OD flows. PCA is a dimension reduction technique that cap-
tures the maximum energy (or variability) in the data onto a min-
imum set of new axes called principal components. The authors
of [5] found that the entire set ofN OD flows, when examined
over long time scales (days to weeks), can be accurately captured
by low dimensional representations. In particular, the ensemble of
OD flows are very well described by about 5 to 10 common tempo-
ral patterns (chiefly diurnal cycles) called eigenflows.

We can take advantage of this low dimensional representation
of OD flows to develop a new approach for traffic matrix estima-
tion. The key idea is that instead of estimating all theN OD flows,
we need only estimate thek most important eigenflows. Because
k ¿ N , the problem of estimating the eigenflows from link traffic
becomes well posed.

Formally, letX denote theT byN multivariate timeseries of OD
flows, as per our convention. Then, we can use PCA to writeX as:

X = USVT (6)

whereU is theT by N matrix of eigenflow timeseries andV is
N by N matrix with principal components as its columns. Fi-
nally, S is a N by N diagonal matrix of singular values;S(i, i)
is a measure of energy captured by principal componenti. The
low effective dimensionality ofX means that the topk principal
components capture the overwhelming fraction of the energy ofX;
the remaining principal components account for only a neglegible
fraction and can be omitted. We can therefore reduce the dimen-
sionality be selecting only the topk principal components. And,
we can also approximate all the traffic demands at a timet as:

xt ≈ V′S′u′t t = 1, ..., T (7)

whereV′ is N by k with only the topk principal components,S′

is the corresponding diagonal matrix of sizek by k and vectoru′t
has the values of thek most significant eigenflows at timet.

Traffic matrix estimation using PCA assumes that the transfor-
mation matrices (V′ andS′) are already known (e.g. from prior
measurements of OD flows) and stable [5]. Thus the problem be-
comes one of estimating the topk eigenflows,u′t, from the set of
link measurementsyt, in:

yt = AV′S′u′t t = 1, ..., T (8)

Because the dimensionality ofu′t is much smaller, Equation 8 is
a well-posed estimation problem (in fact, we setk = 10). To solve
for u′t, we use the pseudo-inverse ofAV′S′ and obtain an estimate
û′t. Then, using Equation 7, we compute an estimate of the traffic
demands,̂xt. We set negative entries in̂xt to zero, and then rely
on the iterative proportional fitting algorithm of [2] to refine our
estimate, subject to the constraints imposed by the link traffic.

In order to obtain the decompositionX = USVT we need the
traffic matrixX. This can be viewed as a prior traffic matrix and
is obtained by using 24 hours of Netflow data. GivenS andV, we
now simply collect the usual SNMP link counts and solve equation
8 to obtain the eigenflows.

Like the fanout method, the PCA method also has a recalibra-
tion step. Since the traffic matrix can change over time, the topk
principal components that best describe the underlying dimension,
could evolve as well. The recalibration step has two components:
(i) deciding when to trigger re-measurements of the entire traffic
matrix, and (ii) updating the PCA model (theV′ andS′ matrices).

Ideally, we should trigger measurements only when we are cer-
tain that the demand estimates obtained from the PCA model are
erroneous. A sufficient condition to assess the accuracy of the de-
mand estimates is to compare them against the link traffic counts.
We can do this by producing link estimates,ŷt, via our TM esti-
mates, throughAx̂tyt. When the demand estimates do not match
the corresponding link traffic counts, it is likely that the traffic ma-
trix has substantially changed and the PCA model is no longer ac-
curate. One strategy to assess the accuracy of the PCA model is to
examine the maximum relative error over all links:

εt = max |yt −Ax̂t

yt
|



whereyt is the traffic on all links at timet, x̂t is our estimate of
the traffic demands at that timepoint, andεt is the resulting maxi-
mum relative error over all links (the vector division to compute the
relative error is component-wise). To detect if a re-measurement is
needed, we can check ifεt exceeds a threshold, that is, ifεt > δ,
whereδ is an error tolerance parameter.

Short-lived variations could potentially trigger unnecessary re-
measurements in this scheme. To avoid expensive measurements
due to transient changes, we monitorε for a period of 24 hours.
New measurements are only performed when there is a sustained
change inε. Sustained changes are quantified by counting the total
number of entries inε that exceedδ, and then checking if the result
is more than some fractionκ of the monitoring period (24 hours).
In general, ifδ andκ are small, recalibrations will be triggered fre-
quently, and whenδ andκ are large, recalibrations will be rare. For
the results in this paper, we setδ = 0.9 and setκ = 0.5; we there-
fore trigger a recalibration if the relative error is more than 90%,
and is sustained for more than half a day (because this combination
of parameters produced a measurement overhead of 19% which is
introduced in Section 3, allowing comparison with the other third
generation methods). We emphasize that the recalibration strategy
proposed here is one of many potential change detection methods.

