In Proceedings of the 1998 ACM SIGMETRICS International Conference
on Measurement and Modeling of Computer Systems, pp. 151-160, July 1998

Generating Representative Web Workloads
for Network and Server Performance Evaluation

Paul Barford and Mark Crovella
Computer Science Department
Boston University
111 Cummington St, Boston, MA 02215
{barford,crovella}@cs.bu.edu

Abstract

One role for workload generation is as a means for un-
derstanding how servers and networks respond to vari-
ation in load. This enables management and capacity
planning based on current and projected usage. This
paper applies a number of observations of Web server
usage to create a realistic Web workload generation tool
which mimics a set of real users accessing a server. The
tool, called SURGE (Scalable URL Reference Generator)
generates references matching empirical measurements
of 1) server file size distribution; 2) request size distribu-
tion; 3) relative file popularity; 4) embedded file refer-
ences; 5) temporal locality of reference; and 6) idle peri-
ods of individual users. This paper reviews the essential
elements required in the generation of a representative
Web workload. It also addresses the technical challenges
to satisfying this large set of simultaneous constraints
on the properties of the reference stream, the solutions
we adopted, and their associated accuracy. Finally, we
present evidence that SURGE exercises servers in a man-
ner significantly different from other Web server bench-
marlks.

1 Introduction

With the growing importance of the Web as an Inter-
net application comes an increasing need to model and
reproduce typical Web workloads accurately. In par-
ticular, the ability to generate a stream of HTTP re-
quests that mimics a population of real users is impor-
tant for performance evaluation and capacity planning
of servers, proxies, and networks.

Generating representative Web reference traces is
difficult because Web workloads have a number of un-
usual features. First, empirical studies of operating

1Supported in part by NSF Grants CCR-9501822 and CCR-
9706685 and by Hewlett-Packard Laboratories.

Web servers have shown that they experience highly
variable demands, which is exhibited as variability in
CPU loads and number of open connections (e.g., see
[15]). This indicates that it is important to pay atten-
tion to those properties of Web reference streams that
have been shown to exhibit high variability, such as re-
quest interarrivals [9, 11] and file sizes [6, 2].

The second unusual feature of Web workloads is that
network traffic due to Web requests can be self-similar—
i.e, traffic can show significant variability over a wide
range of scales. Self-similarity in traffic has been shown
to have a significant negative impact on network perfor-
mance [10, 17], so it is an important feature to capture
in a synthethic workload.

To capture these properties in a workload generator,
one of two approaches could be used: a trace-based ap-
proach or an analytic approach. Trace-based workload
generation uses prerecorded records of past workloads
and either samples or replays traces to generate work-
loads. In contrast, analytic workload generation starts
with mathematical models for various workload charac-
teristics and then generates outputs that adhere to the
models.

These two approaches each have strengths and weak-
nesses. The trace-based approach has the advantage
that it is easy to implement, and mimics activity of a
known system. However, it treats the workload as a
“black box.” As a result, insight into the causes of sys-
tem behavior is hard to obtain. Furthermore, it can be
hard to adjust the workload to imitate future conditions
or varying demands. Analytic workloads do not have
these drawbacks, but they can be challenging to con-
struct for at least three reasons. First, it is necessary to
identify those characteristics of the workloads which are
important to model. Second, the chosen characteristics
must be empirically measured. Third, it can be diffi-
cult to create a single output workload that accurately
exhibits a large number of different characteristics.

In this paper we describe methods we have devel-
oped for generating analytically-based Web reference
streams. Our goal is to imitate closely a stream of
HTTP requests originating from a fixed population of
Web users. These methods are embodied in a tool called
SURGE (Scalable URL Reference Generator). The meth-
ods used in SURGE have the advantages that come with
the analytic approach. In particular, the models used
in SURGE are explicit and so can be examined directly

by the user. In addition, SURGE’s models can be varied
to explore expected future demands or other alternative
conditions.

To construct an analytic Web workload, it is neces-
sary to address the three challenges described above. In
this paper we show how each challenge was addressed.
First, we describe the set of characteristics of Web ref-
erence streams we chose to model, and explain why we
believe that this set is important. Second, we describe
the results of new measurements of the Web that were
needed to populate the SURGE models. Third, we de-
scribe the issues involved in incorporating these models
into a single output reference stream, and how we re-
solved those issues.

The final result, SURGE, shows a number of proper-
ties that are quite different from a common Web work-
load generator: SPECweb96 [5]. We configured SURGE
and SPECweb96 to exercise a server at equal rates mea-
sured in terms of bytes transferred per second. Under
these conditions, SURGE places much higher demands
on the server’s CPU, and the typical number of open
connections on the server is much higher.

In addition we show that in an another important
respect, the workload generated by SURGE is quite dif-
ferent from that of typical Web workload generators. In
particular, the traffic generated by SURGE shows self-
similar properties; we show that this is not generally
true for a typical alternative Web workload generator
(SPECweb96) when run at high loads. Because SURGE’s
analytic approach makes its models explicit, we can
examine the causes of self-similarity in SURGE traffic.
Based on this insight we conclude that most Web work-
load generators proposed to date probably do not gen-
erate self-similar traffic at high loads.

2 Web Workload Characteristics

Our goal in developing SURGE is to be able to exercise
servers and networks in a manner representative of the
Web. In particular, for servers we are interested in the
behavior of the network stack and filesystem, and their
associated buffering subsystems. In the case of both
networks and servers, we are also interested in the effects
of high variability in the workload.

