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ABSTRACT
A major limiting factor for prediction algorithms is the forecast of
new or never before-visited locations. Conventional personal mod-
els utterly relying on personal location data perform poorly when it
comes to discoveries of new regions. The reason is explained by the
prediction relying only on previously visited/seen (or known) loca-
tions. As a side e�ect, locations that were never visited before (or
explorations) by a user cause disturbance to known location’s pre-
diction. Besides, such explorations cannot be accurately predicted.
We claim the tackling of such limitation �rst requires identifying
the purpose of the next probable movement. In this context, we pro-
pose a novel framework for adjusting prediction resolution when
probable explorations are going to happen. As recently demon-
strated [3, 15], there exist regularities in returning and exploring
visits. Moreover, the geographical occurrences of explorations are
far from being random in a coarser-grained spatial resolution. Ex-
ploiting these properties, instead of directly predicting a user’s next
location, we design a two-step predictive framework. First, we infer
an individual’s next type of transition: (i) a return, i.e., a visit to a
previously known location, or (ii) an exploration, i.e., a discovery of
a new place. Next, we predict the next location or the next coarse-
grained zone depending on the inferred type of movement. We
conduct extensive experiments on three real-world GPS mobility
traces. The results demonstrate substantial improvements in the ac-
curacy of prediction by dint of fruitfully forecasting coarse-grained
zones used for exploration activities. To the best of our knowledge,
we are the �rst to propose a framework solely based on personal
location data to tackle the prediction of visits to new places.
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1 INTRODUCTION
Accurately predicting human trajectories is relevant to many do-
mains and applications such as targeted advertising, epidemic pre-
vention, or smooth resource and handover management for mobile
networks [1, 5, 23]. Due to predictors’ invaluable contributions, the
research community has witnessed a plethora of mobility predic-
tion methods and techniques becoming more and more robust and
accurate [2, 4, 10, 18].

Prediction tasks can be classi�ed into two categories [1]: (i)
next-place formulation that aims at predicting transitions between
places (ii) next-cell formulation that seeks to forecast the location
of a user within the next time bin. In the next-place prediction task,
the stationary behavior anchored in human movements is omitted.
Therefore, it is more sensitive to irregular visits, and in particular,
to discoveries of new or never before-visited places [1, 5]. In this paper,
we focus on the next-place task, which performs dramatically lower
in terms of prediction accuracy than the next-cell formulation and
represents a more challenging problem [1, 23].

Discoveries of new locations commonly referred to as explo-
rations are a major limiting factor for prediction tasks [1]. Indeed,
forecasting discoveries of new places is ambitious and di�cult to
tackle as it is about predicting the unknown. Conventional personal
predictors such as Markov-based models [10, 18, 20] or Hidden
Markov Models (HMM) [16] utterly rely on historic personal lo-
cation data to predict future locations. Moreover, they predict a
user’s next location on the assumption that it belongs to the set
of her known places [23]. This engenders erroneous forecasts at
each occurrence of an exploration event, which is worsened by the
fact that such events are numerous and largely present in the daily
lives of users: on average 70% of visits happen only once [1]. This
representative rate highlights how impacting exploration-intended
visits are for conventional personal predictors and puts in evidence
the need for detecting such types of movements.

Advanced contextual information has recently been jointly used
with mobility data to better tackle exploration visits in predic-
tions [16, 23]. Examples are the semantic of the visited location, the
activity performed within the location, the personality traits of the
user [7], or her social circle [1, 23]. Such contexts request massive
data collection and bring privacy concerns [12, 21]. Although pos-
sibility enhancing prediction, we let context-aware prediction to
future work and focus our investigations uniquely on individuals’
mobility data.