Once a recalibration is triggered, new measurements of the entire
traffic matrix are performed for a 24 hour period. The new set of
OD flowsX are then decomposed using Equation 6 to obtain the
V′ andS′ matrices. In this manner, we update the PCA model of
the traffic matrix, which is used to estimate all subsequent traffic
demands until the next recalibration is triggered.

To summarize, the PCA model of the traffic matrix exploits the
dependency among the ensemble of OD flows over long timescales.
Therefore, like the tomogravity model, the PCA model also relies
on spatial correlation in OD flow traffic. In the PCA model, each
OD flow is decomposed into a weighted sum of a handful of com-
mon eigenflows, which then become the quantity to estimate. The
estimation step treats each timepoint separately to determine the
value of the dominant eigenflows. The weights that capture the de-
pendency between the OD flows are specified by theV′ andS′

matrices (as detailed in [5]) and calibrated using direct flow mea-
surements for a period of 24 hours. Because the original traffic
matrix estimation problem is transformed into a well-posed prob-
lem (Equation 8), the estimation step in the PCA method is simply
a pseudo-inverse solution.

2.6 Kalman Filtering Method
We now introduce a method that makes use of a novel approach

for traffic matrix estimation. The idea is to use state space models
from dynamic linear systems theory to capture the evolution of a
system. We view the OD flows as the underlyingstatesof a network
traffic system. The states evolve in time because the OD flows
evolve. However, the states are not directly observable. Instead
the SNMP link countsY can be viewed as an indirect observation
of the item we are really seeking (the TM). Estimating the system
state (traffic volumes in this case) from indirect observations, when
these observations are linear combinations of the underlying state
vector, is a common environment for the application of Kalman
filtering. Kalman filtering is a powerful method because it can be
used not only for estimation but also for prediction.

With yt as the observation vector at discrete timet, we letYt =
{yt} denote the set of all observations up to (and including) time
t. The vectorxt = {x(i, j, t)∀i,∀j} denoting the entire set of OD
flows at discrete timet, now also denotes the state of our system at
time t. We model the evolution of the traffic state according to the
following linear system,

xt+1 = Cxt + wt (9)

In this modelC is the state transition matrix andwt is the traffic
system noise process. For a single OD flow, the diagonal elements
of C capture the temporal correlations appearing in the flow’s evo-
lution. The non-diagonal elements ofC describe the dependency
of one OD flow on another, thus capturing any spatial correlations
among the OD flows (if and when they exist). The noise process
wt captures the fluctuations naturally occurring in OD flows. This
model follows that of typical linear time-invariant dynamical sys-
tems. Another way to interpret this model is to say that byC we
capture the deterministic components of the state evolution while
the termwt captures the random or variable component. An at-
tractive feature of this model is that it captures both temporal and
spatial correlations in a single equation.

The traditional linear equation relating the link counts to the traf-
fic matrix is now rewritten here as,

yt = Axt + mt (10)

where the termmt represents additive measurement noise. It is
well known that the SNMP measurement process has its own er-
rors and thus we incorporate them to allow for minor differences
between link observations and linear combinations of OD flows.
Using Kalman filtering terminology we say that this equation cap-
tures the relationship between the observation vector and the state
of the system.

Let x̂t|t−1 refer to thepredictionof xt at timet based upon all
information up to timet− 1. We usêxt|t to denote theestimation
of xt at timet. The estimation step takes the previous prediction
and adds the most recent measurement (observation) to make the
next estimate.

The task is to determinêxt+1|t+1 (written asx̂t+1 for short)
given a set of observationsy1, ...,yt+1. The estimation error at
time t is given byx̂t|t − xt. We want an estimator that is optimal
in the sense that it minimizes the variance of the error. The variance
of the error is given by,

E[||xt+1 − x̂t+1||2] = E[(xt+1 − x̂t+1)
T (xt+1 − x̂t+1)] (11)

Let Pt|t = E[(x̂t|t − xt)(x̂t|t − xt)
T ] denote the covariance

matrix of errors at timet. We assume both the state-noiseW and
the measurement-noiseM to be zero-mean white-noise processes,
uncorrelated and with covariance matricesQ andR, respectively.
Let the initial conditions of the state of the system be denoted by
x̂0|0 = E[x0] andP0|0. The Kalman filter estimates a process
through a form of feedback control using two types of equations.

