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ABSTRACT
Human mobility literature is limited in their ability to capture the

novelty-seeking or the exploratory tendency of individuals. Mainly,

the vast majority of mobility prediction models rely uniquely on

the history of visited locations (as captured in the input dataset)

to predict future visits. This hinders the prediction of new unseen

places and reduces prediction accuracy. In this paper, we show that

a two-dimensional modeling of human mobility, which explicitly

captures both regular and exploratory behaviors, yields a power-

ful characterization of users. Using such model, we identify the

existence of three distinct mobility profiles with regard to the explo-

ration phenomenon – Scouters (i.e., extreme explorers), Routiners
(i.e., extreme returners), and Regulars (i.e., without extreme behav-

ior). Further, we extract and analyze the mobility traits specific to

each profile. We then investigate temporal and spatial patterns in

each mobility profile and show the presence of recurrent visiting

behavior of individuals even in their novelty-seeking moments. Our

results unveil important novelty preferences of people, which are

ignored by literature prediction models. Finally, we show that pre-

diction accuracy is dramatically affected by exploration moments of

individuals. We then discuss how our profiling methodology could

be leveraged to improve prediction.
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1 INTRODUCTION
Understanding human mobility and accurately predicting an in-

dividual’s next location spans several disciplines, such as urban

planning, public health, traffic management, and environmental

management [15, 17]. In this context, human mobility can be stud-

ied at the individual level (i.e, individual mobility) or the group
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level (i.e, population flows). In this paper, we focus on individual
mobility that is more exposed to irregular movements and routines

rupturing effects, unlike population flows that consist of the ag-

gregated mobility of individuals, and hence, uncertainties are less

observable and have fewer impacts.

As an attempt to understand individual mobility dynamics, sev-

eral models were developed [4, 7]. However, these models systemat-

ically fail in reproducing individuals’ movements and substantially

deviate from empirical results [4, 15]. Moreover, many prediction

models have been proposed to forecast individuals’ movements.

Yet, they all show limited bounded predictive performance [1]. Re-

gardless of the applied methods (e.g., Markov chains, Naive Bayes,

neural networks), the type of prediction (i.e., next-cell or next place)

or the used data sets (e.g., GPS, CDR, surveys), the accuracy of pre-

diction never reaches the coveted 100%. The reasons are manyfold:

the lack of ground truth data, human beings’ complex nature and

behavior, and the difficulty to forecast visits to non-routinary areas

and discoveries of new places [8].

We focus on the exploration problem – i.e, the new-place discov-

ery’s tendency of individuals – that has rarely been tackled in the

literature. We confirm such a problem represents a real issue and

should be carefully addressed to propose realistic generative models

and accurate predictors [1] (Section 2). Most models addressing the

exploration phenomenon assume it to be unfluctuating among the

population. Besides, most existing predictors endeavor to forecast

future locations from the set of known places only, which hinders

predicting new unseen places and by consequence, reduces the

predictive performance [1]. Fig. 1 emphasizes the harmful effects of

explorations on the predictive performance of the classical Markov

Chain predictor, when considering a CDR dataset (see Table 3) with

and without explorations (places visited only once). As shown, pre-

diction using the no-exploration CDR trace achieves an average

success prediction rate of 97%, which is approximately 24% higher

than the total trace’s score.

Figure 1: Distributions of the success rate score

In this paper, we provide a better understanding of the explo-

ration phenomenon and answer the following questions: Is the
proclivity for exploring new areas unfluctuating among the popula-
tion? Is there any spatiotemporal pattern on the way people seek for
novelty? We propose to tackle the aforementioned questions by

employing a novel approach to profile individuals and investigate

https://doi.org/10.1145/3397536.3422248
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their mobility traits according to their novelty-seeking tendency.

In particular, our contributions are the following:

• We introduce amodeling approach that splits each individual visit

into two states: exploration – i.e., the discovery of new places –

and return – i.e., the revisit of known locations.

• We then define newmetrics that capture the spatiotemporal prop-

erties of each individual visit – i.e., known/new and recurren-

t/intermittent visits. As such, we capture individuals’ propensity

to explore new places and their intermittency – i.e., the shift

between the two types of visits.

• Using our newly designed metrics and the probabilistic Gaussian

Mixture Model, we reveal the existence of three visiting profiles:
Scouters, Routiners, and Regulars (Section 4). For this, we use

four urban datasets, describing people mobility from 5 cities in 3

different continents around the world (Section 3).

• We investigate the profiles according to 15 mobility features, pro-

viding a precise view of the mobility traits of each profile (Sec-

tion 5). Our analysis reveals that Scouters (i) are keener to explore
and have larger sets of visited places, (ii) limit their routinary

mobility to a small set of places, and (iii) walk longer distances.

Routiners (i) rarely break their returning routine to discover new

places, (ii) constantly visit their known locations, and (iii) have

confined mobility. While Regulars have a medium behavior.

• We go deeper in our investigation by reporting our visiting pro-

files to the temporal and spatial use of the individuals (Section 6).

We reveal that Scouters’ proclivity for novelty-seeking is the most

eminent all over the week and have a more spread spatial mo-

bility. Routiners instead, rarely perform explorations and have

confined mobility. More importantly, we show that, indepen-

dently of the individual profile, spatiotemporal patterns can be

clearly identified even during exploration moments.

• We show novelty-seeking effects on the predictive performance

of two classical predictors (Section 7). We then discuss the bene-

fits of our modeling and how it can be exploited to better capture

individuals’ dynamics and improve prediction accuracy.

Finally, we draw conclusions and comment on the perspectives

of our work in Section 8. Although a very short description of our

profiling approach has been previously presented at the Student

Workshop of ACM Conext 2019 [14], here we go deeper in our

investigations by uncovering the mobility features and visiting

patterns behind each profile, and the profiles’ potential utility. For

the best of our knowledge, we are the first to reveal spatiotemporal

preferences present in exploration moments of people.

2 RELATEDWORK
Recent studies have shown the importance of distinguishing the ex-

ploration phenomenon from the revisits and revealed the existence

of distinct classes of individuals in terms of mobility movements.

Song et al. [4] have demonstrated that by considering the notions

explorations and returns while analyzing the human movements

helped to explain and to justify the origins of the scaling laws

suggested by individual explanatory models (random walks, Lévy

flight). Further, they proposed a more consistent statistical model

of individual human mobility.