In this paper, we propose a newly tailored mobility prediction
framework that tackles the exploration problem by leveraging the
purpose of movements at prediction decisions, only using location
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data. Several works demonstrate the inherent temporal periodicity
and spatial regularity of human return visits [15]. Furthermore,
in our previous work [3], we show that, though the apparent ran-
domness of exploration visits, their temporal and geographical
occurrences are far from being random when considering coarser-
grained spatial scopes. Exploiting these properties – instead of
conventionally predicting a user’s next location based on the his-
tory of known visited places –, we design a two-step prediction
framework that encloses two modules: (i) the purpose of movement
predictor and (ii) the spatial predictor. By doing so, we claim spatial
prediction of users’ mobility is enhanced by a better perception of
the motivation behind movement decisions.

First, we add movement semantic to the mobility traces. To do
this, we split the visits into two purposes of movements: (i) explo-
rations and (ii) returns. Such two purposes hereafter referred to
as types”, and the related transitions among the two movement
types are then leveraged in the second step of our framework. In
accordance with the resulting sequences of types of movements,
we propose two distinct movement predictors: (i) Successive Types
of Movements Predictor (STMP) and (ii) Inter Exploration Interval
based Predictor (IEIP) to infer whether the next transition is an
exploration or a return. Finally, given the inferred type of visit, we
propose two spatial predictors: (i) Personal Spatial Predictor (PSP)
and (ii) Joint Spatial Predictor (JSP). If the inferred type is a return,
both spatial predictors employ a �rst-order Markov Chain (MC)
predictor to forecast the next visited location (small cells). On the
contrary, if the next movement is an exploration, PSP and JSP adapt
their prediction to forecast a zone (large cells) instead of a location.

Although predicting explorations in a coarse-grained spatial
resolution, we believe our framework brings individual-perception
capabilities to mobility predictors. First, it tackles the conventional
predictors’ limitation of being oblivious to users’ explorations, which
results in low accuracy forecasts, especially for highly exploratory
users. Second, it provides a way for predictors (and for entities taking
bene�ts from their results) to identify how trustable predictors results
are in terms of accuracy, and accordingly, adapt their prediction to
users’ intention behind their movement. Our contributions are:
• To the best of our knowledge, we are the �rst to propose an
exploration-aware mobility prediction framework that solely
relies on timestamped location data. The proposed framework
splits the location prediction problem into two main steps: (i)
predicting the next type of movement (exploration or return) (ii)
inferring the spatial location of the visit.

• We design a �rst movement predictor STMP that exploits the
regularity of return-like visits, as well as the exploration-like visits
reasoning humanmobility, to infer the type of the nextmovement.
We propose a second predictor IEIP that focuses on explorations
habits in time to forecast their occurrence (Section 4.1). And
evaluate the performance of themovement predictors with regard
to each type of movement (Section 6).

• Next, we propose two spatial predictors that take as input the
outcomes of the movement type’s predictors. If the input is a
return, the spatial predictors PSP and JSP employ anMC predictor
to predict the next location of size (200<)2. If the input is an
exploration, the PSP looks at the user’s past history to infer the
next zone. Instead, the JSP exploits the collective exploratory
behavior besides the user’s past history for its forecasts. We

consider zones of di�erent size in our study: (800<)2, (1:<)2,
(2:<)2, and (4:<)2 (Section 4.2).

• Using three real-world GPS datasets, we evaluate the perfor-
mance of our proposed framework. We show our framework
allows increasing the prediction performance in general, but it
can also be tuned according to the needs and requirements of the
using applications or services. For instance, exploration forecasts
decrease uncertainty in population mobility anticipation, which
directly enhances resource allocation in network planning (as
for the placement of Mobile Edge Computing (MEC) by telecom
operators) and recommendation systems performance. In these
cases, the proposed framework allows tuning the accuracy of ex-
ploration forecasts (from low to high) according to the intended
spatial resolution or aimed e�ectiveness of services: e.g., adjust-
ing coverage areas from 1:<2 to (4:<)2 in MEC deployment
according to population density or still, the spatial precision of
target areas from (200<)2 or 1:<2 in recommendation systems).
The rest of the paper is organized as follows. In Section 2, we

review the related work. In Section 3, we formulate the problem
and introduce the general structure of the proposed framework.
In Section 4, we detail our proposed prediction framework. After
the framework description in Section 5, we present the three real-
world GPS traces that we employ to evaluate the performance of
the proposed framework (Sections 6 and 7). Finally, we conclude
our paper in Section 8.