Prediction Step: This step predicts the state and variance at time
t + 1 dependent on information at timet.

x̂t+1|t = Cx̂t|t (12)

Pt+1|t = CPt|tC
T + Q (13)

Estimation Step: This updates the state and variance using a
combination of the predicted state and the observationYk+1

x̂t+1|t+1 = x̂t+1|k + Gk+1[yt+1 −Ax̂t+1|t] (14)

Pt+1|t+1 = (Id−Gt+1A)Pt+1|t(Id−Gt+1A)T +Gt+1RGT
t+1

(15)
whereId is the identity matrix andGt+1 is called Kalman gain ma-
trix. (For lack of space, we do not include the derivation ofGt+1.)
The above equations (12-15), together with the initial conditions
specific above, define the discrete-time sequential, recursive algo-
rithm for determining the linear minimum variance estimate known
as theKalman Filter .



We make a few observations on this system. Equation (12) is a
one-step ahead predictor whereas equation (14) serves as our esti-
mate we can use to populate a traffic matrix. Note that equation (14)
includes a self-correcting step. Our estimate is equal to our predic-
tion (in the previous time slot) plus a gain factor,Gt+1, multiplied
by the error in ourlink estimate, Ax̂t+1|t. Using the new incoming
measurement att + 1, we can compare the true link count versus
our estimation for the link count. We adjust our estimate for the
traffic matrixbased upon our error in link estimation. The Kalman
gain matrix is also a quantity that is updated and adjusted each mea-
surement interval. It is adjusted so as to minimize the conditional
mean squared estimation error.

One of the most salient features of the Kalman filter estimation
method is this self-correcting feature. It essentially provides an es-
timation method that continually adjusts the state prediction, each
measurement interval, based on the error in the observations. This
hints that such a method might be good at tracking changes, thus
making it adaptable. We will examine this adaptivity in Section 3.

To apply Kalman filtering to traffic matrix estimation, one more
step is needed. To produce our estimates in equations (12) and
(14), we need to know the matricesC,Q andR as well as the
initial conditionsx̂0|0 andP0|0. We propose to use 24 hours of
Netflow measurements to compute these variables. This step can be
viewed as calibrating the system. Estimating the matricesC,Q and
R from Netflow data is a procedure that itself requires maximum
likelihood estimation. For details on this estimation see [10].

The Kalman method also has a change detection and recalibra-
tion procedure to ensure the underlying state space model adapts to
changes in the traffic matrix. Like the PCA method, Kalman com-
putes estimates for the link countsŷ = Ax̂ using its traffic matrix
estimates. Comparing these to the measured SNMP link counts
yields an indirect error metric for the TM estimate. In Kalman fil-
tering terminology, this error term is typically called theinnovation
process and is given by

it+1 = yt+1 −Ax̂t+1|t (16)

Recall that in the Kalman method, this error term is already used
inside equation (14). The innovations process should be a zero
mean process.

Our change detection method is as follows. In each 10 minute
time slot we computeit and check if it is above a threshold. For the
threshold we use twice the error variance, i.e.,2×Adiag(Pt|t). We
do this throughout the day. At the end of each day (at midnight), we
check to see what percentage of these errors were above this thresh-
old. This checking of the innovations process is done on a per-link
basis. If more than 10% of these errors exceeded the threshold,
then we schedule 24 hours of flow measurements on a network-
wide basis. Since our model incorporates spatial correlations, it is
not possible to update only one link at a time. At the end of the
24 hour period, we recalibrate ourC,Q andR matrices using the
measured traffic matrix.

Based on the same motivation as in the design of the PCA re-
calibration scheme, we wait until the end of the day before decid-
ing that new measurements are needed, to avoid recalibration when
transient changes occur. Because we examine a days worth of er-
ror metrics, we are essentially smoothing out the transient changes.
The downside is that the recalibration could come many hours late,
thus increasing our overall errors since we continue using the old
models to generate estimates.

In summary, the Kalman method builds a spatio-temporal model
for the OD flows. It is clear from Equation 9 that the behavior of
OD flows at timet + 1 is dependent upon the state of the flow at
time t, and the spatial dependence is captured by the off-diagonal

elements of theC matrix. Similarly, to the other third generation
methods, this approach uses 24 hours of flow measurement data
to calibrate its underlying model. The estimation procedure uses a
Kalman filter which is the best linear minimum variance estimator
in the case of zero mean Gaussian noise.