Following the work proposed by Song et al. [4], Pappalardo

et al. [15] endeavored to explain the conflicting coexistence of

heterogeneity and predictability characterizing human mobility

by quantifying the impact of recurrent movements on the overall

mobility. The authors reported the existence of two distinct mobility

profiles: explorers and returners. Explorers are individuals who visit

many spots on regular bases, whereas returners curb their mobility

between few places. Besides, Pappalardo et al. [15] assumed that the

probability of exploring new areas is correlated with the number of

frequently visited places. Further, the authors adjusted the model

proposed by Song et al. [4]. They suggested that an individual is

attracted by popular locations at the group level when she discovers

new places. And showed that their proposed model is more realistic

when modeling human mobility. Nevertheless, this classification

can be inconsistent; for instance, a person who regularly visits

two different locations and usually explores many new areas is

considered to be a returner, while a person who spends most of her

time between eight different locations and rarely visits new ones

can be viewed as an explorer.

Similar to Pappalardo et al. [15], Scherrer et al. [16] proposed

a novel unsupervised mobility profiling approach. Their strategy

showed the existence of two main classes of individuals: (i) trav-

elers, who move around extensively, and (ii) locals, who move in

a more constrained area and revisit many of their locations. Nev-

ertheless, they do not bring any understanding of the exploration

behavior of individuals. Although their approach does not classify

all individuals and results in five groups of individuals, only two

groups were interpreted and considered to be significant.

Contradicting the studies performed by Pappalardo et al. [15]

and Scherrer et al. [16], Quadri et al. [2] assumed that given the

significant number of visits to new places, all individuals are ex-

plorers. They showed that individuals’ propensity to explore new

areas is aroused by specific types of activities mainly shopping in

particular fashion and clothing stores and usually happens during

leisure time in distant areas far from frequently visited places.

Cuttone et al. [1] highlighted the importance of considering

the exploration phenomenon when designing mobility predictors,

showing it is a crucial factor behind the low accuracy of prediction

models. Further, they proposed an exploration prediction model

based on random guessing. Still, this model suggests that all indi-

viduals have the same probability to explore, which contradicts the

studies performed by Pappalardo et al. [15] and Scherrer et al. [16].

The work in [9] is concerned with irregular activities, which

differ from the explorations studied in our work in that they focus

on the semantics of activities (eg, going to a gym) rather than the

location alone.

Summarized remarks: The literature on human exploration is

generally quite recent, and very few studies have investigated two

basic types of human motions: exploration and returns (or regular

visits). Although some interesting observations have emerged, the

few existing studies have several limitations [1, 2]. In particular,

essential questions such as how to define a period of exploration, or

how to identify exploration in an individual’s movements, remain

unsolved. Furthermore, in contrast to those assumptions [1, 2], one

can observe a remarkable heterogeneity in human mobility behav-

ior. Indeed, adopting such generalizations at the population level

can be misleading while studying individual mobility. In summary,

understanding the exploration aspect of individual mobility is still in
its infancy and deserves a deeper investigation.
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3 DATA DESCRIPTION
In this section, we outline the data sources we leveraged in this

study. We used four datasets capturing the spatio-temporal foot-

prints of individuals’ mobility with high spatial and temporal res-

olutions, three GPS data sources, and one CDR dataset. This last

is collected by a major network operator in China from Shanghai,

where each location represents the user’s centroid of an hour with

the precision of 200 meters. Our datasets are described in Table 1.

Number Sampling

Dataset Type of users Duration frequency

Macaco [12] GPS 132 34 months 5 min

Privamov [18] GPS 100 15 months few seconds

Geolife [20–22] GPS 182 64 months 1 to 5 seconds

ChineseDB
∗

CDR 642K 2 weeks 1 hour

∗
The collection was initiated by Shanghai University [6].

Table 1: Datasets description.

3.1 Data handling
For this study, we focus on the location data i.e. latitude and lon-

gitude. First, we reconstruct the mobility traces of the individuals

by extracting the sequence of recorded locations along with the

associated timestamps. Next, we discretize the geographical maps

by placing uniform grids of 𝑐 meters x 𝑐 meters and draw out the

grid cell IDs associated with the coordinates, by converting the

tuple (𝑙𝑎𝑡, 𝑙𝑜𝑛) into a tuple (⌊ 𝑙𝑜𝑛𝑐 ⌋, ⌊ 𝑙𝑎𝑡𝑐 ⌋) as in [1], where 𝑐 meters

is the cell-size in the grid. Hence, individuals’ location history is

converted into sequences of discrete symbols. Afterward, given

that the location of each individual is obtained at different uni-

form temporal rates in our GPS data sources – i.e., 5 min for the

Macaco, few seconds for Privamov, and 5 seconds for Geolife –,

we re-sampled all the GPS datasets to have an equal frequency of

one sample every 5 min. However, some records can be missing

due to delayed measurements produced by the sleeping phases of

mobile devices collecting the data. Hence, to have a more uniform

and complete traces, we comply with some steps proposed by Chen

et al. [6] and complete them as follows,

• First, per individual, we identify the most frequent daily location

and name it as work location. Intuitively it is the place that she

usually visits and spends a large amount of time in it between 10

am and 11 am, and from 2 pm to 5 pm.

• Next, we determine the most visited location by a user between

2 am and 6 am (night), which we refer to as home location.
• Once the home and work locations are identified, if a record is

missing between 10 am and 11 am or from 2 pm and 5 pm, we

add a new record with the grid ID associated to the workplace.

If a record is missing from 2 am to 6 am, then a record is added

with the grid ID associated to the home location.

3.2 Experimental settings
In what follows, we give a brief description of the datasets and the

parameter settings we used in this study. We define a complete day

for GPS datasets as a day in which an individual has a record at

least each 15 min. And select only participants that have at least

10 complete days of data. We are left with 87 individuals in the

Macaco database, 69 individuals in the Privamov dataset, and 101

in Geolife. For the CDR data, given the low frequency of sampling,

(a)
(b)

Figure 2: (a) Finite-State Automaton. (b) Avg successive visits.

we define a complete day as a day with at least one record every 2

hours, we are left with 3761 individuals.

We discretize locations to grid cells of size 𝑐 = 300m, with a

frequency of 1 record each 5 min for the GPS datasets, and 1 record

per hour for the CDR dataset. There are two reasons to consider

these spatial and temporal resolutions. First, in this paper we focus

on the discoveries of new places on a daily basis, for instance, going

to a new restaurant or a new shop. Therefore, a cell of size 300m ×
300m along with the imprecision and uncertainty of GPS systems,

roughly corresponds to daily regions of interest. Second, the higher

is the temporal resolution the better is the understanding of human

movements. Nevertheless, there is a tradeoff between expanding the

set of selected individuals and increasing the temporal resolution.