2 RELATEDWORK
Accurately predicting human mobility can bene�t various applica-
tions particularly in the �eld of ubiquitous computing and urban
planning. Existing individual-level predictors seek to predict the
future location of a given user [4, 16, 18, 20] and can be classi�ed
into two categories: personal, i.e., the forecasts are solely based on
the user’s personal data [18, 20] or joint, i.e., that in addition to the
personal data of the user, common mobility patterns and behavior
are exploited to infer the user’s future locations [4, 16, 24].

Markov-based models are common models for personal predic-
tors. Gambs et al. [18] propose an MC model that exploits the =
previously visited locations to predict future visits. Using GPS mo-
bility traces they reveal that the next location can be predicted with
a markedly high accuracy of 70-95%. Likewise, Lu et al. [20] and
Song et al. [19] use Markov-based models. The former, use a vary-
ing order MC model, where the order is high when the historical
information is limited and becomes smaller when the historical
trajectory is over 100 points. The achieved accuracy of prediction
with a �rst-order MC model on a CDR dataset surpasses 90%. The
latter exploit several methods 0-order MC, LeZi, Prediction by Par-
tial Matching (PPM), and Sampled Pattern Matching (SPM) to infer
future locations based on the past history. They show that Markov
predictors work as well or better than more complex compression-
based predictors and report an accuracy of prediction between 65%
and 72% on Dartmouth’s campus-wide Wi-Fi wireless network.

In contrast to the aforementioned works that tackle the next-
cell prediction problem, Gidofalvi et al. [10] consider the next-
place prediction task i.e., predicting transitions between places
(as in our case of study). The authors propose an inhomogeneous
continuous-time Markov model to predict when a user will leave
her current location and where she will move next. The evaluation
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of the predictive performance with a GPS dataset reports that the
accuracy of prediction is above 67%. Other more complex methods
are employed for personal predictions. For instance, Mathew et
al. [16] propose a hybrid approach that �rst clusters the locations
according to their characteristics (temporal period in which they
occurred), then trains HMM on each cluster. To predict the next
visited location, the model starts by identifying the most likely
cluster, then infer the future location using the corresponding HMM.
The authors, measure a prediction accuracy of about 13.85% with
GPS trajectories. A further example, Feng et al. [9] employ the
Kalman �lter to predict the future location of a vehicle.

Nonetheless, these conventional personal models fail to predict
visits to new locations [1, 23]. Hence, several joint methods that
train on aggregated data are more and more employed to enhance
the predictive performance of individuals’ mobility. Asahara et
al. [4] propose a Mixed Markov chain Model (MMM) that �rst
classi�es the users into groups of similar users. Next, to predict
the future location of a user it trains an MC predictor for all users
of the group to which she belongs. The authors compared the
performance of the MMM, with the MC and HMM models. They
report an accuracy of prediction of 16.9% (45.6%) for MC, 4.2%
(2.41%) for the HMM, and 74.1% (64%) for theMMMwhen predicting
transitions between locations with simulation (real-world GPS)
data. Calabrese et al. [6] introduce a predictor that combines an
individual’s past mobility choices with collective behavior to help
(i) predict the likelihood the user changes location and (ii) infer
the type of geographical areas that should be similar to the type
that interest the collectivity at the given time. Using a CDR dataset,
the authors report a good level of accuracy in terms of prediction
error (60% of the errors are zero). Alhasoun et al. [2] propose a
Dynamic Bayesian Network approach that couples friends "similar
strangers" records to increase the accuracy in predicting the next
location. They report an accuracy of prediction of 60.03% by relying
on timestamped geographical data in addition to social contact
contextual information.

