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The main premise of this work is that since large cloud providers can and do manipulate probe packets that
traverse their privately owned and operated backbones, standard traceroute-based measurement techniques
are no longer a reliable means for assessing network connectivity in large cloud provider infrastructures. In
response to these developments, we present a new empirical approach for elucidating private connectivity
in today’s Internet. Our approach relies on using only “light-weight" (i.e., simple, easily-interpretable, and
readily available) measurements, but requires applying a “heavy-weight" or advanced mathematical analysis.
In particular, we describe a new method for assessing the characteristics of network path connectivity that is
based on concepts from Riemannian geometry (i.e., Ricci curvature) and also relies on an array of carefully
crafted visualizations (e.g., a novel manifold view of a network’s delay space). We demonstrate our method
by utilizing latency measurements from RIPE Atlas anchors and virtual machines running in data centers of
three large cloud providers to (i) study different aspects of connectivity in their private backbones and (ii)
show how our manifold-based view enables us to expose and visualize critical aspects of this connectivity
over different geographic scales.
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methodologies → Learning latent representations;
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1 INTRODUCTION
A salient feature of today’s Internet is that large cloud and content providers are building and
operating their own private global-scale infrastructures (e.g.,Google [38, 47, 93], Amazon [17, 73, 94],
Microsoft [44, 58], Facebook [9, 48, 75], Akamai [50, 89], Alibaba [1]).1 These private network
1Our focus is on the portion of these companies’ infrastructures that is relevant for their role as global-scale cloud provider,
not in their role as content provider.
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infrastructures serve to minimize the exposure of the traffic generated by their own suite of
applications and services to the types of uncertainty (e.g., failures) and variability (e.g., congestion)
that their use of the transit provider-based best-effort Internet (i.e., “public” Internet) would entail.
Accordingly, increasing portions of the overall Internet traffic utilize these large providers’ private
network infrastructures and thus bypass the public Internet [84].

The growth and importance of these private infrastructures raise new questions, many of which
call for empirical study. Historically, the principal tool used by researchers to understand Internet
infrastructure has been traceroute. Developed in the late 1980s as a troubleshooting tool for
network operators [46], the Internet measurement community has enthusiastically adopted and
improved it to study the properties of the routes taken by packets as they traverse the network and
to infer connectivity in the underlying physical infrastructure (e.g., [28, 81]).
While many of today’s Internet stakeholders continue to support and use traceroute for

purposes such as debugging, this evolution of the Internet has made the global-scale application of
traceroute for network measurement and analysis increasingly problematic. More specifically,
with the increasing deployment of middleboxes across the Internet [26] and indications that the
large cloud providers modify traceroute packets that traverse their private backbones (e.g., by
manipulating TTL values [39]) or disallow traceroute altogether (as documented, for example,
in [60] and confirmed by our own measurements efforts detailed in Section 4), the utility of
traceroute as a widely available, easy-to-use, and reliable technique for (large-scale) Internet
measurement experiments may be reaching a point of diminishing return.

In this paper we posit that these trends are inevitable, and that they will continue. Accordingly,
we ask the following motivating question: how can we obtain useful insight about network structure
when the basic mechanisms relied on by tools such as traceroute are either unavailable or can no
longer be taken for granted?

In considering how to answer this question, we argue that the increasing opacity of path internals
in today’s Internet calls for leveraging measurement techniques that are both more light-weight
and more universally-available than traceroute, combined with more heavy-weight mathematical
analysis tools for extracting as much information as possible from these more limited information
sources. To this end, we consider the end-to-end round trip delay (RTT) along an Internet path as
an information source that is suitably light-weight and at the same time essentially universally-
available. Moreover, RTT can in most cases of interest also be readily augmented with metadata
in the form of approximate geolocation of path endpoints. While neither RTT nor geolocation
can be measured with high precision for every path in the Internet, we find that in general, the
necessary information is available with sufficient precision. At the same time, our analysis of the
resulting measurements is informed by mathematical concepts from Riemannian geometry (e.g.,
Ricci curvature and its extension to discrete graphs known as Ollivier-Ricci curvature [66]) and
presented in the form of specialized visualizations (e.g., continuous manifolds with embedded
geo-information). This considered heavy-weight analysis tool only assumes that the “footprint” of
a given network’s physical infrastructure is specified in terms of a set of geo-located nodes that
represent vantage points capable of performing the light-weight measurements of interest (e.g.,
RTT).

Thus, as an answer to our motivating question, we show in this paper that in a “post-traceroute”
world, it is possible to rely solely on RTT measurements among a set of geo-located Internet nodes
to elucidate important aspect of Internet structure. Specifically, we assemble a set of existing and
newly-developed techniques into a coherent and original methodology for illuminating important
aspects of network structure – aspects that are either impossible or more difficult for traceroute
to identify and discover as its ability to discern path internals in the Internet diminishes.
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We demonstrate our methodology by applying it to three large cloud provider networks (Google,
Microsoft, and Amazon). Specifically, we use inter-data center RTT measurements from each
network to identify critical aspects of connectivity within each infrastructure to compare and
contrast across infrastructures. These results show that our approach enables third-party Internet
measurement researchers to gain insight into the private backbone infrastructures of the large
cloud/content providers, which is critical for independently verifying claims by these providers
about the characteristics and performance of their network. Importantly, our approach does not rely
on information concerning their physical connectivity fabrics which these providers increasingly
view as proprietary in nature, mainly for competitive reasons.

Contributions: In summary, in this paper we make the following contributions. First, we
present a new methodology for assessing connectivity in private backbone infrastructures. By
leveraging simple RTT measurements among a set of geo-located nodes and employing concepts
of Riemannian geometry as a mathematical vehicle, our approach offers a promising alternative
to inferring important aspects of network structure in a post-traceroute world. A key element
of our method is a coordinated array of interrelated visualizations, including a new visualization
tool developed for this work that fuses Riemannian geometry with geographical maps. Second, we
demonstrate our methodology by inferring known and novel aspects of existing connectivity fabrics
of the private backbones of the large cloud providers. For example, by comparing the inferred
connectivity fabrics of three large cloud providers, we are able to highlight common features and
important differences and identify “weak spots” in their existing connectivity. Based on these results,
we argue that our proposed approach presents an exciting alternative to traditional methods for
Internet connectivity research and has the potential to inform relevant stakeholders on what future
infrastructure changes would be most beneficial (or detrimental) for some large cloud providers.
Such guidance is of critical importance for an industry that is expected to spend up to $150 billion
on new fiber deployments in the U.S. alone [71].
This work raises no ethical considerations.

2 BACKGROUND
The Problem. Since the early 1990s, the preferred method for studying Internet infrastructure

has been to infer router-level topologies based on information gleaned from sufficiently many
traceroutemeasurements. The key idea behind traceroute is to elicit a self-identifying response
from intermediate nodes along an end-to-end path. While many ingenious strategies have been
developed for making this idea maximally informative [15] and efficient [18], much can nonetheless
go wrong when performing this inference task in practice (e.g., see [61] and references therein).
First of all, since the very beginning, tracereoute-based measurement studies have faced an

array of technical challenges and barriers: (i) routers that emit their response from a randomly
chosen interface; (ii) routers that do not respond at all to TTL exceeded triggers or ICMP probes;
(iii) ambiguities in mapping interfaces to routers (IP alias resolution problem); and (iv) bias due to
choice of vantage points for launching traceroute probes.
Next, the increasing complexity of the Internet is making traceroute less effective. The basic

mechanism used by traceroute is unable to detect the use of underlying layer-2 technologies
(e.g.,MPLS), and in the presence of those technologies, traceroute returns misleading results [80].
Further, the Internet has seen a rise in deployed middleboxes such as firewalls, NATs, proxies, and
Deep Packet Inspection boxes. These middleboxes are used to manipulate traffic for purposes other
than simple packet forwarding (e.g., for performance or security reasons), and their ability to drop
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packets that are carrying probe information can render traceroute as a means for exploring a
network’s infrastructure largely useless.2

Finally, the global Internet ecosystem itself is changing in ways that make traceroute less effec-
tive. The well-documented flattening of the Internet is the result of many of the large multinational
technology companies building out private global-scale infrastructures that often carry traffic
from the origin all the way to the access network. These increasingly dominant infrastructures are
opaque to traceroute. Further, global-scale cloud providers that serve as hosts for third parties are
equally problematic. For one, to be able to perform relevant measurements, third party researchers
have to become customers of such a provider in the sense that they have to purchase resources from
the provider in the form of virtual machines (VMs). Moreover, to perform the desired measurements,
researchers must adhere to the terms and conditions imposed by the provider that often prevent
them from running tools such traceroute at will. And, even if performing measurement experi-
ments such as running massive traceroute campaigns is technically permitted, it is completely
up to each provider to determine how traceroute probes are handled within their own domain
(e.g., see discussion in [13] and references therein).

The result of all these challenges and trends is that currently inferred router-level topologies
are of largely unknown quality (e.g., different degrees of completeness and/or accuracy; see for
example [81]). In some cases, inferred connectivity fabrics have nothing to do with router-level
connectivity but instead provide instances of logical connectivity, or worse, present an entangled
and largely meaningless mixture of layer-3 and layer-2 connectivity (e.g., see [54, 88]). Furthermore,
technology trends suggest that these problems will not go away, leading us to conclude that the
practical utility of traceroute for studying and characterizing Internet infrastructure can no longer
be taken for granted and requires continued careful scrutiny. In particular, this observation argues
for renewed efforts to develop alternative Internet measurement tools that are (i) easily deployable,
(ii) generate probe packets that are not susceptible to tempering by third parties, and (iii) yield high
quality end-to-end information that is comparable to a properly-executed traceroute probe.