A resolution of 5 min for the GPS datasets allows uniforming the

frequency of sampling between the different sources while increas-

ing the number of individuals and being reasonable for capturing

most transitions. Moreover, having different datasets with the same

resolutions allows us to test the effectiveness of our methods and

to extensively validate our work.

4 PROPOSED PROFILING METHODOLOGY
There exists a perplexity in understanding and predicting individ-

uals’ mobility patterns. Human beings’ movements are a mixture

of repetitive and regular transitions between known places and

sporadic discoveries of new areas [3, 15, 17], both subject to a

certain degree of uncertainty associated with free will and arbi-

trariness [13]. At each instant, an individual is confronted with an

extensive list of choices with regard to how and where to spend

her time, and has two alternatives: she either returns to a place she

visited in the past or explores a new location.

Here, we intend to investigate whether there exist patterns when
commuting from an exploration mode to a return mode and vice
versa. For this, we divide human movements into two primary

states: explorations and returns. We define (i) the exploration as

a discovery of a new location, i.e., a visit to a location that is not

present in the visiting history of an individual and (ii) a return as

a visit to a previously seen locality.

4.1 Formalization
Let𝑀 be the Finite-State Automaton (FSA) describing an individ-

ual’s movements, as shown in Fig. 2a, with two possible states:

exploring (U) and returning (R). Initially the individual 𝑖 is in the

exploring state (U) if her current location 𝑙𝑜𝑐𝑖 (𝑡0) is not present in
the set of her known placesL𝑖 (𝑡) at 𝑡 = 𝑡0, i.e. 𝑙𝑜𝑐𝑖 (𝑡0) ∉ L𝑖 (𝑡0) and
in the returning state (R) otherwise. Two possible inputs can affect

an individual’s state: return (𝑇𝑟 or 𝑆𝑟 ) by going back to historically

known locations, and explore by discovering new spots (𝑇𝑢 or 𝑆𝑢 ).

In the exploring state U, discovering new areas (𝑆𝑢 ) has no effect

and keeps the individual in the state U. On the other hand, moving
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back to a known location (𝑇𝑟 ), though recently explored, gives𝑀

an input and shifts the state from U to R. In the returning R state

visits to usual places (𝑆𝑅 ) does not change the state, however, a

discovery of a new spot (𝑇𝑢 ), shifts the state back to the U state.

4.2 Mobility Profiling
Initially, all individuals have an empty set of visited locations 𝐿𝑖 (𝑡 =
𝑡0) = ∅. While analyzing an individual’s mobility trace, we first

identify the places she regularly visits, then, add them to her set of

visited locations. Accordingly, the cold start problem is bypassed,

alternatively stated, the first occurrences of familiar places in the

trace of an individual are not considered as explorations. To this

end, we examine the whole mobility trace of each individual and

compute the visitation frequency of each location, let 𝑙𝑚𝑎𝑥 be the

place with the highest visitation frequency. Afterward, all locations

that have a visitation frequency at least equal to 90% of the visitation

frequency of 𝑙𝑚𝑎𝑥 are added to her set of known places. After

dissecting human transitions into explorations and returns, we

assign to each individual two values: (1) #𝑈 the average number of

her successive explorations– i.e., the average number of consecutive

self-transitions she made in the U state, and (2) #𝑅 the average

number of self-transitions she made in the R state.

Fig. 2b reports the average number of successive returns #𝑅

against the average number of successive explorations #𝑈 of the

individuals. Intuitively, if we compare individual 1 (𝛼1, 𝜇1) and indi-

vidual 2 (𝛼2, 𝜇2), we can state that the individual 1 spends more time

exploring than the individual 2. Besides, the individual 2 performs

more shifting between the U and R states than the individual 1 who

is stationary with regard to the types of her visits (exploration or

return). Hence, to characterize how individuals balance the tradeoff

between revisits of familiar locations and discoveries of new places,

we define the following metrics that utterly capture the exploration

habits of an individual. The first metric captures the shifting habits

between the exploration and the return modes.

Definition 1 (Intermittency 𝜇). is the sum of the average
number of successive explorations #𝑈 and the average number of
successive returns #𝑅, 𝜇 = #𝑅 + #𝑈 .

When the average number of returns or explorations increases,

the intermittency increases, indicating that fewer shifts occur be-

tween the exploring and returning states. Therefore, the intermit-

tency reveals whether an individual is versatile or prefers to remain

steady. Namely, it helps to recognize if a user is constantly fluc-

tuating between visits to familiar places and discoveries of new

spots or once she starts a discovery she does is it repeatedly, before

switching to revisits and vice versa. The second metric captures

users’ proclivity to make a revisits rather than explore new places.

Definition 2 (Degree of return 𝛼). is the angle whose tan-
gent is the ratio between the average number of successive returns R
over the average number of successive explorations U,𝛼 = arctg

(
#𝑅
#𝑈

)
.

The degree of return describes the exploration conducts of an

individual compared to her returns. Having a high degree of re-

turns suggests that: the average number of successive returns is

higher than the average number of successive explorations #𝑅 > #𝑈 .

Hence, the degree of return reveals what kind of explorer an individ-

ual is, whether she visits many new places on a row, or just after a

few discoveries she goes back to a familiar location.

Discovering similar users with regard to their mobility patterns

has been broadly studied to address the issue of sparse mobility

behavior among the population [11, 15, 16]. In what follows, we

investigate whether the exploration habit is the same among the

population or if it is a distinctive property. Namely, if there exist

patterns followed by individuals while shifting between the explo-

ration mode and returning mode or if there are several groups of

users sharing the same habits but distinct from the others. After

computing the intermittency 𝜇 and degree of return 𝛼 for each in-

dividual, we use two clustering algorithms– the Gaussian Mixture

probabilistic Model (GMM) and– the 𝑘-means clustering method to

prob whether we can split the population into distinct cohesive and

significant groups or not. To identify the best number of compo-

nents of the clustering algorithms, and hence, the individuals’ types.

We use the silhouette score statistical test and run one hundred

fits for five different sets of clusters (two to six). Then, we consider

the mean value when choosing the best score (For details see Ap-

pendix A.1). We choose a clustering with three components as it

maximizes the minimal score for both of the clustering algorithms,

and appears to be more meaningful for all of our datasets.