2.7 Discussion
For each method, Table 1 summarizes the type of OD flow model

used, the source of data used to calibrate the model, the type of es-
timation used by each method, and the data used for estimation.
Each method relies on insights that have been learned from mea-
surements over the last few years. The Fourier model came from
the realization of the presence of strong diurnal patterns in traffic
matrix data. The PCA method is built on the observation that OD
flows have low intrinsic dimensionality. The fanout method relies
on the stability of fanouts. The generalized gravity model includes
networking insights by incorporating routing policies such as hot-
potato routing and no-transit traffic forwarding. Knowing that both
spatial and temporal correlations exist among OD flows, and that
the system is inherently linear system (y = Ax), the Kalman
method builds a linear dynamic system that can capture both types
of correlations in a single equation.

3. PERFORMANCE ANALYSIS

3.1 Measurement Data Used
The data we use for validation comes from Sprint’s European IP

backbone, a network comprised of 13 PoPs and 27 routers. During
the summer of 2003 we obtained three weeks of traffic matrix data
by enabling Netflow on all incoming peering links and all the links
going from access routers to backbone routers. This latter set of
links captures nearly all customer traffic. Netflow v8 [3] employs
periodic sampling in which one sample is collected every 250th
packet. Each router ships the collected Netflow statistics to a cen-
tralized collection station every 5 minutes. We aggregated the flow
traffic counts into bins of size 10 minutes to avoid possible collec-
tion synchronization issues.

To obtain origin-destination flows from the raw flows collected,
we have to identify the ingress and egress points of each flow. The
ingress points can be identified based upon the ingress links where
the flow monitors were turned on. For egress point resolution, we
use BGP and ISIS routing tables according to the method detailed
in [1]. Using this information we built a PoP-to-PoP traffic matrix,
for each 10-minute interval, during our 3 week long experiment.

3.2 Spatial and Temporal Errors
To assess the overall performance level of each of the methods,

we consider both temporal and spatial errors. Our main error met-
ric is the relative L2 norm. Byspatial error, we mean that we
obtain an error metric per OD flow that summarizes its errors over
its lifetime. For this we use,

RelL2SP (n) =

qPT
t=1(xt(n)− x̂t(n))2qPT

t=1 xt(n)2
(17)

The ensemble of all spatial errors gives us a set of errors over all the
OD flows. In Figure 1 we plot these spatial errors for each of our
five methods. The x-axis represents the ordered flows, from largest
to smallest, sorted according to their mean. In this plot we include
all the OD flows constituting the top 95% of the load in the entire
traffic matrix.

The temporal error gives an error metric for each time slot sum-
marizing the errors over all OD flows at that instant. For this we



Method Tomogravity Route Change Kalman PCA Fanout
Modelling
* Data Used SNMP SNMP Flow data Flow data Flow data

(access, peer) (inter-router) 24 hours 24 hours 24 hours
under multiple snapshots

* Model Gravity Cyclo-Stationary Linear Dynamic Eigenflows and Node Fanout
(Fourier+noise) System Eigenvectors

* Type Spatial Temporal Spatio-Temporal Spatial Spatio-Temporal
Estimation
* Data Used SNMP (inter-router) SNMP (inter-router) SNMP (inter-router) SNMP (inter-router) SNMP (access,peer)

1 routing matrix A multiple A matrices A matrix A matrix no A matrix
* Method regularized pseudo-inverse Kalman Filter pseudo-inverse none (direct

MMSE optimizaiton formula)

Table 1: Summary of data types used for modelling and estimation

use,

RelL2T (t) =

qPN
n=1(xt(n)− x̂t(n))2qPN

n=1 xt(n)2
(18)

The temporal error is similar to what an ISP might see when trying
to estimate the entire traffic matrix at a particular moment in time.
This error metric is given in Figure 2 for all five methods. The x-
axis here is in units of 10 minute slots. We include the estimation
errors for 20 days, excluding the first day since it is used for calibra-
tion by the PCA, Kalman and fanout methods. (Recall that when
flow monitors are turned on, we assume they are used to populate
the traffic matrix and the modeling based inference approaches are
ignored in those time slots.)

In the spatial error plots, we observe the well-known phenom-
enon that errors increase as the size of the flow decreases. How-
ever, this effect is far less pronounced in the third generation meth-
ods than the second generation methods. Since this holds across
all the different third generation techniques, we conclude that we
are seeing one of the benefits of using partial flow data coupled
with improved OD flow models in that we can better estimate the
smaller flows.

In the temporal error plots, notice that the PCA and Kalman
methods appear to have exactly zero errors at certain periods. These
periods are when recalibration occured and we thus exclude them
from our error calculation. The moments of recalibration are not
visible with the fanout method, because the fanout method does
not recalibrate the entire TM model at the same time, but rather
one or more PoPs at a time as needed.