What can be done? When one considers the sorts of measurements that necessarily must be
available to a third party researcher based on the Internet’s dominant service model, it becomes
clear that only end-to-end measurements are guaranteed to be available. Of these, the simplest
is end-to-end round trip time (RTT) or delay. While simple ICMP ECHO probes can be blocked,
RTT can be obtained through TCP connections (SYN/SYN-ACK) for any host that has an open
port. Furthermore, it is generally possible to obtain at least approximate geo-location information
about end systems. For example, while with RTT measurements, delay-based geo-location is always
possible, in many cases of practical interest, more precise geo-location information is available. As
a result, we assume that neither RTT nor geolocation information can fundamentally be completely
hidden by network operators from third-party researchers. Although both data sources can be
manipulated, the capabilities of an adversary for doing so are limited [37].
Starting from these two data sources, we envision a characterization of network structure in

terms of the properties of paths between end systems. Our approach is to assume that the data (e.g.,
measured network latencies) has been generated from an unknown complex topological space (e.g.,
continuous manifold), and our methodology provides a means for “learning" this manifold; that is,
uncovering the geometry of this unknown space. In particular, the data points represent shortest
paths (along the manifold’s surface between measurement nodes) that encode a composite view
of underlying physical network infrastructure and deployed routing configurations. Intuitively,

2While extensions to traceroute such as tracebox [26] can help with identifying various types of middlebox-related
packet modifications and pinpointing where on a path a given middlebox caused packets to be modified, they do not
eliminate the basic problem.
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the “curved" nature of the manifold sheds light on important local properties of the network, with
positively curved regions representing more or less pronounced peaks (resulting in shortest paths
that are indeed “direct") and negatively curved areas forming saddle point-like shapes (producing
shortest paths that are “long") [64, 67]. We expand on the connection between our approach and
continuous manifolds in Section 3. While our proposed method is not designed to provide the
same amount of information as traceroute and is therefore not intended as a replacement of
traceroute, we illustrate that it enables us to obtain insights into network connectivity even in
situations where traceroute probes are blocked or manipulated or result in measurements that
are difficult to interpret.

Our methodology enables both local and global characterizations of a network’s infrastructure. At
the local level, our method assigns two properties to each pair of nodes: importance and performance.
Importance is a local measure of connectivity (i.e., “curvature"). It identifies node pairs whose
connections play a critical role in defining the structure of the network. Performance is a local
measure of the optimality (or lack thereof) of the path connecting the nodes. It identifies node
pairs whose connectivity could conceivably be improved. On the other hand, at the global level,
our method provides a macroscopic view of network nodes as forming well-performing “clusters"
over a range of performance levels. By sweeping through a range of performance levels, a picture
emerges that characterizes portions of a network in which performance is good, and portions
between which performance could be improved.

3 METHODS
Overview. A schematic overview of our method is presented in Figure 1. In what follows, we
explain the steps shown in the figure.
The system under study is a physical infrastructure connecting a given set of nodes (vantage

points). In general, the physical connectivity fabric (shown as thick black lines in the figure’s
topmost panel) is unknown. We seek to develop methods that elucidate connectivity within the
system that are very lightweight and thus well-suited to large-scale assessment in settings where
measurement capabilities may be limited (e.g., cloud infrastructures). To achieve this, we depend on
only two simple information sources: (a) geographic location of nodes, and (b) round trip latency
between node pairs.3

Hence, the starting point of our method, shown in the topmost panel of the figure (i.e., panel 1),
is the collection of a mesh of all-pairs latency measurements among a set of nodes, but as indicated
in panel 1, we allow for a small portion of missing measurements. Note that the more localized the
target area of study, the more precise the latency measurements should be for our methodology to
apply. For each pair of nodes with latency measurements, we determine the great circle latency,
which we define to be the great circle distance (GCD) between the nodes divided by 2

3𝑐 , which is
the speed of light through fiber [19]. Then, for each node pair, we compute the residual latency,
which we define to be the measured latency minus the great circle latency. Residual latency can be
influenced by a number of factors including physical paths, logical connectivity defined by routing
and congestion. Our focus on private infrastructure and minRTTs obviates the latter two issues,
which we will consider in the context of the public Internet in future work (see Section 8). The
resulting matrix 𝑋 of residual latencies is shown on the left of panel 1 in the figure, with black
squares indicating missing observations.

The next step is to identify node pairs that are connected by nearly straight paths. By ‘straight’
we mean following a great circle (geodesic), and by ‘nearly’ we mean that the total deviation from
the great circle is bounded. We formalize this notion by establishing a threshold 𝜀 on residual

3When we refer to measured latency or latency in this section, we actually mean minimum RTT (minRTT).
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Fig. 1. Our methodology in a nutshell.
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latencies. Because it measures how close a measured latency is to its theoretical optimal, we call 𝜀
the performance threshold. This step appears on the right side of panel 1 in the figure, where the
CDF of residual latencies is shown along with two different thresholds.
For any given 𝜀, the set of node pairs that are connected via ‘nearly straight’ paths defines a

graph. This graph is defined as the set of edges that have residual latency ≤ 𝜀 and shown in panel 2
of the figure for two different values of the performance threshold 𝜀. A lower threshold defines a
graph with fewer edges; edges in the left hand graph are a subset of the edges in the right hand
graph. The low-threshold graph reveals structure locally that allows us to infer the underlying
physical connectivity fabric of the various disconnected components. However, it says nothing
about how these islands are connected physically as part of the overall graph. That information
can be inferred from what higher-threshold scenarios reveal in terms of important links that are on
many shortest paths between nodes in the different local ‘regions’ of the overall infrastructure.

The next step is to assess the importance of each edge in the graph. For that purpose, we use the
notion of Ricci curvature of an edge. We discuss curvature and how it is computed below. Here we
offer the following heuristic view of curvature: negatively curved edges will tend to be traversed by
many of the local shortest paths; that is, paths that originate in the neighborhood of one end node
of a negatively curved edge and connect to nodes in the neighborhood of the node at the other end
of that edge. Conversely, edges that are positively curved will by and large not be used by most of
the local shortest paths. The resulting graphs in which each edge is assigned its curvature (shown
by color) are depicted at the top of the third panel of the figure.

Next, to obtain a macroscopic view of each graph, we compute the distribution of edge curvatures
present in the graph. This allows us to understand the relative proportion of curvatures among
graph edges. These distributions are shown in the middle of panel 3 of the figure. Finally, we obtain
a thorough characterization of each dataset by repeating the above procedure over a range of many
performance thresholds. By doing so, we obtain a picture of how the graphs derived from our data
evolve as we relax the constraint implied by using ‘nearly straight’ paths. The distributions of
resulting curvature values are summarized in a series of boxplots as shown on the bottom row of
panel 3 in the figure.

The figure illustrates a number of aspects of our methodology. It shows that at small thresholds,
we typically obtain a disconnected graph. At this level, only node pairs with very ‘straight’ paths
are connected. As the threshold increases, additional edges are added, and at some point the graph
becomes connected. The figure also shows that edges that appear to be ‘bottlenecks’ or ‘bridges’
tend to show negative curvature. Such edges indicate critical (important) connectivity; removing
such edges tends to disconnect the graph (or at least drastically lengthen the graph’s local shortest
paths).

Putting it all together. Panel 4 of Figure 1 shows how we synthesize the above metrics into a
complete picture. To do so, we look at the behavior of both nodes and edges. With respect to nodes,
we characterize how nodes cluster as the performance threshold varies. To capture the entire picture
of node clustering at different performance thresholds, we use a Sankey diagram as shown at the
bottom of panel 4 in the figure. This plot gives a macroscopic view of how the threshold-dependent
curvature-weighted graphs evolve as the performance threshold increases from left to right. In
particular, it shows which nodes form well-performing clusters at low performance thresholds (left
side of the Sankey diagram), which nodes form larger connected components at higher performance
thresholds (right side of Sankey diagram), and how the different clusters merge or split as we vary
the performance threshold from low to high or vice versa.

Augmenting this node-based view, we also characterize how edges contribute to connectivity of
the overall network. To do so, we examine the properties of an edge at the threshold where the edge
first emerges (i.e., the lowest 𝜀 ≥ the edge’s residual latency). We define two metrics for each edge,
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namely importance and performance. We consider an edge’s importance as its impact on network
robustness – e.g., how much ‘disruption’ (i.e., affecting locally shortest paths) would occur were
this edge not present. For this, we use Ricci curvature as our metric, with lower (more negative)
Ricci curvature indicative of greater edge importance. For edge performance, we use its residual
latency – e.g., the value of 𝜀 at which the edge appears in the graph. Here, higher values indicate
poorer-performing edges, i.e., edges whose latencies are more inflated with respect to the optimal.
We summarize the two edge metrics in the form of heatmaps as shown in panel 4 of the figure.

For edge importance (Ricci curvature), key network edges appear as very negative (red in the
figure). For edge performance, well-performing edges (low residual latency) appear as having the
lowest values (white or yellow in the figure). In each figure we use black boxes where no per-edge
measurements are available.