While most of the previous works base their forecasts on times-
tamped geographical data, the recent availability of enriched geo-
tagged datasets with various contextual information brings new
opportunities to enhance the prediction task [1]. Nonetheless, such
data sources are not publicly available and require to follow a non-
trivial process for their acquisition. Moreover, with the emerging
requirements of privacy protection, handling such data raises seri-
ous privacy concerns. Therefore, scholars strive to consider privacy
issues straightforwardly in the modeling and system or bypass
them by employing the least possible data [12, 21].
Position of our work: Di�erent from the existing works on indi-
vidual mobility prediction. We focus on the exploration problem in
the next-place prediction task by solely manipulating timestamped
geographical data. In this regard, we propose a two-step exploration-
aware mobility prediction framework. Here, prediction is �rstly
performed to forecast the next type (or purpose) of movement. We
then leverage this knowledge to adapt predictors decisions at the
inference of the next place of users.

3 PROBLEM FORMULATION
We leverage GPS traces and due to the popularity and high preci-
sion of such data, we suppose that users’ locations are calculated

based on the GPS system. Our approach can be adapted to other
positioning systems. A GPS point is de�ned by its coordinates lati-
tude, ;0C and longitude ;>=. The GPS mobility trace TD of a user D
can be de�ned as follows,

D��������� 1 (GPS M������� ����� TD ). it is an ordered se-
quence of GPS records reporting the locations visited by the user D
during the data collection period. A GPS record @ =< D, C, ;0C, ;>= >
contains the following information: the identi�er of the user ”D”,
the date of collection ”C”, the latitude ”;0C”, and longitude ”;>=”.
Thus, the GPS mobility trajectory TD of the user D can be written
as, TD = h(C0, ;0C0, ;>=0), (C1, ;0C1, ;>=1), . . . (C# , ;0C# , ;>=# )i.

Due to GPS range errors, locations are usually de�ned by spatial
grid IDs or Points of Interest. Following customary practice [1], we
superpose uniform grids of size cmeters⇥ cmeters on the geograph-
ical maps. Next, we project the GPS coordinates to convert them into
spatial grid IDs. We consider di�erent cell size: cells of size (200<)2
that we refer to as locations, cells of size (800<)2 that we refer to as
zones_0, cells of size (1:<)2 that we refer to as zones_1, cells of size
(2:<)2 that we refer to as zones_2, and cells of size (4:<)2 that
we refer to as zones_4. Thus, the mobility traces are extended to
TD = h(C0, ;0, I00, I10, I20, I40), . . . , (C# , ;# , I0# , I1# , I2# , I4# )i.

As mentioned earlier, in this work, we focus on the next-place
prediction problem. Hereafter, we provide a general de�nition,

D��������� 2 (N��������� M������� P��������� ). given
the current location ;# of a user, the next-place mobility prediction is
about predicting the next location ;#+1 to which the user will make a
transition.

The next-place prediction encompasses two main tasks: (i) pre-
dicting when an individual will make a transition (ii) predicting
where the individual will go next. In our approach, we relax the
next-place prediction problem to where will the individual go next?
by assuming that the transition time is already known.

The mobility prediction problem can be tackled in several ways
depending on the characteristics of the data and the objectives of
the forecast. It can be addressed either directly, i.e., by straight-
forwardly inferring future locations [14, 18], or indirectly, i.e., by
forecasting other events such as social context, type of direction,
and so forth, and based on that infer the next location [1, 23]. Be-
sides, the prediction can also be personal, or joint [4, 18, 23]. When
only timestamped geographical data are available, conventional
models are usually direct-personal or direct-joint, i.e., they attempt
to predict the future locations directly using the individual’s data
or the aggregated collective data [1, 23].

In contrast, in this work, we propose a simple indirect method
for predicting transitions between places by utterly relying on
timestamped geographical data. An individual’s mobility trajec-
tory can be viewed as a sequence of instants of returns interrupted
by instants of explorations [3, 15]. Unlike conventional predictors
leveraging the same type of data, we do not naively infer the fu-
ture location based on the past history of the user, if next, she is
more likely to discover a new one. As Figure 1a shows, the proposed
mobility predictor consists of two parts: (i) type of movement predic-
tion and (ii) spatial prediction. Details of these parts are presented
in the following Sections.
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Figure 1: Exploration-Aware Mobility Prediction Framework.