Interestingly, we observe that the tomogravity method exhibits
nearly constant temporal errors. We will examine this behavior
further in later sections. The tomogravity method achieves roughly
25% temporal errors while all of the generation three methods achieve
average temporal errors between 10-15%. The route change method
experiences the largest errors, typically in the range of 30-50

An alternate way of viewing the spatial and temporal errors is to
examine their CDF’s, as given in Figures 3-4. We see that in terms
of both spatial and temporal errors, the third generation methods
always outperform the second generation methods. In particular,
the route change method experiences the largest errors; the tomo-
gravity method experiences the second largest errors; and the three
methods using partial flow measurements all exhibit errors that are
roughly similar with one another.

It is interesting to note that generally the distributions of tempo-
ral errors are fairly narrow. This would indicate that the range of
errors made at a point in time, don’t differ much at another point
in time. The majority of the errors occurring in the tomogravity

approach lie between 20-33%, while the majority of the errors for
the third generation methods lie between 5-15%. We will be able
to understand this behavior when we study the issue of bias in Sec-
tion 3.6. We also see that the fanout and Kalman methods exhibit
a bit of a tail in the last 5-th percentile of the distribution. We will
be able to understand this when we examine the adaptivity of the
methods, because as we will see, there are some moments in time
when these methods do not adapt fast enough. We observe that
the distributions of the spatial errors tend to be much less narrow
than that of the temporal errors. The large dispersion of the spatial
errors indicates that some flows may simply be harder to estimate
than others. We know from the literature (and as confirmed by Fig-
ure 1), that in general smaller flows are harder to estimate. The
flows included here (those constituting the top 95% of the load),
span two orders of magnitude, roughly from105 − 107 Bps.

3.3 Over-Modeling
We see in both Figures 1-2 that the route change method per-

forms the least well of all the methods. Before continuing we pause
here to explain why this happens and to state why we no do not in-
clude this method in the remainder of our analysis. To see how
this method behaves, we look at a sample OD flow and examine
how the flow and the estimates evolve in time. Our eighth largest
OD flow is depicted in Figure 5. In this plot, the original traffic is
depicted via the black line and the estimate is given via the grey
line. We see that the route change method yields a perfectly cycli-
cal pattern that does not deviate throughout the 3 week period. This
is because the route change method assumes that all OD flows fol-
low the model in Equation 4. The implication of this model is very
strong; it assumes each OD flow is cyclo-stationary, and any devi-
ation from this model is not captured in the estimates. To see this
even more closely, we plot a blow up of a short period of our fourth
largest flow in Figure 6. We see here that modeling assumption is
enforced too strongly.

This is in part due to the limited set of basis functions used (5).
We have used 5 here because this was the number used in [9]. The
performance could clearly be improved by using a larger number
of basis functions for the Fourier expansion. Because the errors in
this method are significantly larger than the other methods, we do
not include this in the remainder of our study. We wish to point out
that historically, this method was the first to introduce a temporal
model for OD flows, thus paving the way for richer models based
on properties learned from data. Part of the difficulty incurred by
this method, may be due to the fact that it does not include any
spatial correlations.
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Figure 1: Spatial Relative L2 Norm Error (x-axis is flow id; flows
ordered from largest to smallest in mean)
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Figure 2: Temporal Relative L2 Error (x-axis in time units of 10
min)
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Figure 3: CDF of Temporal Errors
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Figure 4: CDF of Spatial Errors

3.4 Measurement Overhead
We saw in Section 3.2 that the third generation methods outper-

form the second generation methods in terms of both spatial and
temporal errors. This is not surprising considering that they have at
their disposal a rich set of data to build useful models. It is thus im-
portant to now ask: at what cost do we obtain these improved error
rates? To answer this, we define an overhead metric to capture the
amount of measurement used by these new methods, and then look
at the average error achieved for a given level of overhead.

Each time a flow monitor on one link is turned on, it is used for
24 hours. We thus define a metric whose units arelink-dayssince it
is intended to capture how many links were used (over a multi-week
period) and for how long. We measure the overhead via a ratio
intended to capture the number of link-days used divided by the
total number of link-days that would be employed if flow monitors
were left on all the time. Units such aslink-dayscan be thought of
as describing a spatio-temporal metric. More precisely, we define
our overhead metric as follows. LetD(l) be the number of 24-hour
cycles that linkl used netflow during our 3 week period. Hence
D(l) gives the total number of days that netflow was used on link

l. The total overhead incurred by a single method is given by,

OH =

PL
l=1 D(l)

21 ∗ L
(19)

whereL is the number of links in the networks and 21 is the num-
ber of total days of our measured validation data. Both the numer-
ator and denominator are capturing a network-wide property. If
the flow monitors were turned on all the time and network-wide,
then this overhead metric would be 1; this corresponds to the case
when a traffic matrix is fully measured and no inference is used. If
flow monitoring is never used, the metric is 0; this corresponds to
the case of the tomogravity method. Our intent with this metric is
to explore the error performance of methods whose overhead lies
somewhere between the two extremes of 0 and 1.