Ricci Curvature. A key tool in our approach is the Ollivier-Ricci curvature [66].4 Roughly, the
Ricci curvature of a graph edge can be thought of as a sort of local ‘betweenness’ measure. However,
it has important differences from betweenness. Rather than counting paths (as in betweenness),
it measures the optimal transport of mass from the neighbor of one edge node to the neighbor
of the other edge node. Hence we first discuss optimal transport, and then we use it to define
Ollivier-Ricci curvature.
Optimal Transport. To formally define the optimal transport problem, we consider a set of𝑚

sources that produce a commodity, with source 𝑖 producing amount 𝑥𝑖 of the commodity. We also
consider a set of 𝑛 sinks, each wanting to consume an amount 𝑦 𝑗 of the commodity. The cost of
transferring one unit of the commodity from source 𝑖 to sink 𝑗 is given by a distance metric 𝑑 (𝑖, 𝑗).
The optimal transport problem finds a transport plan describing for each (𝑖, 𝑗), how much of the
commodity produced at source 𝑖 should be transported to sink 𝑗 , so as to minimize the total cost of
transport, while obeying commodity conservation constraints. Depending on specific assumptions,
such as infinite divisibility of the commodity, the problem may be solvable via a linear program,
which is the case in our work.

More formally, given a metric space (𝑀,𝑑) meeting certain conditions, the 1-Wasserstein distance
(also referred to as ‘earth mover’s distance’) between two probability measures 𝜇 and 𝜈 on 𝑀 is
defined as

𝑊1 (𝜇, 𝜈) = inf
𝛾 ∈Γ (𝜇,𝜈)

∫
𝑀×𝑀

𝑑 (𝑥,𝑦) d𝛾 (𝑥,𝑦)

where Γ(𝜇, 𝜈) denotes the collection of all measures on𝑀 ×𝑀 with marginals 𝜇 and 𝜈 on the first
and second factors, respectively. The intuition is that 𝛾 describes a plan for moving a mass from
distribution 𝜇 to distribution 𝜈 , and the amount moved from 𝑥 to 𝑦 (i.e., d𝛾 (𝑥,𝑦)) has unit cost
𝑑 (𝑥,𝑦).

Ollivier-Ricci Curvature. Using the concept of optimal transport, we can define the Ollivier-Ricci
curvature of an edge connecting nodes 𝑥 and𝑦. We start by dividing and placing a unit mass equally
over the neighbors of 𝑥 , denoted by 𝑁 (𝑥). We also divide another unit mass among the neighbors
of 𝑦, denoted 𝑁 (𝑦). These two unit masses define the distributions 𝜇 and 𝜈 . We measure distance
between any two nodes in the graph using hop distance. With this setup of sources 𝑁 (𝑥) and sinks
𝑁 (𝑦), we compute the optimal transport cost of moving the unit mass from the neighbors of 𝑥 (i.e.,
𝜇) to the neighbors of 𝑦 (i.e., 𝜈). The Ollivier-Ricci curvature of the edge 𝑥 ∼ 𝑦 is then given by

𝜅 (𝑥,𝑦) = 1 −𝑊1 (𝜇, 𝜈)
𝑑 (𝑥,𝑦) .

4For brevity we will usually write just ‘Ricci curvature.’
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Fig. 2. A manifold view of the example network used in Figure 1.

A few examples can help illustrate the main idea. Consider first an edge between 𝑥 and 𝑦 that is
part of a tree. Then the neighbors of 𝑥 (i.e., 𝑁 (𝑥)) and 𝑦 (i.e., 𝑁 (𝑦)) are fully disconnected and all
the mass from 𝑁 (𝑥) must go through the 𝑥 ∼ 𝑦 edge in order to get to 𝑁 (𝑦). The optimal transport
cost of moving 𝑁 (𝑥) to 𝑁 (𝑦) is equal to 𝑑 (𝑁 (𝑥), 𝑥) + 𝑑 (𝑥,𝑦) + 𝑑 (𝑁 (𝑦), 𝑦) = 3 and we see that the
edge is negatively curved with a value of −2. Next, consider a situation in which 𝑥 and 𝑦 have the
same number of neighbors, and each neighbor of 𝑥 has a direct connection to the corresponding
neighbor of 𝑦, approximately like a grid. Then all mass moves through hops of length 1 and the
edge has zero curvature (it is ‘flat’). Finally, consider a clique. In this case, 𝑁 (𝑥) = 𝑁 (𝑦) and no
mass moves at all – so the curvature is positive (+1).
These examples illustrate why we use Ricci curvature to characterize an edge’s importance.

Negatively curved edges – those through which much mass must pass – represent local bottlenecks
in the graph. A change to the performance of one of these edges can have a significant impact on
the performance of many paths in the network.

Themanifold view. The graphs we construct represent paths between locations in geographical
space. Our results show that it is helpful to understand the relationship between the curvature of
edges in our graphs and the curvature of the underlying geographical space. However, while the
notion of curvature is more intuitive for continuous (Riemannian) surfaces than it is for graphs,
the problem of representing combinatorial objects such as graphs using smooth topological spaces
such as manifolds is notoriously difficult. We address this problem by appealing to a well-known
relationship between the Ollivier-Ricci curvature and the standard Ricci curvature (for more details,
see for example [52, 66]).
A key visualization component of our method is a representation we refer to as the manifold

view.. Informally, to generate this manifold view, we start from a “flat” (2-D) geographical map and
a geographically embedded graph (with associated edge curvatures) and then produce a new (3-D)
surface whose local Gaussian curvature in each region approximates the Ricci curvature of the
edges that “pass near” that region. Figure 2 illustrates the concept, using the example network from
Figure 1. The figure shows that the positively curved edges in the graph (e.g., edges connecting
nodes A-F, or nodes G-J) induce two positively curved peaks in the manifold view, and the negatively
curved edge (e.g., F-H) induces a saddle shape in the manifold view.
While a more formal derivation of this manifold view is beyond the scope of this paper and

will be presented in future work, we briefly describe in the following the basic steps required to
implement our novel visualization approach. Since adequately accounting for the positive and
negative curvature features in complex manifolds is a known and challenging problem, we expect
future versions of our basic tool to result in improved representations of our proposed manifold
view.
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We start from a geographic map represented as a discrete mesh of points {s𝑖 = (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 )}, 𝑖 =
1, . . . , 𝑁 . In the mesh, each node is connected to its neighbors to form a triangulation of the surface
we seek to generate. The discrete approximation to Gaussian curvature at each vertex s𝑖 is given by

𝑐 (𝑖) = 2𝜋 −
∑︁

angles of the mesh around vertex s𝑖 .

We assign each vertex of the mesh a target curvature 𝜅 (𝑖) based on the average curvature of the
graph edges that pass close to the vertex, via a kernel smoothing function. We then define an
objective function:

L(z) =
∑︁
𝑖

(𝜅 (𝑖) − 𝑐 (𝑖))2 + 𝜆z𝑇𝐿3z (1)

where z = [𝑧𝑖 ]𝑇 . The first term in (1) ensures that the curvature of the mesh 𝑐 (𝑖) is close to
the desired curvature 𝜅 (𝑖) at each mesh vertex 𝑖 . The second term in (1) enforces a smoothness
constraint on the second derivative of the surface, using 𝐿, the graph Laplacian of the mesh, as
an approximation for the Laplace-Beltrami operator on the surface. The parameter 𝜆 determines
the smoothness of the mesh curvature and is set manually based on visual inspection. We use a
fixed value of 𝜆 across all visualizations to enable cross-dataset comparisons. Keeping the 𝑥 and 𝑦
coordinates of the mesh fixed, our method finds the best 𝑧 (elevation) for each point on the surface
via gradient descent applied to the objective function L(z).

The figure illustrates the key ideas of the manifold view. A negative curvature of an edge in
the graph arises when local paths in the graph tend to make heavy use of that edge. In a sense,
shortest-paths (geodesics) are “attracted” to the edge, and may be thus “lengthened,” by local
connectivity properties. Negative curvature in the manifold induces the saddle-shape seen in the
center of the figure. Similarly, geodesics on the manifold will tend to curve inward towards each
other, which attracts the paths towards each other and lengthens them (compared to a flat surface).
Analogous statements hold for positive curvature in the graph and on the manifold. Thus the
manifold view gives a visual sense of how paths in a geographical setting will tend to be elongated
or shortened by the underlying connectivity of the embedded graph.

Discussion. The manifold views of networks generated by our methods should not be thought of
as direct replacements for connectivity maps generated from traceroute measurements e.g., [81]).
They are unique representations that convey key characteristics of networks related to connectivity,
optimality and performance. Our graphs and manifolds relate to physical connectivity in terms of
the geolocations of nodes and geodesic distances and aspects of logical connectivity in terms of
RTT measurements between nodes.

While we have already described the limitations of traceroute, an alternative is maps of physical
network connectivity that may be published by providers (e.g., [59]). While these can be useful in
certain contexts, they can be incomplete [28], out of date, and difficult to interpret. We posit that
the views generated by our methods provide unique information when maps are not available and
complementary information when maps are available.
4 SENSITIVITY ANALYSIS
In developing our methodology, we make a number of simplifying assumptions. In this section, we
discuss our choice of using residual latencies that are defined as the difference rather than as the
quotient of the observed and the GCD-defined latencies and explain our reasons for using Ricci
curvature as our metric-of-choice instead of other more standard measures of centrality.