We now apply, the GMM and 𝑘-mean with three components on

our data sources, we roughly obtain the same groups. Henceforth,

hereafter we only present the results obtained with the GMM al-

gorithm. Fig. 3 depicts the normalized intermittency of individuals

against their normalized degree of return and displays the clusters

resulting from the application of the GMM algorithm to our GPS

and CDR data sets. We can observe that our metrics can clearly

capture the dissimilarity between the individuals in terms of human

mobility dynamics. More importantly, the GMM identifies three

distinct groups that have identical intermittency and degree of re-
turn characteristics for all our data sources. We label the resulting

groups as Scouters (red), Routiners (green), and Regulars (blue).

• Cluster 1: Scouters or extreme explorers, although holding vary-

ing degrees of return 𝛼 , they are low compared to the others’.

Moreover, they are notably intermittent – i.e., they are constantly

shifting between the exploring and the returning states. These

users are more prone to explore and discover new areas.

• Cluster 2: Routiners or extreme-returners have a surprisingly large
degree of return. Besides, they tend to be steady in the different

states of the automaton𝑀 – i.e., they rarely break their routine.

Hence, we can deduce that these users rarely explore and prefer

to stick among their common and known places.

• Cluster 3: Regulars adopt a medium behavior and have large

degrees of return compared to the Scouters. Though, their inter-
mittencies are distinctly smaller than those of Routiners. These
users constantly alternate between explorations and revisits. Yet,

their proclivity to explore is less important than Scouters’.

Our metrics allow a natural clustering of individuals. Although,

having a different number of frequently visited locations, individ-

uals who usually break their routines to explore are viewed as

Scouters. This is unlike in the method suggested by Pappalardo et

al. [15], where some individuals can be wrongly clustered as ex-

plorers or as returners. Contrary to [16] our approach captures two

major mobility features that fully describe the exploration phenom-

enon, i.e., intermittency between returns and explorations, and the
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(a) Macaco (b) Privamov (c) Geolife (d) ChineseDB CDR.
Figure 3: Mobility Profiling.

ratio of explorations compared to returners, as well as accordingly
splits the populations.

5 MOBILITY TRAITS OF PROFILES
Here, we identify the specific mobility behavior traits of each pro-

file: Scouters, Routiners, Regulars. Hence, we extract some of the

fundamental features used to characterize human mobility from

the spatiotemporal footprints of the individuals (see Table 2). The

derived features are divided into three groups: Relocation Activities,
Temporal Activities, and Spatial Activities.
• Relocation Activities, this category aims at quantifying and char-

acterizing individuals’ visits, transitions habits, and capturing

uniqueness and repetitiveness of visits.

• Temporal Activities, this category relates to the behavior of in-

dividuals in time and captures the amount of time spent by

individuals exploring, returning, and visiting distinct locations.

• Spatial Activities, the last category gives an intuition on the

distances walked by individuals when performing each type of

visit and the covered distances.

In what follows, due to the small number of individuals in each

mobility profile for the GPS data sources, and considering that

the different GPS datasets are of the same nature with the same

frequency of sampling and duration of analyses (10 days). We aggre-

gate the mobility traces of individuals of the same mobility profile

to perform a global characterization of each profile as well as a

global comparison between them. We label this new dataset as

Agg_gps. In view of its different nature, we separately analyze the

profiles resulting from the CDR dataset.

For the sake of comparing and displaying the variations of the

different features among individuals of each mobility profile, we

report the box-plot
1
of each feature for Scouters, Routiners, and

Regulars as shown in Figs 4, 5, 6, 7, 8,and 9.

5.1 Scouters’ mobility traits
Scouters are energetic, and dynamic when discovering new places.

However, they become weary and flat while revisiting various areas

they already know. Admittedly, when Scouters start exploring, they
relish discovering many new other places uninterruptedly com-

pared to the rest of the population, as depicted in Figs. 4a and 5a.

On the contrary, after a few revisits of familiar spots, they are keen

to break their returning routine and chase for new areas to expand

their sets of known places as shown in Figs. 4b and 5b. Figs. 4c

and 5c depict that Scouters have remarkably large sets of of known

1
Some overlaps between the box-plots of the different groups can be noticed, yet this

is essentially due to the limitation in the number of users. Though, the tendency is

clearly discernible among the mobility profiles, especially in the CDR figures where

we leverage a larger number of users.

places. Indeed, this class of individuals performs many explorations,

and by consequence, they get to know diverse places. Scouters have
a surprisingly high ratio of places visited only once. Manifestly, they

relish discovering new places. Yet, sometimes they do not revisit

or include them in their routinary patterns, as can be perceived

in Fig. 4d and Fig. 5d. Moreover, from Fig. 4e and Fig. 5e, we can

observe that Scouters do not revisit the same places several times,

except for some specific ones, which indicates that their routinary

patterns consist of a small set of areas.

Figs. 6a and 7a show that the total time amount of time spent by

Scouters exploring is notably larger than the rest of the population,

while their returning time is smaller as depicted in Figs. 6b and 7b.

Besides, Scouters wait a shorter amount of time before transiting

from a place to another as shown in Figs. 6c and 7c. Furthermore,

the average duration of successive explorations is higher for this

Scouters on average they spendmore than 200𝑚𝑖𝑛 ≈ 3ℎ exploring as

depicted in Figs. 6d and 7d. Hence, individuals of this class not only

relish to discover many places successively but also do it for longer

periods. Conversely, their average returning time is shorter than the

other profiles, approximately they spend less than 1000𝑚𝑖𝑛 ≈ 16ℎ

returning as depicted in Figs. 6e and 7e.

Withal, Scouters are active, vivacious, and driven individuals.

Figs. 8a, 9a, 8b, and 9b point out that they walk longer distances

in general. Particularly, they cover longer distances as depicted

by Figs. 8e, and 9e. Moreover, as shown in Figs. 8c and 9c, unlike

the other groups Scouters are characterized by a larger radius of

gyrations 𝑅𝑔 better seen in the CDR dataset. Namely, they cover

larger areas on a daily bases.