These motivations drove the choice of particular Web
workload characteristics used in SURGE. These charac-
teristics can be divided into two main categories. The
first category is concerned with the idea we call user
equivalents. The second category is the set of distribu-
tional models.

User Equivalents. The idea behind user equivalents is
that the workload generated by SURGE should roughly
correspond to that generated by a population of some
known number of users. Thus, the intensity of service
demand generated by SURGE can be measured in user
equivalents (UEs).

A user equivalent is defined as a single process in an
endless loop that alternates between making requests for
Web files, and lying idle. Both the Web file requests and
the idle times must exhibit the distributional and cor-
relational properties that are characteristic of real Web
users. Each UE is therefore an ON/OFF process; we

PageURL Embedded Item URL Active OFF

~N
URL 1 |OFFf URL 2 | OFF |URL 3 OFF
N
; . Time
 E— ON Object —— InactiveOFF —|
User Requests Page Requested Page Received ~ User Requests Next Page

Figure 1: ON/OFF Model Used in SURGE (HTTP 0.9;
one TCP connection at a time).

will refer to periods during which files are being trans-
ferred as ON times, and idle times as OFF times. UEs
have a straightforward implementation as independent
threads or processes.

Basing the workload model on user equivalents has
important effects on system performance. Since each
UE has significant idle periods, a UE is a very bursty
process. Each UE exhibits long periods of activity fol-
lowed by long periods of inactivity.

The UE model is similar in some respects to the
approach proposed in [13] but quite different from ap-
proaches typically taken in other Web workload gener-
ators. Most other workload generators send requests
without preserving consistent properties of OFF times
[5, 16, 20]. The general approach used in these work-
load generators is simply to make requests for files from
a server as quickly as possible. We will show in Sec-
tion 5 that ignoring OFF times destroys self-similarity
in the resulting traffic at high loads.

Specifying UE behavior during the ON period re-
quires understanding some of the details of Web organi-
zation. In particular, Web files may include by reference
other files; these files are required to display the result
properly. (Typically these included files might supply
images or graphics.) Thus the user’s request for a sin-
gle Web file often results in the transfer of multiple files
from the Web server. We call a Web file along with all
the files that also must be transferred to display it a
Web object.

The particular details of how components of a Web
object are transferred depends on the browser used and
the version of the HTTP protocol employed. HTTP
0.9/1.0 uses a separate TCP connection for each file,
while HTTP 1.1 allows a single TCP connection to be
used for multiple files. In addition, some HTTP 0.9/1.0
browsers open multiple simultaneous TCP connections
when transferring components of a Web object. For
the experiments reported here, SURGE was configured
to use HTTP 0.9 and multiple TCP connections were
not used; however modifying SURGE to use other styles
is straightforward.

This style of transferring Web objects means that
there are two kinds of OFF time, as shown in Figure 1.
Inactive OFF time corresponds to the time between
transfers of Web objects; this is user “think time.” Ac-
tive OFF time corresponds to the time between transfer
of components of a single Web object; it corresponds to
the processing time spent by the browser parsing Web
files and preparing to start new TCP connections.

Distributional Models. Having described the UE basis
for the design of SURGE, we describe the set of proba-
bility distributions needed by each UE.

An important feature of some of the distributions
we will consider is that they exhibit heavy tails. We say
here that a heavy-tailed distribution is one whose upper
tail declines like a power law, i.e.,

PIX>z]~2™" 0<a<2
where a(z) ~ b(x) means lim,_ o a(z)/b(x) = ¢ for
some constant c. Random variables whose distributions
are heavy tailed exhibit very high variability; in fact,
their variance is infinite, and if @ < 1, their mean is
also infinite.

To fulfill SURGE’s goals, its output must adhere to
the following six statistical properties of Web reference
streams.

1) File Sizes. In order to exercise the server’s
filesystem properly, it is important that the collection
of files stored on the server agree in distribution with
empirical measurements. As noted in [6, 2], these distri-
butions can be heavy-tailed, meaning that the server’s
filesystem must deal with highly variable file sizes.

2) Request Sizes. In order to exercise the network
properly, the set of files transferred should match em-
pirical size measurements. We call this set the requests.
The distribution of requests can be quite different from
the distribution of files because requests can result in
any individual file being transferred multiple times, or
not at all. Again, empirical measurements suggest that
the set of request sizes can show heavy tails [6].

Note that the difference between the sets we call file
sizes and request sizes corresponds to differences in dis-
tribution between what is stored in the filesystem of the
server and what is transferred over the network from the
server.

3) Popularity. A third property of the workload,
related to the previous two, is the relative number of re-
quests made to individual files on the server. Popularity
measures the distribution of requests on a per-file basis.
Note that even when the previous two properties are
fixed (distributions of file sizes and request sizes) there
still can be considerable flexibility in how requests are
distributed among individual files. The distribution of
popularity has a strong effect on the behavior of caches
(e.g., buffer caches in the file system), since popular files
will typically tend to remain in caches.

Popularity distribution for files on Web servers has
been shown to commonly follow Zipf’s Law [22, 1, 7].
Zipf’s Law states that if files are ordered from most
popular to least popular, then the number of references
to a file (P) tends to be inversely proportional to its
rank (r). That is:

P=krt

for some positive constant k. This property is surpris-
ingly ubiquitous and empirical measurements of the ex-
ponent are often quite close to —1, although the reasons
behind this effect in Web workloads are unclear. This
distribution of references among files means that some
files are extremely popular, while most files receive rel-
atively few references.