Residual latency in absolute vs relative terms: The main reason we selected difference over
quotient for residual latency is that it allows us to perform a gradual and geographically meaningful
discovery of the underlying metric space. When residual latency is defined in terms of quotients, we
found that the graph percolates in an unintuitive fashion. In particular, the first edges that emerge
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are “mid-range" edges within different continents. Many nodes that are geographically close to each
other exhibit poor performance due to last-mile congestion and metro area approximations, which
in turn implies that they appear to have high residual latency. This makes the interpretation of the
results more difficult, especially in terms of the manifold view, where we expect almost Euclidean
behavior for local areas. Another key contrast is that residual latency based on difference induces a
unit while the ratio is a relative measure. In summary, while quotient is a viable choice for defining
residual latency and for comparing networks (e.g., for performing a similar analysis as in Section
6), our intuition and representations are built on the premises that (i) the 2D Euclidean projection
manifold should encapsulate the expected behavior of straight paths and (ii) the curvature models
the distortion from the projection to the actual metric space that the network creates. In that
context, the difference between the flat plane and curved Internet yields a more tractable way of
discovering the curvature.
Using Ricci curvature as centrality metric-of-choice. Edge betweeness [25, 70] and the

cut metric [20] are two commonly-used metrics for characterizing edge importance in a graph.
Compared to these metrics, using the Ricci curvature metric to measure edge importance has
a number of advantages. First, the Ricci curvature is able to reveal the same features that edge
betweenness and the cut metric can identify. Second, by opting for the Ricci curvature, a key
strength of our method is its ability to focus on a given graph edge and track the evolution of the
curvature of that edge as the graph changes in response to the selection of different threshold values.
Neither edge betweeness nor the cut metric have this desirable property. In fact, in Appendix C, we
show that both metrics can be highly unstable and sensitive with respect to the addition or deletion
of certain edges and are therefore ill-suited for tracking such evolutionary aspects of graphs. Third,
the Ricci curvature provides a means for a geometric interpretation of graph-related properties
which we heavily rely on when generating our manifolds.

5 DATA
The empirical component of our work focuses primarily on collecting round trip time (latency)
measurements on network paths between data centers for each of the major cloud providers (i.e.,
traversing links owned and operated by each cloud provider). Our specific objective is to find
the minRTT from all measurements collected over a period of days between widely deployed
measurement points. We note that since our approach described in Section 3 will generate the
same results from minRTT and 1

2× minRTT, we use minRTT in our study because minRTT is
directly measured without additional assumptions about the specific network path taken. While it
is possible to study minRTT over fixed-length periods that are either shorter or longer than a few
days, such investigations are beyond the scope of this work. For example, using our method with
minRTT values that have been computed over shorter time periods (e.g., minutes or hours) can
be expected to shed light on changes in overall network performance such as diurnal patterns or
unusual behavior. On the other hand, analyzing minRTT values that have been computed over time
intervals on the order of weeks or months can provide valuable information for network operators
concerned with network capacity planning in light of observed long-term trends in measured
end-to-end delays. As part of our future work, we are particularly interested in investigating
how our methodology can be leveraged to study more real-time network conditions by means of
generating and analyzing a set of evolving graphs where each individual graph encodes critical
network performance-specific information that has been measured over short periods of time. Also,
since our goal is a representative measure of latency along a path, we limit our measurements to
intra-cloud provider networks to reduce the variability from route dynamics and path asymmetries,
understanding that both affect RTT measurements. Finally, we only consider paths and connectivity
available via IPv4, leaving IPv6 studies to future work.
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Fig. 3. Minimum round trip time measurements over a 5 day period for different node pairs connected via
private cloud networks.

Our latency measurements for private Internet paths focus on Amazon Web Services (AWS),
Microsoft Azure, and Google Cloud Platform (GCP). We collected measurements between each city
pair of datacenters for the above-mentioned cloud providers. While we did not have control over
the specific datacenter in a given cloud location, we argue that control at this level is not material to
our findings because it only results in differences in latency that are on the order of microseconds.
We approximated the physical location between data centers in a city as the city center. We use
RIPE Atlas anchors and probes to collect RTT measurements for AWS. Since Google and Azure did
not host RIPE anchors in their data centers at the time when the measurement campaigns were
initiated,5 we configured virtual machines on servers in their data centers around the world and
used ping to collect RTT measurements in a full mesh between sites. Details of data center locations
are provided in Appendix B.

Using virtual machines for measurement, as opposed to running measurement code from an OS
installed directly on the hardware, does incur an additional performance penalty of <0.5 ms for VMs
running on KVM or XEN hypervisors [35, 85, 92]. We acknowledge this overhead, but do not see it
as a significant source of error as our minimum minRTT measurement was ~5.5 ms. In addition
to the VM latency overhead, [77, 86] noted much variation between individual measurements
and much delayed initial ping RTT. To account for these performance penalties, we sent multiple
ping probes during each measurement period, took measurements over multiple days, and only
considered the minRTT from all measurements for our curvature analysis.
AWS:We computed RTT measurements from RIPE Anchors (and RIPE Probes for 4 locations)

in 21 AWS locations between 12/18/2019 and 12/23/2019. Regular measurements between Atlas
anchors include 6 standard ping measurements taken at four minute intervals and 6 standard
traceroute measurements at 15 minute intervals. We mapped the observed traceroutes to AS
paths using standard prefix mapping and conclude that the traffic remains within the boundary of
AWS network.

Azure: We collected RTT measurements from 17 Azure cloud locations (i.e., availability zones)
from 12/21/2019 to 12/25/2019. Each virtual machine in an Azure data center had at least one vCPU,
1GB RAM, 4GB of storage, and all ran Ubuntu Server 18.04 LTS. We configured network peering
and firewall rules to allow communication between VMs in the various locations. Each VM was
5Google has since started hosting RIPE Atlas Anchors in most of its locations.
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assigned a public IP address and a private IP address. We collected RTT measurements using both
the public and the private IP addresses. Each VM sent 20 ping (ICMP echo) requests to each of the
other VMs every fifteen minutes.
In contrast to the other cloud providers, on Azure the default traceroute application does

not produce results. Instead of traceroute we used nmap with a SYN scan to port 80 and the
traceroute flag. With this configuration, traceroutes between VMs with private IP addresses
indicated a direct connection and traceroutes between VMs with public IP addresses indicated
multiple intermediate hops that did not acknowledge the packet; the only intermediate hops that
did respond were from addresses owned by Microsoft.
Google:We measured RTT between 24 GCP data centers from 11/08/2020 to 11/14/2020. Each

virtual machine in a Google VM is a g1-small (vCPU: shared, RAM: 1.7 GB), running Ubuntu 18.04
and with a static IP address. For each VM, we collect ping measurements to the other 23 GCP VMs
once every 4 minutes (matching the RIPE Atlas probes). For each ping measurement, we use the
standard ping utility to send 10 probes at an interval of 0.2 sec and only consider the minRTT.

We collected traceroute measurements between VMs using private IP addresses. The measure-
ments indicated that the VMs were directly connected. We also configured public IP addresses
for each VM using the GCP standard network tier i.e., hot-potato routing for egress traffic and
akin behavior for ingress traffic. Although multiple hops along the path between VMs responded
to the traceroute probes, prefix mapping the responding IP addresses indicated that all traffic
remained within the Google WAN. When we assigned public IP addresses to VMs using the GCP
premium network tier i.e., cold-potato routing [4], the characteristics of responses to traceroute
between VMs hosted on the GCP infrastructure did not change. However, traceroute to and from
RIPE Atlas anchors outside of GCP indicated that the probes entered the GCP WAN as close to the
originating source as possible.
Figure 3 provides examples of the minRTT measurements for each collection interval between

datacenter locations that are connected via private paths. The location pairs in the figure were
selected to highlight relatively short, medium and long geographic paths that are considered in our
study. There is relatively little variation in minRTT over the measurement period. The figure also
shows clear evidence of the use of traffic engineering, as indicated by the different but consistent
minRTT values across many of the paths in their infrastructures.

6 THROUGH THE LENS OF RICCI CURVATURE: CLOUD PROVIDER NETWORKS
Many of the large cloud/content providers are busy expanding their private backbone networks,
but at the same time they often view detailed information about their physical infrastructure to
be proprietary and have become reticent to share the details publicly. These developments beg
the question: as access to data about the physical infrastructures of the backbones of the large
cloud/content providers is harder to come by while at the same time the importance of these
private networks increases, is it possible to study the pertinent characteristics of these private
backbones without having detailed knowledge of their connectivity fabrics (i.e., existence and/or
locations of fiber optic cable conduits)? We answer this question in the affirmative by applying
our methodology to examine the critical features of three private global-scale backbone networks:
Microsoft Azure (Azure), Amazon Web Services (AWS) and Google Cloud (GC). As noted above,
we scheduled measurements in each of the data centers that these providers operate in their
respective availability zones across the globe. Availability zones can be associated with the physical
nodes of these providers’ global-scale private backbones whose connectivity fabrics we attempt to
elucidate. By performing all-pairs latency measurements among these sets of nodes and annotating
each (logical) edge between them with the corresponding measured minRTT value, we obtain the
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analogue of the complete graph shown in Panel 1 in Figure 1 for each provider. The main results of
our curvature-based analysis of private backbone networks are discussed below.6

6.1 Microsoft Azure as a case study
We conducted a case study of Microsoft Azure based on data collected from virtual machines in
each of the 17 data centers that this provider operates across the globe. As described in Section 5,
we performed all-pairs latency measurements among this set of nodes and annotated each (logical)
edge between them with the corresponding measured minRTT value. Using GCD as the measure
for physical path distance, we apply our methodology as described in Section 3. The main results of
our curvature-based analysis of Azure’s private backbone network are shown in the Azure column
in Figure 4.