5.2 Routiners’ mobility traits
Routiners are steady and rarely leave their zone of comfort. Unlike

Scouters, they discover very few new places consecutively. Hence,

once they explore, they either stay at the same place or go back to

a familiar place as shown in Figs. 4a and 5a. Besides, they rarely

interrupt their successive returns to discover new areas, this can

be observed in the very high value of successive returns in Figs. 4b

and 5b. Individuals of this profile have small sets of distinct visited

places, meaning that they diversify less their visits and enjoy their

routinary habits shifting between familiar locations as depicted by

Figs. 4c and 5c. They are also characterized by a small ratio of places

visited only once, and a large visitation frequency, as depicted by

Figs. 4d, 5d, 4e and 5e. This indicates, that Routiners frequently
revisit many places they know.

Figs. 6a, 7a, 6b, 7b suggest that Routiners spend shorter amount

of time exploring. Additionally, they wait larger moments before

making a transition to another place as shown by Figs. 6c and 7c.

Likewise, Figs. 6d, 7d, 6e and 7e reveal that Routiners spend less than
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Category N Feature name Description

Relocation

Activities

1: (a) Number of successive explorations The average number of successive explorations performed by the individual

2: (b) Number of successive returns The average number of successive returns performed by the individual

3: (c) Number of stops The number of distinct areas visited by the individual

4: (d) Ratio of unique places The ratio of places visited only once

5: (e) Visitation frequency The frequency of visits to each area known by the individual

Temporal

Activities

6: (a) Total exploring time The total amount of time spent by the individual when exploring new places (min)

7: (b) Total returning time The total amount of time spent by the individual when revisiting her known places (min)

8: (c) Waiting time The average amount of time spent by the individual before making a transition to another place (min)

9: (d) Duration of successive explorations The average duration spent by the individual when exploring new places (min)

10: (e) Duration of successive returns The average duration spend by the individual when revisiting her known places (min)

Spatial

Activities

11: (a) Total exploring distance The total distance walked by the individual when exploring new places (km)

12: (b) Total returning distance The total distance walked by the individual when revisiting her known places (km)

13: (c) Radius of gyration 𝑟𝑔 The total radius of gyration of the individual given by 𝑟𝑔 =

√
1

𝑁

∑𝑁

𝑖=1
(𝑟𝑖 − 𝑟0)2 [15], where 𝑟0 is

the center of mass of the individual and 𝑁 is her set of location history and 𝑟𝑖 is a two-dimensional

vector containing the geographical coordinates of the location 𝑖

14: (d) Ratio of distant explorations The ratio of explorations located outside the circle of center 𝑟0 and radius 𝑅 = 𝑟𝑔 over the total

number of visits

15: (e) Average displacement The average distance an individual walks when transiting from a place to another (km)

Table 2: Extracted features.

(a) Number of explorations (b) Number of returns (c) Number of stops (d) Ratio unique (e) visitation freq

Figure 4: Relocation Activities in Agg_gps dataset (better seen in color).

(a) Number of explorations (b) Number of returns (c) Number of stops (d) Ratio unique (e) visitation freq

Figure 5: Relocation Activities in ChineseDB dataset (better seen in color).

(a) Total U time (b) Total R time (c) Waiting time (d) Avg U duration (e) Avg R duration

Figure 6: Temporal Activities in Agg_gps dataset (better seen in color).

300𝑚𝑖𝑛 ≈ 5ℎ exploring. Accordingly, they usually prefer to return to

their comfort zone before performing another discovery and spend

large amounts of time returning before aspiring to discover new

spots. Consequently, the total time allocated by these individuals

for discoveries is smaller than the rest of the population, and on

the contrary, they spend a large amount of time returning.

Routiners do not walk long distances in general as depicted by

Figs. 8a 9a, 8b 9b, 8e, and 9e, meaning that even when exploring

they go to close areas. They are also characterized by a smaller

radius of gyration 𝑅𝑔 as depicted by Figs. 8c, and 9c.

5.3 Regulars’ mobility traits
From Figs. 4a, 5a, 4b and 5b, we can observe that Regulars alternate
between successive explorations and successive returns. In other

words, they are constantly shifting between the exploring and the

returning states. Besides, Figs. 4c, 5c show that they have a large
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(a) Total U time (b) total R time (c) Waiting time (d) Avg U duration (e) Avg R duration

Figure 7: Temporal Activities in ChineseDB (better seen in color).

(a) Total U distance (b) total R distance (c) Rg (d) Ratio outside C(U) (e) Avg displacement

Figure 8: Spatial Activities in Agg_gps dataset (better seen in color).

(a) Total U distance (b) Total R distance (c) Rg (d) Ratio outside C(U) (e) Avg displacement

Figure 9: Spatial Activities in ChineseDB (better seen in color).

sets of known places compared to Routiners but smaller than the

Scouters’. From Figs. 4d and 5d, we can observe the same thing

concerning the ratio of places visited only once. Further, unlike,

Routiners they do not equally visit their known locations, but restrict
their returns to a small set of places (see Figs. 4e, and 5e).

Regulars spend a larger amount of time exploring compared to

the Routiners and a larger amount of time returning than Scouters
as shown in Figs. 6a, 7a, 6b, and 7b. The same can be observed

in terms of time spent in successive discoveries and revisits (see

Figs. 6d, 7d, 6e, and 7e). Besides they usually wait a medium amount

of time before performing transitions from a place to another (see

Figs. 6c, and 7c). Additionally, they walk larger distances when

exploring compared to Routiners as depicted in Figs. 8a, 9a, 8b, 9b,

8c, 9c, 8e, and 9e.

Furthermore, we can also notice from Figs. 9d, and 8d without

exclusion all profiles have a high probability to go outside the circle

of radius equal to their radius of gyrations 𝑅 = 𝑅𝑔 when exploring.

6 SPATIOTEMPORAL PREFERENCES
In this section, we verify if there exist temporal or spatial patterns

followed by users of each profile when exploring. Admittedly, ex-

plorations are characterized by visits to new places (no fine-grained

spatial regularity) that cannot be found in the past history of visited

places of a user. However, such moments may present some pat-

terns that can still be anticipated once the spatiotemporal features

of a user’s exploration behavior are well understood and modeled.

This is motivated by the fact that such visits may have a temporal

or a coarse-grained spatial regularity (e.g., users may like to visit

different restaurants or bars but in the same neighborhood and

usually on Saturday night) dictated by the user’s motivations.