4) Embedded References. In order to capture
the structure of Web objects, it is important to char-
acterize the number of embedded references in a Web

object. This is done by characterizing the distribu-
tion of the number of embedded references in Web files.
In the configuration of SURGE used in this paper, the
number of embedded references is important because
OFF times between embedded references (Active OFF
times) are typically short, while OFF times between
Web objects themselves (Inactive OFF times) are typi-
cally much longer. Previous work such as [4] has not at-
tempted to develop a distributional model for the num-
ber of embedded references typically contained in a Web
object.

5) Temporal Locality. Temporal locality in Web
workloads refers to the likelihood that, once a file has
been requested, it will be requested again in the near
future. Accurate characterization of temporal locality
is important because caching effectiveness can be signif-
icantly increased when temporal locality is present.

One way to measure temporal locality is using the
notion of stack distance. Given a sequence of requests,
its corresponding stack distance sequence can be gen-
erated as follows. Assume that the files are stored in
a push-down stack. Considering each request in order,
move the requested file to the top of the stack, pushing
other files down. The depth in the stack at which each
requested file is found is the request’s stack distance
[1, 14].

Stack distance serves to capture temporal locality
because small stack distances correspond to requests for
the same file that occur close to each other in the refer-
ence stream. Note that, assuming the initial contents of
the stack are known, the stack distance sequence con-
tains information equivalent to the request sequence;
each can be obtained from the other.

Thus the distribution of stack distances for a Web
request sequence serves as a measure of the temporal
locality present in the sequence. Typical distributions
for request sequences arriving at Web servers have been
studied in [1]; results show that these are well mod-
eled using lognormal distributions. Since the lognormal
distribution has most of its mass concentrated at small
values, this is indicative that significant temporal local-
ity is often present in Web request sequences.

6) OFF Times. As described in the previous sec-
tion, accurate modeling of inactive OFF times is neces-
sary to capture the bursty nature of an individual Web
user’s requests. Proper characterization of active OFF
times is necessary to replicate the transfer of Web ob-
jects. Previous work has measured OFF times [6] and
the related question of interarrival times of HTTP re-
quests at a server [9].

3 Obstacles to Creating Representative Web Work-
loads

Two basic problems arise in building a workload gener-
ator to meet the requirements described in the previous
section. First, models for each of the six distributions
are required, and second, methods for combining those
distributions into a single output stream are required.

3.1 Distributional Model Obstacles

To populate our set of distributional models fully, three
new distributions were needed.

File Sizes on the server were identified as a key
characteristic of Web workloads in Section 2. File sizes
on servers were studied in [6] but that work concentrated
only on the tail of the distribution. For SURGE we need a
model for the distribution that is accurate for the body
as well as the tail.

Active OFF Times have not been specifically ad-
dressed in other studies. Client OFF times in general
are described in [6]. However, no attempt to describe
Active OFF time as a separate distribution was made;
thus a model for Active OFF time was required.

Finally, a model for the number of Embedded Ref-
erences in a document was required. This number is
difficult to extract from client trace data since there is
typically no record in the data that indicates which doc-
uments are embedded. This characteristic can, however,
be inferred using Active OFF times (as is described in
Section 4).

The task of developing distributional models for each
of these Web characteristics required the analysis of
empirically measured Web workload traces. The most
common way of specifying a statistical model for a set
of data the is through the use of wvisual methods such
as quantile-quantile or cumulative distribution function
(CDF) plots. These methods, however, do not distin-
guish between two closely fitting distributions nor do
they provide any level of confidence in the fit of the
model. To address this drawback one can use goodness-
of-fit tests [8, 18]. However, these tests also present a
number of problems. Methods which place data into
bins (such as Chi-Squared tests) suffer from inaccura-
cies due to the choice of bin size. Methods based on
empirical distribution functions (such as the Anderson-
Darling test) are more likely to fail when applied to
large datasets. Since most empirical Web measurements
constitute large datasets, the methods we used to select
distributional models needed to address these shortcom-
ings of goodness-of-fit tests.

3.2 Obstacles in Combining Distributions

Generating a single output workload which exhibits each
of the six characteristics which make up the SURGE
model is difficult. We address this problem by devel-
oping methods for matching requests to files and for
generating a representative output sequence.

3.2.1 The Matching Problem

The matching problem starts from three Web workload
characteristics: file size distribution, request size distri-
bution, and popularity. Given these three distributions,
determining the total number of requests for each file
on the server is the matching problem. The matching
problem arises because even when these three distribu-
tions are fixed, there still can be considerable flexibility
in how requests are actually distributed among individ-
ual files.

First, any server will contain a set of uniquely named
files each with a specific size. Let X be the set of file
sizes on the server, where z; is the size of file 7. Sec-
ond, using Zipf’s law we can calculate the set Y which
consists of the number of references to each of the files
on the server (the popularity distribution). However,
Zipf’s Law does not determine which files correspond to

each element of Y. Finally, request size distribution is
also described by an empirical distribution, F(z).

Given these as inputs, the matching problem is to
find a permutation of the set Y such that the following
conditions are satisfied:

1. There is a one-to-one mapping between elements
in the sets X and Y. The permutation of Y will
be described by the set of indices Z which is a
permutation of integers 1,...,n. Thus, each y., is
the number of requests for file i.