We ran each of the three flow-based methods multiple times. In
each case we changed the threshold that checks for diversion, so as
to encourage more or less adaptation and recalibration, thus lead-
ing to the inclusion of different amounts of flow measurements. For
each such case we computed both the spatial and temporal relative
L2 norm error. The spatial errors are given in Fig. 7 and the tem-



500 1000 1500 2000 2500
0

1

2

x 10
7

T
om

oG

500 1000 1500 2000 2500
0

1

2

x 10
7

W
t. 

C
ha

ng
e

500 1000 1500 2000 2500
0

1

2

x 10
7

 F
an

ou
t

500 1000 1500 2000 2500
0

1

2

x 10
7

P
C

A

500 1000 1500 2000 2500
0

1

2

x 10
7

K
al

m
an

Figure 5: Eighth Largest OD Flow. Original in black; estimates
in gray. Time unit is 10 min.
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Figure 6: Fourth Largest OD Flow. Original in black; estimates
in gray. Time Span from t=1860-2000.

0 20 40 60 80 100
0

10

20

30

40

50

measurement overhead metric (%)

A
ve

ra
ge

 R
el

at
iv

e 
L2

 S
pa

tia
l E

rr
or

 (
%

)

TomoG

Fanout

PCA

Kalman

FullMeasure

Figure 7: Spatial Errors vs. Overhead
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Figure 8: Temporal Errors vs. Overhead

poral errors are displayed in Fig. 8. In these two figures we also
include the two extreme points mentioned above, displaying the er-
ror of the tomogravity method using zero flow overhead, and the
point (100,0) for the case when a traffic matrix is obtained solely
through continuous direct measurement. We assume the estimation
error is zero (ignoring measurement errors) since flow monitors are
on all the time. Although the error rate is zero, the measurement
overhead is at its maximum. This overhead does not even include
the large communications cost [8] of a full measurement approach.
Through these plots we can see the balance that can be achieved
using hybrid solutions that combine flow measurements with infer-
ence to improve inherent limitations in inference-based solutions.

Three interesting observations are evident from these plots. First,
for a measurement overhead of anywhere between 10-20%, we can
roughly cut the errors achieved by the tomogravity method in half.
This large gain in error reduction for a small measurement overhead
is true for both the spatial and temporal error metrics. Second,
the third generation methods can produce highly accurate estimates
with 90% fewer measurements than a full measurement approach.
Third, beyond approximately a 20% overhead, there is little further
gain by including additional measurements.

3.5 Handling Dynamic Changes in the Traffic
Matrix Elements

The third generation methods have been designed to adapt to
changes in the traffic matrix by recalibrating their models. The im-
plicit assumption in this approach is that traffic matrices are very
dynamic and thus an adaptive approach is required. This is indeed
true; that dynamic nature can take a variety of forms and be due
to a variety of reasons. For example, in our measurement data, we
found some flows that exhibit rapid oscillations for extended peri-
ods of time. Other flows are seen to undergo a long-lived but not
permanent change for a period of a day or so. This can happen if a
set of ingress links fail and take a day to repair. The addition of new
customers in a single PoP will lead to a permanent increase in the
traffic demand emanating from that PoP. We ask the question as to
how our various methods handle these types of dynamic behavior.

First we look at the case of a flow experiencing rapid oscillations
(see Figure 9, that we have enlarged for a period of little less than
a day). Here we see that all the methods can handle this type of be-
havior. The PCA and Kalman methods track the details extremely
well. We point out that while the fluctuations are rapid, they are
also contained within the same order of magnitude. We looked
over the lifetime of this flow and saw that none of its oscillations
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Figure 9: Example of Oscillating Flow. Original in black, esti-
mates in gray. Variations within same order of magnitude.
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Figure 10: Dynamics in second largest flow; longer-lasting
change over two orders of magnitude.

lead to model recalibration for the 3rd generation methods. This
implies that there is sufficient flexibility to capture the variability
for a flow that did not change an underlying trend.

In Figure 10 we see the example of our second largest OD flow
that undergoes a dramatic change on day 3. This flow drops many
orders of magnitude to a small, but nonzero level. (This was most
likely due to the failure of some, but not all, of the links at the
router sourcing this OD flow.) This is plotted on a log scale so that
we may see what happens during the severe dip in flow volume.