Panel (a) in the Azure column of Figure 4 shows that there is a broad spectrum of performance
thresholds, mainly due the inclusion of submarine cables that result in residual latencies that tend
to be significantly larger than those encountered in a strictly intra-continental setting. The green-
colored threshold value of 60 in panel (a) results in the first edges with negative curvature. Azure’s
connectivity structure at threshold 60 is shown in panel (c) and identifies the existence of two
pronounced and geographicallymeaningful connected components: a NorthAmerica-Europe cluster
and an Asia-Pacific cluster. Within the North America-Europe cluster, all intra-North America edges
have positive curvature as do all intra-Europe edges – an indication that Azure operates a richly
connected physical infrastructure within both the North American and the European continents.
The formation of this North America-Europe cluster is due to three edges that connect Virginia,
US and the UK-Ireland. Consulting the Azure global network map [59] confirms the existence of
direct under-sea cables connecting Ashburn, VA and London, and Boydton and Dublin, respectively.
In contrast to the North America-Europe cluster, the Asia-Pacific cluster has a more unbalanced
internal connectivity. In particular, while Mumbai is only connected to Singapore, there exists rich
connectivity among the other four intra-cluster cities Singapore, Hong Kong, Seoul, and Tokyo.
This intra-cluster connectivity suggests the existence of an undersea cable between Mumbai and
Singapore, but the fact that this edge’s curvature is not negative illustrates that Mumbai does
not play the role of a gateway node and that this edge is not critical for connectivity within the
Asia-Pacific cluster.

Analyzing the graph in panel (d) that corresponds to threshold 90 colored in purple in panel
(a), we see that the entire North America-Europe cluster now consists exclusively of positively
curved edges, which implies the existence of rich fiber connectivity linking the two continents by
means of transatlantic cables with a diverse set of landing points. At the same time, examining the
Asia-Pacific cluster at this threshold, we find that while it now includes Sydney, its intra-cluster
connection fabric is also positively curved but far more sparse than that of the North America-
Europe cluster. Importantly, we observe the presence of a single negatively curved edge between
Tokyo and Quincy, WA (shown in red) that connects the North America-Europe and Asia-Pacific
clusters.
Finally, in panel (e) we see that at threshold 120, South America merges with the fused North

America-Europe and Asia-Pacific cluster. South Africa does not merge with the rest of the graph
until a threshold beyond 120, at which point it allows for a representation of the global-scale
infrastructure of Azure as a single connected component.

These observations are further refined by examining the curvature heatmap in the Azure column
in panel (f) of Figure 4. The two dark red cells correspond to the edges between Tokyo-Quincy, and

6Animations of these manifold views can be found in our repository at https://github.com/Burdantes/Curvature-based-
Analysis-of-Network-Connectivity-in-Private-Backbone-Infrastructures.
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Mumbai-London, respectively. While the emergence of the Tokyo-Quincy link at threshold 90 is
distinctly captured in panel (d), the appearance of the light-red colored cells next to the Tokyo-
Quincy link indicates the slow emergence of connectivity between the North America-Europe
and Asia-Pacific regions at higher thresholds. At the same time, we see that the Mumbai-London
connection first emerges between threshold 90 (panel (d)) and threshold 120 (panel (e)). Also, the
appearance of light-red colored cells surrounding the Mumbai-London link suggests the emergence
of more connectivity for transporting traffic between Europe and Asia. Trying to place the Mumbai-
London edge on a geographic map shows that any optimal cable route would have to cross Iran and
the Black Sea. However, in view of existing geopolitical tensions afflicting those regions, such cable
deployments are unlikely in the foreseeable future, resulting in the use of alternative routes that
are longer and slower than their optimal counterparts. In this sense, just as we expect identified
topographical features to cause sub-optimal cable deployment, our examination of Azure’s global-
scale infrastructure shows that the proposed curvature-based analysis is also capable of highlighting
areas of geopolitical tension that can cause sub-optimal connectivity.
The threshold heatmap in panel (g) shows the emergence of three distinct well-performing

regions: North America (upper left), Europe (center) and the Asia-Pacific region (lower right). At
the same time, we observe that South America (Sao-Paulo) and Africa (Johannesburg) are only
weakly connected to the rest of the network and as a result, experience overall sub-par performance.
Moreover, while the Europe and North America clusters are composed of uniformly light-colored
cells, the cells that make up the Asia-Pacific cluster are colored in different shades of green which
in turn indicates that the different cities in this cluster connect via links that vary in performance.
At the same time, the links between North America (or Europe) and the Asia-Pacific area emerge
in a more homogeneous manner, indicating more consistent performance.
Finally, the Sankey diagram in panel (h) shows how the different regions that make up the

Azure global network merge to form a single connected component as the performance threshold
increases. This dynamic view of our curvature-based analysis of Azure’s infrastructure shows that:
(1) the Europe and North American clusters form early on at low thresholds, (2) the Asia-Pacific
cluster to forms at higher thresholds, (3) the integration of Johannesburg and Sao-Paulo into a single
component that constitutes the Azure global network takes place at yet higher thresholds, and (4)
the emergence of the Tokyo-Quincy, London-Mumbai, Dublin-Boydton, and London-Ashburn links
are critical connections in the Azure global network.

6.2 An Analysis of the Manifold View of Cloud Providers Global Connectivity
While Figure 4 illustrates the different steps of our overall methodology with examples of three
large cloud provider networks, Figure 5 shows how the manifold views that we generate for each
of these networks evolve as we increase the curvature thresholds from 30 to 120 in steps of size 30.
In the following, we briefly describe the key features that are evident in these manifold views.
Starting with the curvature threshold 30 (row b), Figure 5 highlights the “islands” of positive

curvature that emerge in areas of dense connectivity in North America, Europe and Asia/Australia.
In each panel, we identify a strong positive curvature in Europe, curvature that is bifurcated between
coasts in North America (except for Azure) and relatively more neutral curvature in Asia/Australia.
For threshold 60 (row c), we see even higher peaks of positive curvature in the major regions and of
negative curvature (i.e., saddle-shaped surfaces) in the Azure, and AWS manifolds as connectivity
between Europe and North America emerges. At threshold 90 (row d), we observe the merging of
the European and North American islands along with the emergence of a negatively curved link
between Europe and Asia/Australia for AWS. These features differ from the prior threshold and
are similar to the features for threshold 120 (row e), where we now see links between Europe and
Asia/Australia for the Azure network.
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Fig. 4. Full pipeline for cloud provider infrastructures projected onto a world map at curvature thresholds
(b) W=30, (c) X=60, (d) Y=90 and (e) Z=120. (f) and (g) are the Ricci curvature and threshold emergence heat
maps. (h) are the Sankey diagrams.

The manifold views for the three cloud providers at a curvature threshold of 90 are shown
in Figure 6. We focus on this threshold since it reveals significant features, commonalities and
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Fig. 5. Manifold views (with graphical connectivity shown above) for cloud provider infrastructures projected
onto a world map at curvature thresholds (b) W=30, (c) X=60, (d) Y=90 and (e) Z=120.

differences in all three networks. Each sub-figure shows a 2-D graph of network connectivity above
the surface for reference and a manifold projected onto a map of the earth below (where edges that
stop at one side of the boundary of the surface wrap around the earth and continue on the other
side of the surface’s boundary).
The figure qualitatively confirms and precisely delineates three regions of rich connectivity at

the global level: North America, Europe, and Asia/Australia, as shown by positively curved peaks
above the plane. However, the boundaries of the richly connected regions, and the nature of the
connectivity between them, varies considerably for the three networks. As indicated by the higher
degree of positive curvature in Asia/Australia, the links between nodes in Google’s network in
that region are more efficiently connected. Apart from this difference, connectivity within richly
connected regions for all networks is roughly comparable. Europe is the most positively curved
region of the three (reflecting high connectivity over a comparatively compact region) while North
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Fig. 6. Manifold view of AWS (top), Azure (middle), and Google (bottom) at threshold 90.

America shows positive curvature on the coasts, especially the East coast. In North America, AWS
shows the most consistent positive curvature overall.
However, significant differences are apparent between cloud providers with respect to inter-

region connectivity. Each positively curved region is connected to two others by approximately
east-west pathways generating negative curvature. In general, trans-Atlantic connectivity between
Europe and North America is fairly high-performing, with many edges at this performance level.
At the other end of the spectrum, Europe-Asia connectivity is notably poor among all providers
other than AWS. Furthermore, unlike the other providers, the AWS manifold includes transpacific
paths with neutral curvature (as opposed to negative). The general lack of connectivity between
Europe and Asia/Australia through the Mideast is surprising, since it is the shorter path and would
appear to be feasible via multiple physical routes. However, geopolitical considerations have made
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high speed land-based cables difficult to site in this region [49], such that connectivity in this region
is worse than, e.g., across the Atlantic.

6.3 Manifolds Reflect the Delay Space
To illustrate how key network metrics are captured by our manifold view, we compute for selected
pairs of vantage points (VPs) on a given manifold the geodesic distance as induced by the surface
geometry of the manifold.7 In this way, we identify both the distance between the cities hosting the
VPs and a specific path between the VPs. We compute the geodesics on the manifold obtained at
the threshold 𝜀 = 90 (as illustrated by the paths in Figure 6). We consider edges whose curvatures
were identified to be particularly negative at that threshold and interesting cases to illustrate some
of the key differences. We then construct linear predictors for the latency as a function of either (i)
the GCD or (ii) the geodesic distance. We denote the prediction error for these two models as 𝛿GCD
and 𝛿Geo. In both cases, we get rather good predictors with 𝑅2 > 0.9 (only Google with GCD has a
value lower close to 0.85) with a 𝑝-value smaller than 10−6 demonstrating that latency is indeed
correlated with GCD and the geodesic distance.