2. The mapping between X and Y results in a set of
file requests. This set can be described by a CDF
G(z) that is defined as follows:

Gla))=1= 0 y=i/ Y v=1)

Thus, we can determine a desired value for each y;
which we will call y; by equating G(z) and F(z)
and solving for g; so:

n j—1
g; = F(x)zyzz' - Zyzi
i=1 i=1

3. We create a permutation Z such that g; is as close
as possible to y., for all ¢.

3.2.2 Temporal Locality

The result of the matching process is that each unique
file will be matched with a total request value. However,
this is still not sufficient for the generation of a request
stream which exhibits temporal locality. Temporal lo-
cality can be analyzed using the distribution of stack
distances. This distribution is an indication of tempo-
ral locality because stack distance measures the number
of intervening references between references to the same
document [1]. To obey temporal locality, the sequence
of document requests must be arranged such that when
cast in a push-down stack the resulting distribution of
stack distances will match empirically measured distri-
butions.

In addition to the distribution of stack distances, a
method for request sequence generation must distribute
references to each file as evenly as possible throughout
the entire sequence.

4 Solutions Adopted in SURGE

4.1 New Distributional Models

The BU client trace data sets discussed in [7] were used
to develop the three models required to complete SURGE.
These traces record the behavior of users accessing the
Web over a period of two months. In general, it is desir-
able that a large number of datasets from different envi-
ronments be examined to determine representative dis-
tributions. However, our focus in the work to date was
in defining the necessary set of workload characteristics,
and so we did not include a wide range of datasets in
our analysis. We expect to examine a larger number of

datasets in future work, and for that reason SURGE’s al-
gorithms and general structure were developed to allow
easy adaptation to other distributions. Thus, SURGE
has been developed as a highly parameterizable tool.

To develop these models, we used standard statisti-
cal methods, similar to those used in [18]. We used the
Anderson-Darling (A?) empirical distribution function
(EDF) test for goodness of fit (recommended in [8, 18])
and the A? test (described in [19]) to compare how well
analytic models describe an empirical data set.

File Sizes. Completion of the file size model began
with the assumption that the heavy tailed characteriza-
tion of the distribution as described in [6, 2] was accu-
rate. The model was then developed as a hybrid consist-
ing of a new distribution for the body, combined with a
Pareto distribution for the upper tail. The A\? test on the
body of data (11,188 points) versus a number of distri-
butional models (lognormal, Weibull, Pareto, exponen-
tial, and log-extreme) showed that the best (smallest)
A2 value was for the lognormal distribution. The CDF
of the log-transformed data versus the normal distribu-
tion can be seen in Figure 2(a).

However, the A showed no significance in terms of
goodness of fit. The failure of the A? test was due
primarily to the fact that a fairly large data set was
used for the test; this is a common problem with EDF
tests [8, 18]. Therefore a method of testing goodness of
fit using random sub-samples (as described in [18, 3])
was used, which indicated a good fit between the EDF
of file sizes and the lognormal distribution.

Censoring techniques were employed to determine
where to split between the lognormal distribution for
the body and the heavy tailed distribution in the tail.
A sample is said to be right censored if all observations
greater than some value are missing. The body of our
sample can be assumed to be right censored since we
assume that it is contaminated with a heavy tail. We
use the A2 statistic to determine the cutoff point be-
tween the body and the tail. By successively increasing
the amount of right censoring in the empirical data and
then testing goodness of fit, we determine the cutoff
between the two distributions to be at approximately
133KB (93% of the files lie below the cutoff). The cutoff
value along with the hybrid distributional model allows
us to generate the appropriate distribution of file sizes
on the server.

Active OFF Times. We consider an OFF time to
be “Active” if it is less than a threshold time, which
we chose to be 1 second based on inspecting the data.
A? tests showed Weibull to be the best fit of those con-
sidered. The CDF plot of the set of Active OFF times
versus the fitted Weibull distribution is shown in Fig-
ure 2(b). We found no significance at any level for
the A test, which we again attribute to the relatively
large sample size (40,037 elements). However, for ran-
dom sub-samples the A? test indicated a good fit to the
Weibull model.

Embedded References. The number of embed-
ded references in each file was extracted from the traces
of file transfers by identifying sequences of files fetched
by a given user for which the OFF time between trans-
fers was always less than the one second threshold (re-
sulting in 26,142 data points). Initial inspection of this
data set showed that its distribution had a long right
tail. Generation of distributional plots suggested the

Pareto distribution as the best visual fit for the data. A
least squares estimate of the tail slope in a log-log com-
plementary distribution plot resulted in an estimate of
«a which gave a good visual fit as can be seen in Fig-
ure 2(c).

A? tests once again failed to find significant goodness
of fit. Even the random sub-sample method did not
indicate a good fit which we attribute to the fact that
there were only a few values in the tail of our empirical
data and thus very few in the tails of the sub-samples.

A summary of the model distributions and parame-
ters used in SURGE are given in Table 1.

4.2 Solutions to the Matching Problem

The solution to the matching problem as described in
Section 3.2.1 results in a mapping of requests to files
such that the desired file size distribution, request size
distribution, and popularity characteristics are all present.
The success of a matching is expressed as the difference
between 7;, the desired number of references to file of
size z;, and y.,;, the actual number of references to file
of size x;. There are a number of ways in which these
differences can be combined to form an optimization
problem. First, we could bound the maximum differ-
ence between the two distributions: max |§; — y.,|. Sec-
ond, we could bound the total error between the two
distributions: »°"_ [|§i — y=,|. Finally, we could bound
the error in some important portion of the distribution:
|§i — y-;| given z1...z;_1 are already determined.

A single algorithm is optimal for the first two cases.
This algorithm creates the permutation index Z such
that the largest value in g is matched to the largest
value in y, the next largest in gy is matched with the next
largest in y and so on. The proof of optimality of this
method for the first two cases above is straightforward.