The tomogravity method tracks this change best. The reason the
tomogravity method tracks changes well is because it starts com-
pletely anew each time slot. In this case, the gravity model is re-
calculated every 10 minutes based on the newest SNMP data from
access and peering links. In this case, the memoryless property of
the tomogravity method serves it well.

We can see the adaptive behavior of the fanout method well here.
For some other reason, the fanout method initiates a recalibration
just a little before time unit 300 (before the dramatic change in the
OD flow). During the day of problems with this flow, the fanout
method is using the flow measurement data to populate the TM and
hence we see no errors. However the fanout method has learned
atypical behavior on day 3 (roughly), and so when it uses this on
day 4 to generate estimates, it makes large errors. Since the fanout
method only checks randomly once in a 24 hour period, it does not
detect that the fanout model is out-dated until somewhere around
560, after which we see a complete recovery.

Looking back to Figure 2 we see that both the PCA and Kalman
methods experienced larger errors during day 3 (starting at time
slot 432 on that figure). We can now understand the source of this
error; it was due to the large change in behavior of a dominant flow.
The x-axis in Figure 10 starts at a different time than the one in
Figure 2 because we have enlarged a portion of the plot for ease of
viewing. We see (Fig. 10) that the PCA and Kalman do adapt to this
change, but less well than the tomogravity method. Similarly to the
fanout method, these methods react in a timely fashion to the first
change (the dip in OD flow) but are slow to react to the recovery
(return to normal of OD flow) due to their delayed approach to
recalibrations, which is intentionally designed to avoid reacting to
transient changes. Because the transient change is somewhat long
lived in this case, these methods do not manage to avoid it. At

the few timepoints when these methods do not adapt fast enough,
larger errors will be generated. This explains why there is a bit of a
tail in the CDF of the temporal errors in Figure 3.

We thus see a tradeoff between generation three methods and
the tomogravity method. The tomogravity method adapts fast to
changes, but experiences larger errors, than the other methods. Of
course the rate of adaptivity has been defined by the method; to-
mogravity updates its model in every 10 minute time slot because
the data it uses it typically available at that level of granularity. Be-
cause the data used by the generation three methods is more costly
to obtain, they wait (defined at 24 hours) before adapting to ensure
that a dynamic change is ongoing and that the method does not
react to a change that will dissipate quickly.

3.6 Estimation Bias
Finally we seek to understand the issue of bias. We have seen

in many figures the bias the tomogravity method exhibits (Figures
5, 6, 9, 10). For these flows the tomogravity method accurately
tracks the shape of each flow, but exhibits a consistent over-estimate
(e.g., 4th largest flow) or under-estimate (e.g., 8th largest flow). A
consistent difference between estimated and true values is bias.

It is well known that biased estimators are not necessarily bad.
An unbiased estimator is one whose expectation is equal to the true
value of the parameter being estimated. However even if an esti-
mator is unbiased, it may have high variance and thereby often fail
to provide estimates that are close to the parameter’s true value. On
the other hand, sometimes biased estimators can have smaller vari-
ance and thereby typically yield estimates closer to the true value
than those of unbiased estimators. Thus any consideration of an
estimator’s bias should also take into account its variance.

The sample bias of an estimator for OD flown is computed as:

bias(n) =
1

T

TX
t=1

(x̂t(n)− xt(n)) (20)

We look at absolute bias rather than relative bias as this reflects the
error a network operator would see employing the methods.

We observe that the various methods perform very differently
with respect to bias. Bias is plotted in Figure 11 for four methods.
On thex axis are OD flows, sorted from largest mean to smallest.
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Figure 11: Bias Versus Mean Flow Size
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Figure 12: Estimation Bias Versus Standard Deviation

The figure shows that the most consistently unbiased method is the
fanout method. Both the PCA and Kalman methods show a neg-
ative bias (i.e., an underestimation) for the largest flows, with the
amount of bias increasing with flow size. However the tomogravity
method is quite different from the rest. It shows a much larger bias
in general, with both positive and negative biases prominent. Fur-
thermore, this bias is not consistently related to flow size, as in the
PCA and Kalman methods. Rather the per-flow bias can be very
large, even for quite small flows.

As mentioned above, the accuracy of an estimator is a function
of both its bias and variance. To assess this we define the sample
standard deviation of the estimator for flown as:

ErrStd(n) =

vuut 1

T − 1

TX
t=1

(errt(n)− bias(n))2 (21)

whereerrt(n) = x̂t(n) − xt(n). Note that this metric is in the
same units as sample bias, so we can directly compare the two when
assessing their impact on accuracy.