6.1 Temporal Patterns
We enrich our analysis with the exploration of temporal semantics,
which refers to the interpretation of the occurring time of explo-

rations, e.g., morning/evening weekday/weekend. This dimension

is essential for a thorough understanding of exploratory behaviors,

as some discovery events occurring only in certain periods may

remain hidden from global patterns. We define temporal exploration
regularity as repeated explorations over time. For instance, a user

exploring at very similar times each week is considered to have a

highly regular exploratory temporal pattern at that moment of the

week. Hereafter, we use a week-by-week comparison to determine

temporal exploration regularity of individuals. For this part, we only

consider users with high temporal resolution (GPS) and who have

at least 4 complete weeks of data. We are thus, left with 224 users.

Let the exploration timeline denoted by𝑇𝑤
𝑢 = 𝑡𝑤

𝑢,1
, . . . , 𝑡𝑤

𝑢,𝐸𝑤,𝑢

be the ordered sequence of times the user 𝑢 performed explorations

during the week𝑤 , where 𝐸𝑤,𝑢 is the total number of explorations

made by 𝑢 during 𝑤 and 𝑡 the offset in minutes from the origin

"Monday 00:00" of the considered week.

To quantify the temporal exploration regularity we adjust the

ISI-Diversity [19] approach used in neural coding to our case of

study. First, we define the Inter-Exploration Interval (IEI) as the
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Figure 10: IEI instantaneous mean per period of 1h

(a) Scouters (b) Routiners (c) Regulars

Figure 11: Spatial use in Beijing (Downtown).

time between two consecutive explorations. We divide each week

into periods of one hour. Each week comprises then 24×7 periods
𝑃 = [0, 1, . . . , 24, . . . , 72, . . . , 168], and each period 𝑝 ∈ 𝑃 has a

starting time 𝑡
𝑝

𝑚𝑖𝑛
and an ending time 𝑡

𝑝
𝑚𝑎𝑥 = 𝑡

𝑝

𝑚𝑖𝑛
+ 1. Next, for

each user 𝑢, we then measure the IEI function 𝐼𝑤𝑢 (𝑡) that gives the
IEI at time offset 𝑡 of the week𝑤 , and is given by,

𝐼𝑤𝑢 (𝑡 ) =𝑚𝑖𝑛

(
𝑚𝑖𝑛 (𝑡𝑤𝑢 |𝑡𝑤𝑢 > 𝑡 ), 𝑡𝑝𝑚𝑎𝑥

)
−𝑚𝑎𝑥

(
𝑚𝑎𝑥 (𝑡𝑤𝑢 |𝑡𝑤𝑢 < 𝑡 ), 𝑡𝑝

𝑚𝑖𝑛

)
, (1)

if 𝑡 ∈ [𝑡𝑝
𝑚𝑖𝑛

, 𝑡 < 𝑡
𝑝
𝑚𝑎𝑥 ]. If instead, there are no exploration events

within the period 𝑝 , the instantaneous IEI will take the maximum

possible value of 1 hour, i.e, 𝐼𝑤𝑢 (𝑡) = 60𝑚𝑖𝑛. Next, for each individ-

ual, we compute the average instantaneous IEI per period:

𝐼𝑤𝑢 (𝑝) = 𝑎𝑣𝑔(𝐼𝑤𝑢 (𝑡) |𝑡𝑝
𝑚𝑖𝑛

≤ 𝑡 < 𝑡
𝑝
𝑚𝑎𝑥 ) =

1

𝑀

∑
𝑡 ∈𝑝

𝐼𝑤𝑢 (𝑡), (2)

where 𝑀 = |𝐼𝑤𝑢 (𝑡) | and 𝑡
𝑝

𝑚𝑖𝑛
≤ 𝑡 < 𝑡

𝑝
𝑚𝑎𝑥 . Last, we compute the

instantaneous means per period 𝑝 for each user𝑢, given by, 𝜇𝑢 (𝑝) =
1

𝑊

𝑊∑
𝑤=1

𝐼𝑤𝑢 (𝑝), where𝑊 is the total number of weeks (exploration

timelines). Finally, we calculate the instantaneous mean per group

as follows, 𝜇 (𝑝) = 1

|𝑈 |
∑

𝑢∈𝑈
𝜇𝑥 (𝑝), where 𝑈 is the population of a

mobility profile.

In Fig. 10, we report the influence of the time of the week on the

IEI instantaneous mean per period 𝜇 (𝑝) for each mobility profile.

We observe that individuals’ exploration activities over the week

contribute to their mobility profiles:

• Scouters’ proclivity to explore is the highest for all periods of

the week: They have a smaller inter-exploration interval, which

also means more exploration is performed. We can also notice

that their exploration activities increases by the end of the week

reaching its maximum on Friday. Besides Scouters tend to have a

lower IEI from 4 pm to 8 pm during weekdays and hence explore

more by the end of the day.

• Routiners have major discrepancies in exploration activities be-

tween Monday (cold start problem) and the other periods of the

week. This reinforces our previous results on this group, as being

stationary and having a higher inclination to stay in their zones

of comfort.

• Regulars’ average instantaneous IEI means are nearly stable over

the week during daytime with slightly higher exploration activity

on Friday and Sunday.

In summary, conversely to Scouters, Routiners and Regulars relish
exploring all over the week mainly in the afternoon and evenings.

Regulars’ proclivity to explore remains stable over the week with

a slight increase for the weekends. A larger variation between

Monday and the other days of the week can be noticed for Routiners.

6.2 Spatial Coverage
We here analyze and compare the spatial exploitation of Scouters,
Routiners, and Regulars. Our main idea is to identify the geographi-

cal areas where individuals of each profile prefer to explore and how

predictable they are in terms of types of visits in a coarse-grained

resolution. In this regard, we put additional grids of size 2 𝑘𝑚2

and we label each of these grids as a Neighborhood. Following, for
each individual we compute the percentage of the explorations and

returns she performed in each Neighborhood. Because the datasets
(i) are collected independently in different cities and (ii) each city

has its own attraction areas and social gathering particularities,

hereafter we only present results for one city having the largest

number of users, i.e., Beijing of the Geolife dataset.

In Fig. 11, we make a zoom on the most visited areas in Bei-

jing (the city center) and report the spatial coverage of each group

among 132 Neighborhoods (For entire city use see Appendix A.2).

The intensity of green (cf. red) corresponds to the percentage of ex-

plorations (cf. returns) in a given Neighborhood: The lighter shades
of color indicate a low probability, while darker shades designate

a high probability to explore/return. In the following, we list our

main observations.