However, the optimal method can allocate error be-
tween the two distributions in an undesirable way (e.g.,
it can concentrate the error in the tail of the distri-
bution). Since large files cause the greatest impact on
network and server performance, the ability to match
most closely in the tail is important. Therefore another
method of matching was developed which allows match-
ing in either the tail or head of the distribution to be
optimal. This method matches values in the set Y to
those generated from F'(z) beginning with either the
smallest value in X or the largest. This method results
in very close fits in the tail of the distribution, and does
not introduce large errors in the body.

4.3 Solution to the Sequence Generation Problem

To generate reference sequences with the proper tem-
poral locality, SURGE begins by placing each of the in-
dividual file names in a stack (the initial ordering is
not important). A sequence of values drawn from the
proper lognormal distribution (Table 1) is then gener-
ated. This sequence is inverted to obtain a sequence of
names. This is done by repeatedly selected files from
the stack at a distance equal to the next value in the
sequence, reordering the stack after each selection.
Unfortunately this simple method, if followed ex-
actly, results in a nonuniform distribution of file names
throughout the request sequence. Therefore the method
was modified by defining a small window on either side

.10
log(file sizes)

(a)

seconds

(b)

o o o
i — i
@ @ @
[S) S [S)
© © ©
[S) S [S)
< < <
[S) S [S)
o~ ~ o~
o S o
o o o
[S) S [S)
15 0.0 0.2 0.4 0.6 0.8 1.0 0

2
log(counts)

(c)

Figure 2: CDF of (a) Log-transformed File Sizes vs. Fitted Normal Distribution (b) Active OFF Times vs. Fitted
Weibull Distribution (¢) Embedded Reference Count vs. Fitted Pareto Distribution

Component [Model [Probability Density Function | Parameters
File Sizes — Body Lognormal | p(z) = M\I/ﬂef(lmf”)z/zf’z u=9.357; 0 = 1.318
File Sizes — Tail Pareto p(z) = ak®z~ @D k=133K;a=1.1
Popularity Zipf
Temporal Locality Lognormal | p(z) = ﬁe_(l"”_“)z/%z u=1.5;0=0.80
Request Sizes Pareto p(z) = ak®g= @t k=1000; « = 1.0
Active OFF Times Weibull pla) = 2t (/0" a=1.46; b = 0.382
Inactive OFF Times Pareto p(z) = ak®z~ @D k=1,a=15
Embedded References Pareto p(z) = ak¥z~ @D k=1;a =243

Table 1: Summary Statistics for Models used in SURGE

of the location specified in the lognormal sequence. Each
of the files in this window are then assigned a weight
whose value is proportional to the remaining number
of requests required for that document. The choice of
which file to move to the top of the stack is then based
probabilistically on the weights of the files within the
window.

We found that this method of file sequence genera-
tion gives a very good distribution of file names through-
out the sequence, and the resulting stack distance values
still follow the desired lognormal distribution.

Finally, the use of multiple client hosts presents a
problem for temporal locality. When UE threads are
running on the same host they can share a common file
name sequence, each thread using the next file name
in the sequence as needed. However, when UE threads
are running on multiple hosts, they cannot share a com-
mon list without significant synchronization overhead.
To handle this case we generate independent file name
sequences with related stack distance properties. This
is done by scaling the values output from the lognor-
mal distribution by the number of clients which will be
used in the simulation. In the case in which requests
from separate hosts interleave at the server in a regular
fashion this will result in the proper temporal locality
properties. Our results show that this simple scaling ap-
proach is sufficient to maintain approximately the same
stack distance distribution as in the single client case.

5 Performance Characteristics of SURGE Workloads

In this section we describe the current implementation
of SURGE and the results of initial experiments per-
formed using SURGE. For comparison purposes we also
present results using SPECweb96.

5.1 Implementation and Validation of SURGE

SURGE is implemented in two parts: a set of programs
written in C that precompute four datasets, and a mul-
tithreaded program written in Java that makes Web re-
quests using the four datasets. The precomputed data-
sets consist of the sequence of requests to be made, the
number of embedded files in each Web object to be re-
quested, and the sequences of Active and Inactive OFF
times to be inserted between requests. The implemen-
tation used Java for portability to a wide range of client
machines.

Validation consisted of verifying that SURGE’s out-
put agreed with the six distributional models (file sizes,
request sizes, popularity, embedded references, tempo-
ral locality, and OFF times). Results showed that the
efficiency of the Java implementation affected the ac-
curacy of OFF time generation. In particular, an in-
terpreted implementation of Java introduced too much
overhead to allow a close match to ideal OFF times;
switching to a compiled implementation remedied the
problem. In addition, we found that short runs (less
than 15 minutes) did not always allow enough samples
to be made of some distributions to reach acceptable
match with the ideal cases; however runs of 30 minutes

were generally adequate to achieve close fits between the
ideal distributions and the measured results.

Of all the distributional models, only temporal lo-
cality was affected when SURGE was scaled up (run on
larger numbers of host machines). As the number of
hosts used by SURGE was increased, the resulting stack
distance distributions always appeared to be lognor-
mal, but their characteristics changed somewhat. This
was expected since an exact match to temporal local-
ity properties could not be guaranteed unless there was
strict synchronization between all clients, which would
have resulted in an unacceptably low maximum request
rate.

5.2 Experimental Setup

The environment for these experiments consisted of six
PCs running on a 100 Mbps network that could be iso-
lated from other networks. The PCs were configured
with 200MHz Pentium Pro CPUs and 32MB of RAM.
SURGE clients (from 1 to 5 hosts) ran under Windows
NT 4.0, while the server system (a single host) ran
Apache v1.2.4 under Linux 2.0. To avoid resource lim-
itations we never ran more than 50 UE threads on any
SURGE host.