Table 1 shows the superiority of the geodesic distance derived from the manifold as a predictor.
The table entries provide the distance along the shortest-path in long-haul fiber infrastructure [29]
for continental links and through submarines cables as provided in the Infrapedia database [2].8

For AWS, we observe that for all of the cities of interests, the estimator that uses geodesic distance
performs better than the GCD and provides very accurate latency estimates, i.e., less than 10 ms
difference (in green) and decent latency estimates, i.e.,more than 10 ms difference (in yellow). Using
the first two rows in the case of Google, we note that our technique also identifies links whose
delays are influenced by long-haul fiber paths that are highly dilated compared to GCD. On the
other hand, large delays tend to increase the latency estimation for well performing parts of the
network (e.g., Sydney-Las Vegas), but the geodesic distance-based estimators suffer less from this
drawback. The last two rows illustrate that our predictor is less effective for mid-range links when
considered at this threshold (in red). This could be resolved by either rescaling the positive bumps
on the manifold or by repeating the geodesic computation between the cities on the manifold at
the threshold when the edges have first emerged (i.e., 70).

In summary, the geodesics are particularly useful for long-haul predictions. While our geodesics
do not precisely exhibit the actual path taken by the data, the tendency to pass through saddle
points highlights paths that lack direct physical connectivity. In general, geodesic distances are
more appropriate estimators of network latency than GCD-based estimates, mainly because moving
along the manifold rather than using line-of-sight results reflects actual delays more accurately.
After all, the manifold view accounts for the deformation of the delay space that results from either
the absence or abundance of infrastructure and manifests itself in the form of dilated or reduced
delays.

7 RELATEDWORK
Internet Latency Measurement. Internet latency based on RTT measurements has been the
subject of many prior research studies including [11, 21, 29, 72, 97]. The utility of path latency
measurements in research and in daily operations has led to the deployment of several specialized
infrastructures (e.g., see [5, 22, 42, 74] and also [14]). They are used to conduct on-going, ping-style

7To construct shortest path distances on the manifold, we employ an algorithm based on heat propagation – see [24] for
details.
8A more detailed description of the technique is provided in Appendix C.2) (denoted 𝑑RD) and along the great circle path
(denoted 𝑑GCD) at threshold 90 (when Asia-Pacific cluster arises).
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Cloud City A City B Latency 𝛿GCD 𝛿Geo 𝑑RD 𝑑GCD
Sydney Tokyo 104.6 -28.5 -1.2 10184 8147
Ashburn Sao Paulo 118.3 -12.2 3.0 9580 7664
Dublin Tokyo 202.0 39.0 -11.3 11980 9584
Paris Singapore 155.5 -27.0 -4.0 13415 10732

Amazon Mumbai Paris 104 -14.5 -6.0 8761 7009
Osaka London 221 55.4 5.7 12205 9499
Mumbai London 333 211.4 42.3 9247 7191
Las Vegas Sydney 142 -74.6 -48.7 16578 14320
Seoul Jakarta 106 14.5 40.2 6421 5293

Google Portland Frankfurt 124 -22.3 -42.4 9872 7834
Sydney Tokyo 106.7 -26.3 -0.1 10184 8147
Ashburn Sao Paulo 117.8 -12.4 10.1 9580 7664
Dublin Tokyo 233.5 70.5 10.2 11980 9584
Seoul Amsterdam 220.5 75.7 25.6 11263 8516

Azure Singapore Des-Moines 194.2 -59.5 -56.8 17872 14926
Table 1. Geodesic and GCD prediction of the latency for cities of interest and comparison between routing
and geodesic distance. A negative value indicates that the predictor is underestimating the latency.

measurements between distributed sources and destinations and in most cases, they make their
data openly available.
Network Embeddings. The challenges of scale and coverage in active probe-based latency

measurement led to the development of methods for estimating distances between arbitrary nodes
in the Internet using information from sets of landmarks (e.g., [33, 36, 41, 63, 69, 82, 90]). These
methods are referred to as network embeddings; that is, the mapping of node locations into a
low-dimensional Euclidian space. Our work contrasts with these prior studies by highlighting
the relationship between latency and the underlying physical infrastructure via curvature. While
this relationship also includes aspects of the infrastructure’s geographic location, in contrast to
much prior work on IP geolocation (e.g., see [30, 31, 37, 40, 83, 91]), our focus is on understanding
connectivity between nodes.

Internet Topology. Accurate maps of the Internet’s topological structure serve many purposes,
and many prior studies have utilized traceroute-like tools or BGP data to map aspects such
as logical connectivity between routers [16, 55], POPs [78, 81], Autonomous Systems [56, 96], or
interconnections between networks [57]. Other studies have been concerned with creating accurate
maps of physical Internet infrastructure (e.g., see [3, 27]). While our goal of providing a useful
perspective on Internet connectivity is similar to these studies, our curvature-based inference
method is entirely different. At the same time, our work is informed by the recent study by Singla
et al. [79] that identifies significant differences between physical distances between nodes and
latency measurements.
Private Network Infrastructure. One of the early studies that characterized intra-cloud

(private) and end host (public) network measurements for large cloud providers was conducted by
Li et al. in [53]. Their results show highly stable TCP throughput rates between data centers for cloud
providers but more variability in wide area latencies. A more recent report by ThousandEyes [51]
provides details of a measurement study that characterizes network performance for Azure, Google
and AWS from both intra-cloud and end user perspectives. Using measurements from VMs in data
centers similar to ours, the key findings in that study include stable, high performance connectivity
between data centers, variable performance from an end user perspective, and that the differences
in global network layout can lead to degraded performance in certain instances. These and similar
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recent studies (e.g., [12, 43, 95]) illustrate the importance of understanding the role of private
networks in the Internet.

Manifolds and Curvature: The study of topological spaces including curvature and manifolds
is an active area of mathematical research. Existing work in manifold learning aims to infer the
manifold on which a set of data points lies by means of local neighborhood relations, attempting
to preserve local distance while capturing global features. Prior work that has studied Internet
delay space from this point of view includes [8], which focuses on inference of fractal dimension.
The reported findings provide insights into the dimensionality of delay spaces, how they emerge
from the data and how coordinate systems can be improved. In contrast, the authors in [68]
apply manifold learning techniques to visualize changes in network traffic and as a means for
anomaly detection. Moving beyond Euclidean spaces, the authors in [76] identify curvature as a
characteristic of Internet paths and use this observation to generate a hyperbolic embedding that
provides improved distance estimates. While each of the previous papers uses geometric views,
none creates a complex manifold embedded in a higher dimensional space as we do this in this
paper.
Prior attempts to infer complex manifolds from delay measurement alone have been highly

abstract. The authors in [23] investigate the property of the latency space as a specific version of a
distance realization problem and explore some latent statistical properties of the Internet. However
they do not apply the approach to realistic measurements nor do they consider the implications of
the resulting manifold shape. The authors in [10] also consider end-to-end measurements to infer
structural features of the underlying topology but their effort is theoretical in nature. Other related
works focus on the theoretical conditions required to be able to reconstruct such manifolds, for
example [34, 62].

Ricci curvature has recently been applied to the analysis of networks. For example, the authors
in [65] characterize several router- and AS-level data sets using Ricci curvature, and [87] leveraged
Ricci curvature more broadly to detect the coarse geometry of networks. Our effort differs in the
application of Ricci curvature to uncover specific topological features of the network using only
delay and location.

8 SUMMARY AND OUTLOOK
This paper is motivated by recent developments that make it more onerous for third-party re-
searchers to obtain data or perform experiments on connectivity of the increasingly important
private infrastructures of the large cloud and content providers. The main contribution of this work
is a newly proposed methodology for elucidating connectivity in known or inaccessible network
infrastructures by leveraging light-weight and readily available latency measurements and applying
advanced mathematical techniques from Riemannian geometry. Specifically, our approach is based
on the application of Ricci curvature and its extension to discrete graphs known as Ollivier-Ricci
curvature, which allows for a sophisticated encoding of a composite view of underlying physical
infrastructure and deployed routing configurations into weighted graph representations of a set of
measured network latencies. We apply our curvature-based network analysis the private connec-
tivity fabric of large cloud providers, illustrate its ability to expose critical aspects of connectivity,
and present examples of its practical relevance.
The graph models generated from a collection of simple pairwise latency measurements be-

tween nodes in a network (typically with unknown physical infrastructure) allow for a geometric
representation as a complex topological space in the form of an idealized smooth manifold. Such
manifolds offer unprecedented opportunities for characterizing a network’s underlay that resulted
in the measured latencies in the first place. Unraveling the presumed metric space structure of
this complex geometric object and leveraging it to identify pertinent and otherwise hard-to-detect
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features of a given network’s connectivity fabric and exploiting them to the fullest extent in practice
looms as a promising avenue for future work.

In particular, given the availability of large corpora of open-sourced RTT measurement datasets
(e.g. RIPE Atlas’ latest longitudinal datasets of minRTT measurements [7]), a natural application
of our methodology is to try to uncover similar manifold views for the provider-based best-effort
(“public") Internet. However, extending our technique to adequately deal with the public Internet
poses challenges. Indeed, since interdomain routing based on the Border Gateway Protocol (BGP)
is latency agnostic (see [12] and references therein), any extension will necessarily have to account
for the complexities caused by a BGP-based Internet routing fabric.
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APPENDIX
A REPRODUCIBILITY
All datasets and source code described in this paper can be found in https://github.com/Burdantes/
Curvature-based-Analysis-of-Network-Connectivity-in-Private-Backbone-Infrastructures.