• Scouters have a high proclivity to explore in most Neighborhoods:
Their explorations activities (i.e., green cells) are spread all around

the city center. In particular, 83 of the 132 city-center Neighbor-
hoods (i.e., more than 62%) are visited for explorations. Besides,

their return activities (i.e., red cells) are also dispersed: More than

67% of the Neighborhoods are used for returns (see Fig. 11a)
2
.

• Routiners relish exploring in specific areas and have compact

spatial use when visiting: They use around 18% of the city center

for explorations and also less than 19% for return activities as

shown in Fig. 11b.

• Regulars favor visiting Neighborhoods within their vicinity when

returning, but tend to go to more distant ones when exploring:

34% of the territory is used for both explorations and returns as

depicted in Fig. 11c.

In what follows, we investigate the capacity of correctly fore-

casting exploring and returning activities with a coarse-grained

spatial resolution. For each individual, we consider her sequence

of visited Neighborhoods when exploring/returning as a stochastic

processV = {𝑉𝑖 }, where 𝑉𝑖 is the 𝑖𝑡ℎ visited Neighborhoods during
a period 𝑇 . We denote by 𝑁 the number of distinct Neighborhoods
visited by the considered user 𝑢, 𝑁 (𝑣) the number of appearance

of the Neighborhoods 𝑣 and 𝑣𝑇
1
(𝑢) the time series of the user 𝑢.

2
Some Neighborhoods have light green shades, this implies that they were less visited

compared to favorite ones, and are not revisited as regularly visited places.
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Entropy rate Predictability
Random entropy: 𝐻𝑟𝑎𝑛𝑑

𝑢 (V) ≡ 𝑙𝑜𝑔(𝑁 ) Π𝑟𝑎𝑛𝑑
𝑢 ≡ Φ−1 (𝐻𝑟𝑎𝑛𝑑

𝑢 , 𝑁 )

Temporal-uncorrelated entropy: 𝐻𝑢𝑛𝑐
𝑢 (V) ≡

− ∑
𝑣∈𝑈𝑛𝑖𝑞𝑢𝑒 (𝑣𝑇

1
(𝑢))

𝑁 (𝑣)
𝑇

𝑙𝑜𝑔

(
𝑁 (𝑣)
𝑇

)
Π𝑢𝑛𝑐
𝑢 ≡ Φ−1 (𝐻𝑢𝑛𝑐

𝑢 , 𝑁 )

Real entropy: 𝐻𝑢 (V) ≡ − ∑
𝑣𝑇
1
(𝑢) ∈V

𝑃 (V =

𝑣𝑇
1
(𝑢))𝑙𝑜𝑔

(
𝑃 (V = 𝑣𝑇

1
(𝑢))

) Π𝑚𝑎𝑥
𝑢 ≡ Φ−1 (𝐻𝑢 , 𝑁 )

Table 3: Entropy and corresponding predictability, as in [6]

For each user, 𝑢 we assign three entropy measures [5] (see Ta-

ble 3) to capture the degree of predictability of the sequences of

visited Neighborhoods: (i) the random entropy 𝐻𝑟𝑎𝑛𝑑
𝑢 that assumes

that all Neighborhoods have the same probability to be visited; (ii)

the temporal-uncorrelated entropy 𝐻𝑢𝑛𝑐
𝑢 (V), which considers the

visitation frequencies to the Neighborhoods but overlooks the tem-

poral correlation; (iii) the actual entropy 𝐻𝑢 (V) that takes into
account the visitation frequency of the Neighborhoods along with
the order in which they were visited. Next, we evaluate the theoret-

ical predictability Π, which refers to the maximum probability of

correctly forecasting the current Neighbourhood from the sequence

of previously visited ones. Let Φ ≡ 𝑥𝑙𝑜𝑔𝑥 + (1 − 𝑥)𝑙𝑜𝑔 (1−𝑥)
𝑁−1 be the

function applied to compute the upper bound of the predictability

as shown in Table 3. Afterward, we compute the PDF of the three

versions of the entropy and the corresponding predictability for the

sequences of explorations (see Fig. 12) and the sequences of returns

(see Fig. 16 in Appendix A.3) for each mobility profile.

Fig. 12 depicts the entropy rate distributions (left plots) and

the equivalent predictability distributions (right plots) of individ-

uals per profile (as shown in Table 3), when exploring new places
only. We can observe the important shift of 𝐻𝑢 (green curve) in all

groups compared with 𝐻𝑟𝑎𝑛𝑑
𝑢 (blue curve) and 𝐻𝑢𝑛𝑐

𝑢 (yellow curve).

𝑓 (𝐻𝑟𝑎𝑛𝑑
𝑢 ) picks at 5.8 for the Scouters, and around 5 for the Routin-

ers and the Regulars. This indicates that, the next Neighbourhood
where a Scouter is going to explore can be found among 2

5.8 = 56

Neighbourhoods and among 2
5 = 32 Neighbourhoods for the others,

if the individual chooses her next location to explore in a random

way. Instead, 𝑓 (𝐻𝑢 ) picks around 3 for the Scouters, 2 for Routiners
and 2.5 for Regulars. In other words, the real uncertainty in terms

of number of Neighbourhoods is about 23 = 8 for Scouters, 22 = 4

for Routiners and 2
2.2 ≈ 5 for Regulars.

Additionally, 𝑓 (Π𝑚𝑎𝑥
𝑢 ) picks at Π𝑚𝑎𝑥

𝑢 ≈ 0.78 for Scouters and at

0.8 for Routiners and Regulars. This means that only at least 22% (cf.

20%) of the time, a Scouter (cf. a Routiner or a Regular) chooses her
location in a manner that appears to be random. This suggests that,

though the apparent randomness of individuals’ explorations, a his-

torical record of an individual’s discoveries hides an unexpectedly

high degree of potential predictability on a coarse-grained spatial
resolution scope.

7 EXPLORATION’S IMPACT ON PREDICTION
As previously introduced, any predictor that relies only on the past

visiting history of individuals will systematically fail in predicting

moments of explorations. As shown through our study, these are

numerous and widely present in the daily lives of the Scouters.

Hereafter, we show how our investigations allow to distinguish

from (1) the rest of the population, individuals whose future location

visits are hard to predict (essentially due to their high propensity to

explore, i.e., the Scouters), and (2) the whole mobility of individuals,

the moments with novelty-seeking connotation, which is also hard

to predict even for Routiners.
As a way of illustration, we evaluate the success rate for right

predictions using two classical Markovian predictors of order 1 from

literature: Markov Chain (MC) and Prediction by Partial Matching

(PPM) as in [10]. Such predictors forecast the current location from

the set of previously visited locations. In what follows, we use the

ChineseDB dataset, as it comprises the largest number of users.