On the Web server, we examined CPU utilization
and the number of active TCP connections; for the net-
work, we measured the total number of both files and
packets transferred over the run. The number of open
connections on the server was sampled every 100ms and
the CPU utilization was sampled every second. Both
values were taken from the Linux /proc filesystem. Mea-
surements of traffic on the network were taken using
tcpdump.

In each of the experiments discussed in this section,
the number of UEs is kept constant throughout the ex-
periment. Thus we only explore the stationary behavior
of the workload at this time. This assumption of sta-
tionarity in the workload for real servers probably only
applies over short timespans during which the number
of users at the Web server remains approximately con-
stant. For this reason we restrict ourselves to runs no
greater than 30 minutes. Note that even over intervals
as short as these, Web servers can show high variability
in many system metrics [15].

The workload generated by SPECweb96 depends on
two user-defined parameters: a target number of HTTP
operations per second, and the number of threads used
to make requests. The general approach used by SPEC-
web96 is for each thread to generate HTTP requests at
a constant rate; the request rate for each thread is de-
termined by dividing the target rate by the number of
threads. In all our experiments we used 16 threads,
which was sufficient since the achieved operations per
second were always close to the requested values.

Thus the intensity of the SPECweb96 workload is
specified in terms of expected number of HTTP opera-
tions per second, while (as discussed in Section 2) the
intensity of the SURGE workload is expressed in terms
of user equivalents. To compare the effects of SURGE
and SPECweb96, we empirically determined configura-
tions of each resulting in approximately equal amounts
of data transferred during a 30 minute run. We iden-
tified three such configuration levels of each workload
generator; for each level, the difference between the two

Nominal | SPECweb96 | SURGE

pkts/sec | HTTP ops/sec | UEs
70 3 50
300 14 150
500 25 250

Table 2: Comparison SPECweb96 ops/sec and SURGE
UE’s.

SPECweb96 SURGE
Nominal TCP TCP
pkts/sec || Requests | Packets || Requests | Packets
70 5901 118560 5293 131642
300 26028 560238 26055 507727
500 46520 1000289 48238 874570

Table 3: Summary of Comparison Experiments.

in terms of data transferred is less than about 20%.
These configuration levels, which are shown in Table 2,
are used only for general comparisons between the two
workloads. Table 3 summarizes the SURGE and SPEC-
web96 workloads used, showing the number of requests
satisfied and the number of TCP packets transferred in
each 30 minute run.

5.3 Results

We first consider the differences between SURGE and
SPECweb96 in terms of their impact on the server; then
we examine their different impacts on the network.

Server Impacts. The most immediately noticeable dif-
ference between the effects of the SURGE and SPEC-
web96 workloads is in server CPU utilization. Figure 3
shows plots of mean CPU utilization for the two work-
loads as a function of average packets transferred per
second. Errorbars show one sample standard deviation
above and below the mean. Mean and standard devia-
tion were measured over the steady state of each exper-
iment, with the startup transient removed.

Figure 3 shows that when the average transfer rate
approaches 500 packets per second, the SURGE workload
causes a sharp increase in the server’'s CPU load, while
the server’s CPU is not very heavily loaded under the
SPECweb96 workload.

The difference in CPU load over time is shown in
Figure 4. This figure plots instantaneous CPU load over
the entire course of each of three experiments for both
workloads. This figure shows how the two workloads are
quite different in practice. The figure shows that SURGE
results in a highly varying CPU load with utilization as
high as 76% for transfer rates of about 500 pps. In
contrast, the CPU load is relatively stable and never
goes above 37% for the SPECweb96 workload.

One reason for the difference in CPU demands of
the two workloads can be seen by examining the num-
ber of active TCP connections in each case. Table 4
shows the mean and standard deviation of the number

40

35
30 r
25
20 -
15

Percent CPU Utilization

100 200 300 400 500
Packets per Second

Figure 3: CPU Utilization for SURGE (upper at right)
and SPECweb96 (lower at right) Workloads

SPECweb96 SURGE
Nominal Standard Standard
pps Mean | Deviation || Mean | Deviation
70 0.028 0.18 13.9 3.92
300 0.37 0.69 33.2 12.1
500 0.71 1.41 67.1 35.3

Table 4: Active TCP Connections

of connections open on the server measured at 100ms
intervals. This table shows that a large number of con-
nections are typically open when running the SURGE
workload; in contrast, the number of open connections
for the SPECweb96 workload is typically very small.
In addition, the variability in number of connections
is much greater for the SURGE workload than for the
SPECweb96 workload.

Figure 5 shows the number of open connections at
100ms intervals for the three experiments. Note that
figures in the two rows use different scales on the y axis.
This figure shows the large fluctuations in the number
of open connections for the SURGE workload.

Maintaining and servicing a large number of open
connections is computationally expensive, as pointed
out in [15]. Clearly the difference in the number of ac-
tive connections is likely to be a contributing factor in
the CPU utilization differences seen between the two
workloads (Figure 3).

The reason that SURGE maintains a much greater
number of open server connections on average can be
understood by comparing the request generation pro-
cess in SURGE with that used in SPECweb96. The inter-
request time in SPECweb96 is determined by the goal
of generating a fixed number of requests per time inter-
val. Thus for SPECweb96, as the number of requests
per second increases, each thread’s idle time between re-
quests decreases. In contrast for SURGE, as the number
of requests per second increases, the idle times of in-
dividual threads do not decrease; instead more threads
are used.