B DATA CENTER LOCATIONS
Table 2 lists the locations of the data centers that were considered in our study of private Internet
infrastructure. The table indicates the city that is associated with data center deployment, but does
not indicate where there are multiple data centers in a single location.

C ALTERNATIVE GRAPH AND DISTANCE METRICS
C.1 Ricci Curvature vs. Standard Graph Metrics:
Edge betweenness and the cut metric are two standard metrics used to characterize edge
importance in a graph (for details, see [25, 70] for betweenness and [20] for the cut metric). A key
strength of our technique lies in its ability to focus on a given edge and track the evolution of
the curvature of that edge as the threshold increases, resulting in changes to the graph. In this
section, we argue that the cut metric and edge betweenness are less effective for this task, because
both metrics can be highly unstable and sensitive to the addition or deletion of specific edges.
Edge curvature is a more robust alternative, as it focuses solely on local changes. Moreover, Ricci
curvature is able to uncover the same features that edge betweenness and the cut metric can identify.

Cut Metric: For a connected graph 𝐺 = (𝑉 , 𝐸), a cut 𝑆 between two disjoint subsets of vertices
𝐴 and 𝐵 is a collection of edges 𝑠 such that in 𝐺cut := (𝑉 , 𝐸 − 𝑆), there is no path 𝑎 ↦→ 𝑏 for any
two nodes 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵. A cut is said to be minimal when the cardinality of S is minimal.
This cardinality is then called the minimal cut number 𝑐 . The minimal cut metric is relative to
the choice of two disjoint sets 𝐴 and 𝐵. When selecting 𝐴 and 𝐵 as two different continents, for
example, Ricci curvature and the minimal cut number are closely related. Specifically, negative Ricci
curvature induces a small minimal cut number since there is very little redundancy in connecting
the neighborhoods. Selecting 𝐴 and 𝐵 in the same continent, for example, we note an inverse
trend with positive Ricci curvature corresponding to a large minimal cut number as there exist
many redundancies to link the different sets 𝐴 and 𝐵. Furthermore, the cut metric focuses on
connected components and the existence of any path, which in turn allows for convoluted paths to
be considered.
Betweenness centrality: The betweenness centrality of an edge 𝑒 , written as 𝛽 (𝑒), is defined

by the expression:

𝛽 (𝑒) =
∑︁

𝑠,𝑡 ∈𝑉 ,𝑠≠𝑡

𝜎𝑠𝑡 (𝑒)
𝜎𝑠𝑡

where 𝜎𝑠𝑡 is the total number of shortest paths from node 𝑠 to node 𝑡 and 𝜎𝑠𝑡 (𝑒) is the number of
those paths that cross 𝑒 . While both Ricci curvature and betweenness centrality are metrics defined
on shortest paths, the betweenness metric of a single edge is a function of all the shortest paths in
the graph; in contrast, Ricci curvature only considers paths in the neighborhood of the edge.

First, the important thresholds identified by betweenness centrality correspond (i.e. identifying
highly positive betweenesss centrality edges relate back to negative Ricci curvature) to those
established by the Ricci curvature. This means that had our analysis been based on using between-
ness centrality, it would have yielded similar conclusions to our findings based on edge curvature.
However, it is important to point out that the impact of the addition of an edge to the betweenness
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Table 2. Locations of hosts used to collect minRTT data for our study.

Abbrev Location AWS Azure GCP Public
AM Amsterdam, Netherlands x x
AS Ashburn, Virginia x x x
BA Bahrain x x
BE Beijing, China x
BO Boydton, Virginia x
BR Brussels, Belgium x
CA California x
CB Council Bluffs, Iowa x
CH Charlotte, NC x
CO Columbus, Ohio x
DM Des Moines, Iowa x
DO Doha, Qatar x
DU Dublin, Ireland x x x
FR Frankfurt, Germany x x x
HA Hamina, Finland x
HH Het Hogeland, Netherlands x
HK Hong Kong, China x x x
IA Iowa x
JA Jakarta, Indonesia x x
JO Johannesburg, South Africa x x
KL Kuala Lumpur, Malaysia x
KY Kymenlaakso, Finland x
LA Los Angeles, California x x
LO London, Great Britain x x x x
LV Las Vegas, Nevada x
MC Moncks Corner, SC x
MO Montreal, Canada x x
MU Mumbai, India x x x x
NC North Carolina x
NH North Holland x
NI Ningxia, China x x
NO Northlake, Illinois x
OH Ohio x
OR Oregon x
OS Osaka, Japan x x x
PA Paris, France x x
PO Portland, Oregon x x
QU Quebec, Canada x
QY Quincy, Washington (state) x
SC South Carolina x
SE Seoul, South Korea x x x x
SF San Francisco, California x x
SG Saint-Ghislain, Belgium x
SI Singapore, Singapore x x x x
SL Salt Lake City, Utah x
SM Stockholm, Sweden x x
SP São Paulo, Brazil x x x x
SY Sydney, Australia x x x x
TA Taipei, Taiwan x x
TK Tokyo, Japan x x x x
TO Toronto, Canada x x
UT Utah x
VA Virginia x
WA Washington (state) x
ZU Zürich, Switzerland x x
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score of another edge cannot be upper bounded by a constant bound. Adding a single edge can
shift a large portion of the shortest paths from crossing one edge to another one, suggesting
that betweenness centrality might be subject to a large increase or decrease of its value. In light
of this lack of stability and of the noisy character of our measurements (e.g., erroneous latency
measurements, wrong geolocations...) the betweenness centrality metric can be more sensitive to
noise and outliers. On the other hand, the Ricci curvature of a given edge is necessarily increasing
as the threshold increases. This increase is bounded by a function of the number of edges that are
added in a given neighborhood. Below, we provide a proof of our assertion about the stability of the
Ricci curvature, more specifically, we show that the total change in Ricci curvature of adding any
edge is at most 6. This upper bound is not sharp and we believe that there is room for improvement.
Before doing so, we start from the standard notion of adversarial perturbation in robust

statistics (see [45] for further details on this notion) to quantify the maximum effect on the
centrality measure of a single edge addition or removal. The breakdown point of an estimator
is the proportion of arbitrarily large observations the estimator can sustain before giving an
arbitrarily large result. In the context of this paper, we use the same idea: the estimator is the Ricci
curvature 𝜅 of an edge {𝑥,𝑦}, where “observations" correspond to the edges adjacent to 𝑥 or 𝑦. An
adversarial new edge has bounded, local effect on the Ollivier-Ricci curvature in an unweighted
graph. In particular, a new edge between nodes 𝑥 and 𝑧 can only affect the Ricci curvature of edges
connected to neighbors of 𝑥 and 𝑧. We study a fixed edge between nodes 𝑥 and 𝑦 and consider the
three different cases of nearby edge additions that could affect 𝜅 (𝑥,𝑦). We denote 𝜅 ′ as the Ricci
curvature after the edge addition.

A first localized bound: Consider a graph with two nodes 𝑥,𝑦 connected with an edge between
them. In the general scenario, 𝑥 (respectively 𝑦) has 𝑛 (respectively𝑚) neighbors that are strongly
unshared with 𝑦 (𝑥 ), and there are ℓ weakly unshared or overlapping neighbors between 𝑥,𝑦. (See
figure 7 for illustration). We compute the optimal transport between 𝑥,𝑦:

Fig. 7. Illustration of our taxonomy of the different neighbors

The optimal transport between 𝑥,𝑦 with the distribution as defined in 3, where 𝑑𝑥 = 𝑛 + ℓ + 1
and 𝑑𝑦 =𝑚 + ℓ + 1, is
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𝑊 (𝑥,𝑦) = 𝑛

𝑑𝑥
+ 𝑚

𝑑𝑦
+

ℓ∑︁
𝑖=1

min
(
1
𝑑𝑦
,
1
𝑑𝑥

)
min(𝑘𝑖 , 3) +

ℓ∑︁
𝑖=1

���� 1𝑑𝑦 − 1
𝑑𝑥

����min(𝑘𝑖 + 1, 2)

+ 𝑛 + 1
𝑑𝑥

− 1
𝑑𝑦

− 111{𝑛>𝑚} · ℓ
(
1
𝑑𝑦

− 1
𝑑𝑥

)
.

Let 𝑥, 𝑧 be the new edge added. We consider three cases: either 𝑧 is strongly unshared with
𝑦 (case 1), 𝑧 is weakly shared with𝑦 (case 2) or 𝑧 is added between neighbors of 𝑥,𝑦 (directly shared).

Case 1: this is equivalent to letting 𝑛 ↦→ 𝑛 + 1. By extension, we also have 𝑑𝑥 ↦→ 𝑑𝑥 + 1 in the
above equation. We get𝑊 ′ −𝑊 to be

(𝑊 ′ −𝑊 ) (𝑥,𝑦) = 𝑛 + 1
𝑑𝑥 + 1

− 𝑛

𝑑𝑥
(2)

+ 111𝑚≤𝑛

(
1
𝑑𝑥

− 1
𝑑𝑥 + 1

)
·

ℓ∑︁
𝑖=1

min(𝑘𝑖 , 3) (3)

+
ℓ∑︁

𝑖=1

[(���� 1𝑑𝑦 − 1
𝑑𝑥 + 1

���� − ���� 1𝑑𝑦 − 1
𝑑𝑥

����) min(𝑘𝑖 + 1, 2)
]

(4)

+ 𝑛 + 2
𝑑𝑥 + 1

− 𝑛 + 1
𝑑𝑥

(5)

− 111{𝑛+1>𝑚} · ℓ
(
1
𝑑𝑦

− 1
𝑑𝑥 + 1

)
− 111{𝑛>𝑚} · ℓ

(
1
𝑑𝑦

− 1
𝑑𝑥

)
. (6)

We consider each of these terms separately and determine bounds individually over each term.
We will consider the case where ℓ ≥ 1 since some terms depend on ℓ and become trivial when
ℓ = 0. Since all the terms are non-increasing with respect to 𝑑𝑥 , we can simply use ℓ = 1 and 𝑑𝑥 = 3
to get the best nontrivial bounds. The bounds for ℓ ≥ 1 are at least as good as the ones for ℓ = 0.