Figure 12 plots the sample bias for each flow against its sample
standard deviation, for the four methods. This plot confirms the
striking difference between the tomogravity method and the other
methods. It shows that while the tomogravity method has much
lower variance than other methods, it exhibits much higher bias in
general. In contrast, the Kalman and PCA methods show relatively
high variance, with much lower bias in general, while the fanout
method maintains relatively low bias and variance. Thus, the to-
mogravity method achieves a different tradeoff between bias and
error variance than the third generation methods do. The existence
of this bias explains why the CDF for the tomogravity method in
Figure 3 is ”shifted” to the right of the others. Similarly, tomo-
gravity’s low error variance explains the narrowness of this CDF.

Methods with low bias and high variance tend to estimate the
flow mean well over long time intervals, while giving estimates
for individual time points with less accuracy. Methods with high
bias and low variance will tend to track changes between individual
time points well (i.e., accurately estimating short timescale varia-
tions) while long timescale averages (the mean) may be consis-
tently wrong. These two different conditions are visible in Figure
6. The tomogravity method tracks the precise shape of the flow
quite well, but its value is consistently offset. The Kalman and
PCA methods tend to be closer to the true value on average, but
their precise shape does not match that of the data as accurately.

This difference in the relative contribution of bias and variance
can have implications for applications of these methods. Consider
the use of traffic matrix estimation in anomaly detection. In this
case, it is the variations from typical conditions that are important.
Accurate estimation of the mean is much less important that correct
tracking of the shape of the flow. Thus a method like tomogravity
seems better suited in this case. On the other hand, consider an
application such as traffic engineering (adjusting link weights to
balance traffic) or network capacity planning. In this case, accurate
estimation of flow mean is paramount. Further, accurate tracking of
short timescale variations is less crucial since such decisions take
place on relatively long timescales. For such applications, the PCA,
Kalman, and/or fanout methods may offer a better choice.

4. CONCLUSIONS
None of the other traffic matrix papers have evaluated TM tech-

niques in terms of 1) adaptivity or 2) bias. In this paper we do both.
We find that there is an interesting tradeoff between these two fac-
tors. In order to reduce bias, direct measurements of the TM itself
are needed every so often. However obtaining this data is expen-
sive, so it cannot be done on small time scales (e.g., 10 minutes).
The rate at which side-information is obtained determines the adap-
tivity of the TM estimation method. Tomogravity obtains its side-
information (link data) for model calibration every 10 minutes and
is therefore the most adaptive method. Third generation methods
are less adaptive because they do not obtain their side-information
(flow data) for model calibration more than once or twice a week
typically. However, because flow data is so rich (thus enabling rich
models) third generation methods can almost entirely eliminate es-
timation bias, unlike the tomogravity method. The third generation
methods are able to overcome bias, and better capture the long term
dynamic behavior of an OD flow, since they incorporate theactual
correlations (either spatial or spatio-temporal) they have from mea-
surements, as opposed to anassumedcorrelation structure as in the
gravity model.

Although we say third generation techniques are ”less” adap-
tive than tomogravity, we note that these methods do adapt well
enough. This is visible through their errors which are, in both
space and time, generally far lower than tomogravity’s. Because
of its bias, tomogravity exhibits errors consistently throughout the
lifetime of an OD flow, whereas the third generation methods only
exhibit larger errors during periods of adaptation. Furthermore, the
next generation of hybrid measure-and-infer strategies can handle



smaller flows much better, a problem that has so far plagued the
known methods that rely on SNMP data alone.

An important and surprising finding of our work comes in com-
paring the results to the two extremes of using no flow measure-
ments and that of a full brute force measurement approach to ob-
taining TMs. We find that with only 10-20% measurement over-
head, we can achieve half the temporal and spatial errors reported
by earlier methods that use no flow measurements. Relative to the
brute force approach, we can achieve accurate estimates using 90%
less measurements, thus implying there is little incentive to imple-
ment full direct measurement. The measurement, communications
and computation overheads of the full measurement approach will
be far greater than of the hybrid measure-and-infer strategies we
have assessed here. The idea of using partial flow measurements to
improve TM estimation could most likely be applied to any of the
previous methods. Extensions to first and second generation meth-
ods could be envisioned not just via better model calibration, but
also through the use of improved priors or by generating additional
constraints.

We believe that pure inference methods have limitations as to
how low they can push their errors; this is natural as they are ul-
timately constrained by limited input. This paper illustrates that
some type of additional measurements, particularly of the OD flows
themselves and not just extra link measurements, are needed to ob-
tain more accuracy. As flow monitors become more accessible,
network operators will have greater options to compute traffic ma-
trices. We envision that techniques such as the Fanout, Kalman
and PCA methods, will evolve into feasible and accurate alterna-
tives that yield better performance than methods relying solely on
inference, and at less cost than brute force measurement.
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