The result is that in SPECweb96, connections are
multiplexed onto a relatively small number of threads,
and so the number of simultaneous connections is low.

On the other hand, under SURGE the number of threads
grows in proportion to the intensity of the workload,
which results in a corresponding increase in the number
of simultaneous connections that are possible. When
connections happen to overlap in large numbers the per-
connection rate is slowed, and so in SURGE connections
stay open for much longer periods on average than they
do under SPECweb96.

In the case of SPECweb96, this difference could be
addressed by scaling the number of connections in pro-
portion to the requested operation rate, although it is
apparently not customary to do so in Web server bench-
marking. However, this effect highlights the drawbacks
of the approach commonly used in Web workload gen-
erators of employing a small or fixed number of threads
to make requests.

Network Impacts. Finally we consider differences in
network traffic generated by the two workloads. As de-
scribed in Section 1 we are particularly interested in
whether the two workloads generate traffic that is self-
similar [12] since this property has been shown to be
present in Web traffic [6] and has significant implica-
tions for network performance [10, 17].

Self-similarity in the network traffic context refers
to the scaling of variability (burstiness). A timeseries
Xi,t = 1,2,... is said to be ezactly second-order self-
similar if

mt

XeZm ™" Xi for1/2 < H < 1andall m>0

i=m(t—1)+1

where < means equality in distribution. This defini-
tion suggests a simple test for self-similarity in net-
work traffic, called the variance-time plot. This test
plots the variance of Z:’:m(t_l)H X, against m on log-
log axes, where the X;s are measurements of traffic in
bytes or packets per unit time. Linear behavior with
slope greater than —1/2 is suggestive of nontrivial self-
similarity.

Variance-time plots for SURGE and SPECweb96 traf-
fic are shown in Figure 6. As the amount of data trans-
ferred increases from left to right in the figures, the traf-
fic generated by SURGE shows roughly linear behavior
with slope different from —1/2. That is, it continues to
demonstrate burstiness across all time scales. In con-
trast, the traffic generated by SPECweb96 shows evi-
dence of self similarity when the traffic intensity is low
but as traffic increases, its self-similarity disappears: the
variance-time plot approaches a slope of —1/2.

This effect can be understood by analyzing each of
the two cases as a collection of individual sources. Con-
sider a thread as an ON/OFF source; then its marginal
distribution is that of a Bernoulli random variable. Its
variance is maximized when the two states are equiprob-
able; when one state starts to dominate the other, the
thread’s variability in demand declines.

As the workload intensity increases, OFF times of
individual threads under SPECweb96 grow shorter, so
individual threads exhibit lower variability in demand.
Threads increasingly approximate an always-ON source.
Thus the traffic generated by SPECweb96 comes from
a constant number of sources which each decrease their

))
<3 <3
3 3
))
53 53

< <

S S

2o 2o

ge ge

EN EN

o% 29

a a

o o
o o
& &

i it :
o o

0 500 1000 1500 0 500 100 1500
Seconds Seconds
o o
s s
8 8
o o
8 8
< <
=) =)
58 58
SQ SQ
Eq Eq
o o
o o .
g g
o] AN it o

500 1000
Seconds

500 1500

1000
Seconds

60 80

CPU Utilization
0 40

500 1000 1500

0
Seconds

60 80 100

CPU Utilization
20 40

0 500 1000 1500

0
Seconds

Figure 4: CPU Utilization for 70 pps (left), 300 pps (middle), and 500 pps (right) (upper: SURGE; lower: SPECweb96).

1= 1=
3 3

B B

@ @

2 2

S S
So 88

33 338

23 23

5 5

S S
o o
o o
19 19
Fo Fo

o® o®

= =
T . T
< I I : St sbongsin m ry <

o o

0 500 1000 1500 0 500 1000 1500
Seconds Seconds

))

& &

@ @

2 2

Sw Sw

24 24

3 3

2 2

£ £

8s ST

o™ o .

%) o |-

P = . .

° o |-

S S . . . R
57 . 57 - . .. meee sow s s mmes -
< | . < | ot emmemn tmemamams.

of = o

0 500 1000 1500 0 500 1000 1500
Seconds Seconds

100 150

Active TCP Connections
50

0

0 500 1000 1500

0
Seconds

20

15

10

5

Active TCP Connections

0

0 500 1500

1000
Seconds

Figure 5: Active TCP Connections for 70 pps (left), 300 pps (middle), and 500 pps (right) (upper: SURGE; lower:

SPECweb96).

Figure 6: Variance-Time Plots for 70 pps (left), 300 pps (middle), and

SPECweb96).

log10(Normalized Variance)

log10(Normalized Variance)

-35

log10(Normalized Variance)

0.5 15 2 25
log10(m)

35 4 0

0.5

15 2 25
log10(m)

log10(Normalized Variance)

log10(Normalized Variance)

15 2 25
log10(m)

500 pps (right) (upper: SURGE; lower:

variability as the workload intensity increases. Hence
variability in the resulting aggregate traffic is reduced
as well.

In contrast, the traffic generated by SURGE comes
from constant-variability sources; it is the number of
such sources that increases as workload intensity in-
creases. Theoretical work [21] has shown that when
transfer durations are heavy-tailed (as they are in SURGE)
this condition is sufficient for the generation of self-
similar traffic. As a result we expect that SURGE will
generally produce self-similar network traffic under con-
ditions of both high and low workload intensity.