In particular, we have that when ℓ ≥ 1, 𝑑𝑥 ≥ 2,

(2) = ℓ + 2
𝑑𝑥 (𝑑𝑥 + 1) ∈ (0, 1/2]

(5) = ℓ + 1
𝑑𝑥 (𝑑𝑥 + 1) ∈ (0, 1/3]

where the upper bounds are achieved when 𝑑𝑥 = 1, the minimum allowable number of neighbors.

Also note that

(∗) =
���� 1𝑑𝑦 − 1

𝑑𝑥 + 1

���� − ���� 1𝑑𝑦 − 1
𝑑𝑥

���� = {
1
𝑑𝑥

− 1
𝑑𝑥+1 if 𝑛 ≥ 𝑚

1
𝑑𝑥+1 −

1
𝑑𝑥

if 𝑛 < 𝑚

So

(4) =
ℓ∑︁

𝑖=1
(∗)min(𝑘 𝑗 + 1, 2) ≤ 2ℓ (∗) ∈

{
(0, 1/6] if 𝑛 ≥ 𝑚
[−1/6, 0) if 𝑛 < 𝑚.
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Furthermore,

(3) ≤
{(

1
𝑑𝑥

− 1
𝑑𝑥+1

)
3ℓ if 𝑛 ≥ 𝑚

0 if 𝑛 < 𝑚
∈
{
(0, 1/2] if 𝑛 ≥ 𝑚
{0} if 𝑛 < 𝑚

Finally,

(6) =


−ℓ

(
1
𝑑𝑥

− 1
𝑑𝑥+1

)
if 𝑛 =𝑚

−ℓ
(

1
𝑑𝑥+1 −

1
𝑑𝑥

)
if 𝑛 > 𝑚

0 if 𝑛 + 1 < 𝑚

∈


[−1/6, 0) if 𝑛 =𝑚

(0, 1/6] if 𝑛 > 𝑚

{0} if 𝑛 < 𝑚

Combining all these terms, we obtain

𝑊 ′ −𝑊 ∈


(0, 5/3] if 𝑛 > 𝑚

(−1/6, 3/2) if 𝑛 =𝑚

(−1/6, 5/6] if 𝑛 < 𝑚.

(7)

Bounds on 𝜅 ′ − 𝜅 follow easily from here, since 𝑑 (𝑥,𝑦) = 1 regardless.

(𝜅 ′ − 𝜅) (𝑥,𝑦) = −(𝑊 ′ −𝑊 ) (𝑥,𝑦).
Case 2: 𝑧 is weakly unshared or shared with 𝑦. The optimal adversarial placement (decrease𝑊

the most) is to add an edge (𝑥, 𝑐 𝑗 ) where 𝑗 = argmax𝑖 (𝐾𝑖 ). Then
(𝑊 ′ −𝑊 ) (𝑥,𝑦) = min(1/𝑑𝑥 , 1/𝑑𝑦) (min(𝑘 𝑗 , 2) −min(𝑘 𝑗 , 3))

+ 111𝑛>𝑚
���� 1𝑑𝑦 − 1

𝑑𝑥

���� (min(𝑘 𝑗 + 1, 1) −min(𝑘 𝑗 + 1, 2)
)
.

≤ −min(1/𝑑𝑥 , 1/𝑑𝑦) −
���� 1𝑑𝑦 − 1

𝑑𝑥

����
= − 1

𝑑𝑥
−
(
1
𝑑𝑦

− 1
𝑑𝑥

)
= − 1

𝑑𝑦

where the upper bound is reached only if 𝑘 𝑗 ≥ 3, and 𝑛 > 𝑚, which gives the second equality.
Furthermore, 𝑑𝑦 ≥ 2 since ℓ ≥ 1 (since 𝑘 𝑗 ≥ 1 for some 𝑗 ). So

(𝑊 ′ −𝑊 ) (𝑥,𝑦) ∈
[
−1
2
, 0
]
.

Case 3: an edge is added between neighbors of 𝑥,𝑦. The worst case is when the neighbor of 𝑥 is
strongly unshared with 𝑦, and vice versa. The difference here is

(𝑊 ′ −𝑊 ) (𝑥,𝑦) =


−2 + 2/𝑑𝑥 + 2/𝑑𝑦 if 𝑛−1

𝑛+1 > 1
𝑚+1

−2min(1/𝑑𝑦, 1/𝑑𝑥) if 𝑛−1
𝑛+1 < 1

𝑚+1
2 − 3/𝑑𝑥 if 𝑛−1

𝑛+1 = 1
𝑚+1

Bounds on global distribution
Cases 1 and 2 above cover the possible change (𝑊 ′−𝑊 ) (𝑥,𝑦) and thus (𝜅 ′−𝜅) (𝑥,𝑦) after a new

edge is introduced from 𝑥 to any other node. From this, we can bound the effect of perturbations of
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a graph (addition/removal of edges) on the neighboring edges. Case 3 covers the possible change in
(𝜅 ′ − 𝜅) (𝑥,𝑦) when a new edge is added to neighbors of 𝑥 .
Also, if a new edge were introduced between non-neighboring nodes along the path 𝑏𝑖 , . . . , 𝑐𝑖 ,

there would be no effect on𝑊 (𝑥,𝑦) since 𝑑 (𝑏𝑖 , 𝑐𝑖 ) ≤ 3. In general, if a new edge is added to a node
not neighboring either 𝑥 or 𝑦, there will be no effect on 𝑅𝑖 (𝑥,𝑦).

With this information, we can bound the effect on the graph’s overall distribution of 𝜅 resulting
from a single edge addition. First, only the edges adjacent to the new edge can be affected, with
bounds given as above. In particular, the total effect of each term is bounded:

𝑑𝑥 · ((2) + (5)) = 2ℓ + 3
𝑑𝑥 + 1

∈ (0, 2] (8)

For 𝑑𝑥 ≥ 2,

𝑑𝑥

(
1
𝑑𝑥

− 1
𝑑𝑥 + 1

)
∈ (0, 1/3]

leading to get

𝑑𝑥 (4) ∈
{
(0, 1/3] if 𝑛 ≥ 𝑚
[−1/3, 0) if 𝑛 < 𝑚

(9)

and

𝑑𝑥 (3) ≤
{

3ℓ
𝑑𝑥+1 if 𝑛 ≥ 𝑚
0 if 𝑛 < 𝑚

∈
{
(0, 3) if 𝑛 ≥ 𝑚
{0} if 𝑛 < 𝑚

(10)

So the total change in Ricci curvature, graph-wide, is bounded by�����∑︁
𝑒∈𝐸

(𝜅 ′ − 𝜅) (𝑒)
����� ≤ 5 + 2/3 (11)

where the sum over edges 𝑒 ∈ 𝐸 is only over the neighboring edges to the new node. By
extension, the overall distribution is unlikely to change, specifically if there is a large number of
edges.

C.2 Routing distance
We define the physical path distance or routing distance between nodes as the sum of the lengths of
individual fibers that make up the shortest (symmetric) physical path connecting the source and
destination RIPE Atlas anchors and VMs in datacenters used in our latency measurements. Although
we cannot know the exact physical paths traversed by our latency probes, routing decisions cannot
define a path shorter than what is feasible according to the existing physical Internet infrastructure
identified in our data sources. To obtain consistent estimates of end-to-end physical path distances,
we utilize four different databases of physical infrastructure deployments [2, 3, 6, 27] and consider
three different cases.
First, noting that a ping RTT of 0.5 ms corresponds to nodes within about 50km of each other,

we consider all nodes within a 50km radius (i.e., within the same metropolitan area) as having
insignificant latency differences and therefore the same physical path distance to nodes outside
of this area. Second, to measure the path distance between nodes in different metropolitan areas
on the same land mass (e.g., all nodes in North America), we identify all possible fiber paths
from our infrastructure databases that connect metro areas, use a geographic information system
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(ArcGIS [32]) to measure the distance of each possible fiber path between the centers of the
metropolitan areas, and then choose the path with the shortest distance. Third, to measure the
routing distance between nodes separated by an ocean, we identify the undersea cables connecting
those continents, reference their lengths in the Infrapedia database [2], and select the cable with
the shortest length. We then determine the nearest node to each landing location, measure the
distance from the node to the landing location on both sides of the cable using the shortest path
methodology described above, and then sum these three distances to estimate the path distance
between the two nodes.
Experimenting with routing-based vs GCD-based distance metrics (not shown here) allows

us to conclude that to obtain an accurate coarse-grained view of the structure of the physical
underpinning of a provider network, the use of the GCD metric in conjunction with the Ricci
curvature as mathematical tool is highly effective and conclusive. The use of more realistic metrics
such as routing distance comes in handy to further confirm already inferred structure or zoom in
on a given region to infer more fine-grained structure but requires a much higher overhead.
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