First, for each predictor, we assign to each individual a success

rate score initially equal to 𝑠 = 0. Second, we train the predictor

using 𝑄 records (tuples), where 𝑄 is two-thirds of the size of the

mobility trace. (we set aside the rest of the trace for testing). Third,

we use the predictor to forecast the next location in the next time

bin (within 1h). If the predictor correctly forecasts the next location,

the score 𝑠 is incremented (𝑠 = 𝑠 + 1). Following, we retrain the

predictor using 𝑄 plus the last predicted record. Next, we go back

to the third step until𝑄 equals the size of the mobility trace. Finally,

we normalize the score by the total number of tests, i.e., one-third

of the size of the mobility trace.

Fig. 13a depicts the cumulative distribution function of the suc-

cess score for each predictor. We can see that both MC and PPM

achieve their highest performances with the Routiners (green) and
the lowest ones with the Scouters (red). While the success rate for

right prediction is higher than 0.6 for 50% of the Routiners, the
success score for 80% of the Scouters is under 0.25. Besides, Regu-
lars hold low scores as well. Through, these two simple Markovian

predictors, we confirm the existence, of two main categories of people:
those whose mobility is hard to predict,i.e., the Scouters, and those
having a highly foreseeable mobility behavior Routiners.

Wenow remove novelty-seeking records from themobility traces,

alternatively stated, we select only the records where the user per-

formed a return to a routine location. Next, as earlier we use both

predictors MC and PPM to predict the next location using these

new mobility traces, i.e., traces with no exploration events, and

compute the success score for right predictions.

We have two main observations with regard to the results shown

in Fig. 13b. First, the predictive performance of both prediction

algorithms are no longer as distinguishable among the different

mobility profiles as in Fig. 13a. Second, the success score is high

for all the groups: 80% of the population has a success score above

0.75. From these notes, we shed light on one of the central origins

of predictors low predictive performance, i.e., explorations. Indeed,
all groups become more predictable when overlooking novelty-seeking
records. Moreover, Scouters who are characterized by their high

proclivity to explore become almost as predictable as the other

group, whereas a significant difference can be observed among the

groups when taking the exploration phenomenon into account.

Highlights: Through our study, we have shown the existence of a

category of individuals whose mobility is very hard to predict that

we labeled as Scouters, essentially due to their high proclivity to

explore. While existing predictors can achieve high performance for

the other groups, they exhibit weak and low scores for the Scouters.
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(a) Scouters (b) Routiners (c) Regulars
Figure 12: Entropy and predictability of profiles when considering only explorations (better seen in color).

(a) Whole trace (b) Sequence of returns

Figure 13: Distributions of the success rate for each predictor.

Hence, models and predictors considering individuals’ tendencies

for novelty-seeking are crucial for the Scouters. Our mobility profil-
ing can promptly and easily help to identify this category of people.
Besides, based on our temporal pattern analysis, we can draw out

the probability to perform an exploration according to the period

of the day and the day of the week. In moments of high exploration

probability, a coarse-grained location could be inferred according to

our spatial coverage analysis. The intuition here is that services and

applications leveraging people mobility could better take advantage

of an accurate Neighborhood-scale exploration prediction, than of a

wrong prediction to a previously visited fine-grained location.

8 CONCLUSIONS AND FUTUREWORK
In this paper, we have accomplished four tasks. First, we proposed

a new mobility profiling method, with the potential to capture indi-

viduals’ propensity to explore new areas, namely, Scouters (adven-
turous and prone to explore); (ii) Routiners, (steady and routinary),

and (iii) Regulars (with medium behavior). Second, we extracted the

mobility traits of each group and strengthened the subsisting dis-

similarity between them. Third, to sustain our profiling method we

reported the profiles to the spatial and temporal use. We unveiled

individuals’ temporal patterns on a weekly basis and showed that

Scouters’ proclivity to explore is very significant throughout the

week. Moreover, we showed that explorations in a coarse-grained

spatial scenario are far from being random. Finally, we showed

how our mobility profiling can help in pinpointing individuals who

are hard to predict due to their high proclivity to explore. We then

briefly discuss how our approach can help to improve the predictive

performance of existing predictors.

For future work, we will apply our mobility profiling and spa-

tiotemporal analysis to develop an adaptive factor, i.e., given a

past history of an individual, her mobility profile, and her current

context we can indicate her temporal proclivity to explore within

the current moment. Further, we aspire to use the adaptive factor

indicator to design a predictor. The latter will leverage our spa-

tiotemporal analysis to yield an intuition on the next area where

an individual is prone to be in case of an exploration and thus, to

adjust simple classical predictions’ results.
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A APPENDIX
A.1 Clustering
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(a) GMM
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(b) 𝑘-mean

Figure 14: Silhouette score.

Fig. 14 depicts the silhouette score, obtained for the two cluster-

ing algorithms GMM Fig. 14a and 𝑘-mean Fig. 14b. Fig. 14a shows

that the optimal number of components for the GMMmethod varies

from a dataset to another. Though a clustering with three elements

appears to be more equitable, as all datasets have a score above 0.4.

Likewise, the clustering with two components is approximately just

as effective. Fig. 14b depicts that two, three, and four components

are good candidates for the 𝑘-mean algorithm. Still, a clustering

with three groups seems to be more balanced amid the datasets.

Accordingly, we have two candidates for the best number of compo-

nents. Nonetheless, we choose a clustering with three components

as it maximizes the minimal score for both of the clustering al-

gorithms, and appears to be more meaningful for all of our data

sources.

A.2 Spatial Coverage
Figure 15 depicts the spatial use of Scouters in the city of Beijing.

Figure 15: Spatial use in Beijing for scouters.

A.3 Predictability of returns
Figure 16 depicts the entropy rate distributions of the three versions

of entropy and the equivalent distributions of the upper bounds

on the predictability distributions for returns. We can note that

𝑓 (Π𝑢 ) narrowly peaks around Π𝑢 ≈ 0.98 for Routiners, then comes

Regualrs with a peack at Π𝑢 ≈ 0.96 than Scouters with a pick at

Π𝑢 ≈ 0.94. Accordingly, we corroborate our mobility profiling

through the spatial exploitation analysis.

(a) Scouters

(b) Routiners

(c) Regulars

Figure 16: Returns
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