Note that in this respect, the source behavior of
SPECweb96 is similar to other Web workload generators
whose general goals are to make requests from servers as
quickly as possible [16, 20]. Since these workload gener-
ators do not preserve significant burstiness in individual
thread demands, it is unlikely that under heavy loads
they will produce self-similar traffic in practice.

6 Conclusions

In this paper we have described a tool for generating
representative Web requests that is based on analytical
models of Web use. We have described the characteris-
tics that we feel are important to capture in Web work-
loads, and why they are important. We have shown
that satisfying this large set of requirements presents
challenges, but that these challenges can be addressed.
The resulting tool, SURGE, incorporates the idea of user
equivalents as a measure of workload intensity in ad-
dition to six distributional characteristics in order to
create representative Web workloads.

Our work draws on the wide range of previous re-
search that has characterized Web usage patterns. In
addition we present some new measurements of Web
usage that are needed to complete the SURGE model.

We have shown that a workload that satisfies all of
these characteristics exercises servers in ways quite dif-
ferent from the most commonly used Web workload gen-
erator, SPECweb96. In particular, the workload gen-
erated by SURGE maintains a much larger number of
open connections than does SPECweb96, which results
in a much higher CPU load. In addition, we show that
SURGE exercises networks differently than SPECweb96.
At high loads, SURGE generates network traffic that is
self-similar, which does not appear to be true for SPEC-
web96. Thus SURGE’s workloads are more challenging
than SPECweb96’s to networks as well. These results
suggest that accurate Web workload generation is im-
portant, since comparison with realistic workloads in-
dicate that traditional workload generators like SPEC-
web96 may be optimistic in their assessment of system
performance.

Acknowledgements The authors would like to thank
Vern Paxson, Ralph D’Agostino, Steve Homer and Randy
Pruim for their help in various parts of this work.

References
[1] Virgilio Almeida, Azer Bestavros, Mark Crovella, and Adri-

ana de Oliveira. Characterizing reference locality in the
WWW. In Proceedings of 1996 International Conference

(2]

(3]

(4]

[5

(7]

(8]

9

(10]

(11]

(12]

(13]

(14]

(15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

on Parallel and Distributed Information Systems (PDIS
’96), pages 92-103, December 1996.

M.F. Arlitt and C.L. Williamson. Web server workload
characterization: The search for invariants. In Proceeding
of the ACM SIGMETRICS ’96 Conference, Philadelphia,
PA, April 1996.

Henry Braun. A simple method for testing goodness of fit in
the presence of nuisance parameters. Journal of the Royal
Statistical Society, 1980.

Tim Bray. Measuring the web. In Fifth International
World Wide Web Conference, Paris, France, May 1996.

The Standard Performance Evaluation Corporation. Spec-
web96. http://www.specbench.org/org/web96/.

M.E. Crovella and A. Bestavros. Self-similarity in world
wide web traffic: Evidence and possible causes. In Pro-
ceedings of the 1996 ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer
Systems, May 1996.

C.A. Cunha, A. Bestavros, and M.E. Crovella. Character-
istics of www client-based traces. Technical Report TR-95-
010, Boston University Department of Computer Science,
April 1995.

R. B. D’Agostino and M. A. Stephens, editors. Goodness-
of-Fit Techniques. Marcel Dekker, Inc., 1986.

S. Deng. Empirical model of WWW document arrivals at
access link. In Proceedings of the 1996 IEEE International
Conference on Communication, June 1996.

A. Erramilli, O. Narayan, and W. Willinger. Experimental
queueing analysis with long-range dependent packet traf-
fic. IEEE/ACM Transactions on Networking, 4(2):209—
223, April 1996.

A. Feldmann. Modelling characteristics of tcp connections.
Technical report, AT&T Laboratories, 1996.

W.E. Leland, M.S. Taqqu, W. Willinger, and D.V. Wil-
son. On the self-similar nature of ethernet traffic (extended
version). IEEE/ACM Transactions on Networking, pages
2:1-15, 1994.

Bruce Mah. An empirical model of HTTP network traffic.
In Proceedings of INFOCOM ’97, Kobe, Japan, April 1997.

R. Mattson, J. Gecsei, D. Slutz, and I. Traiger. Evaluation
techniques and storage hierarchies. IBM Systems Journal,
9:78-117, 1970.

J.C. Mogul. Network behavior of a busy web server and
its clients. Technical Report WRL 95/5, DEC Western Re-
search Laboratory, Palo Alto, CA, 1995.

University of Minnesota. Gstone version 1.

http://web66.coled.umn.edu/gstone/info.html.

Kihong Park, Gi Tae Kim, and Mark E. Crovella. On the
relationship between file sizes, transport protocols, and self-
similar network traffic. In Proceedings of the Fourth In-
ternational Conference on Network Protocols (ICNP’96),
pages 171-180, October 1996.

Vern Paxson. Empirically-derived analytic models of wide-
area tcp connections. IEEE/ACM Transactions on Net-
working, 1994.

S. Pederson and M. Johnson. Estimating model discrepancy.
Technometrics, 1990.

Gene Trent and Mark Sake. Webstone: The first genera-
tion in http server benchmarking, February 1995. Silicon
Graphics White Paper.

Walter Willinger, Murad S. Taqqu, Robert Sherman, and
Daniel V. Wilson. Self-similarity through high-variability:
Statistical analysis of Ethernet LAN traffic at the source
level. IEEE/ACM Transactions on Networking, 5(1):71—
86, February 1997.

G. K. Zipf. Human Behavior and the Principle of Least-
Effort. Addison-Wesley, Cambridge, MA, 1949.