4 EXPLORATION-AWARE MOBILITY
PREDICTORS

Our proposed method is divided into two sequentially dependent
modules: (i) purpose prediction, i.e., predicting the next type of
movement (Section 4.1) and (ii) spacial prediction, i.e., inferring
the next location or zone where the individual will be (Section 4.2).
Both modules are detailed in the following.

4.1 Purpose prediction
Following recent practice [1, 3], the proposed movement prediction
strategies adopt the subsequent movement dichotomy: (i) explo-
rations or discoveries of new places 4 and (ii) visits of previously
known locations termed returns A . Hence, the set of movements
comprises two elementsM = {4, A }. The movement prediction task
aims to answer the following question: what will the individual do
next? Explore or return?

Considering the de�nition in Section 3, we convert the origi-
nal GPS mobility trajectories of each user D into a sequence TD =
h(C0, ;0, I00, I10, I20, I40), . . . , (C# , ;# , I0# , I1# , I2# , I4# )i. Next, as
in [1], we assume that the �rst occurrence of a location ;G in TD is an
exploration (cf. 4), else it is a return (cf. A ). Thus, before browsing the
mobility traces, each user D has an empty set of known locations
LD . We then add movement semantic to each record @G 2 TD in the
mobility trace, by associating the label A in case ;G 2 LD , otherwise
we associate the label 4 as depicted in Figure 1b. When a location
is �rst met, it is added to the set of known locations LD .

Subsequently, we propose two approaches to forecast the next
type of movement an individual will perform.
Successive Types of Movements Predictor (STMP): In the �rst
approach, we ignore the temporal dimension. In other words, only
the order of occurrence of the types of visits is considered but not
the elapsed time. To forecast the type of the # + 1C⌘ movement of
the user D, we construct the table 4G?D that contains the number of
successive explorations within the mobility trace TD that comprises
# records. When a user starts exploring a counter =1_4G?  1 is
started. After each consecutive explorations, the counter is incre-
mented =1_4G?  =1_4G? + 1 until meeting a return or the end of
the trace TD , the value of the counter is saved in the table 4G?D and
reset to 0. Each time an exploration event occurs after a return the
process restarts again until reaching the end of the sequence (cf.
Algorithm 1, lines 4–6). Likewise, we construct a table A4CD that con-
tains the number of successive returns within TD (cf. Algorithm 1,
lines 12–13). Following, we compute two values to characterize
exploration visits, `4G? =<40=(4G?D ) and f4G? = BC3 (4G?D ) that
are the average and standard deviation (respectively) of successive

explorations (cf. Algorithm 1, line 20). Similarly, we compute the av-
erage and standard deviation of successive returns (cf. Algorithm 1,
line 21). Final decision: According to the last type of movement,
if the number of the successive same type of movement is included
in the interval [`C~?4 ± fC~?4 ] with C~?4 2 {4, A }, then predict
the same movement as next, else predict the opposite movement
(cf. Algorithm 1, lines 22–26). For instance, if the last movement
was an exploration 4 and the current number of successive explo-
ration =1_4G?D is included in the interval [`4G? ± f4G? ], then an
exploration 4 is predicted, else a return A is predicted.

Algorithm 1 Successive Types of Movements Predictor – STMP –

1: function STMP
�
TD , LD

�
2: for ; in TD do ù Successive same types of movement calculation
3: if ; 8 LD then ù Explorations
4: =1_4G?D  =1_4G?D + 1
5: LD .�⇡⇡ (;)
6: ;0BC  e
7: if =1_A4CD > 0 then ù Successive returns interruption
8: A4CD .�⇡⇡ (=1_A4CD )
9: =1_A4CD  0
10: end if
11: else ù Returns
12: =1_A4CD  =1_A4CD + 1
13: ;0BC  r
14: if =1_4G?D > 0 then ù Successive explorations interruption
15: 4G?D .�⇡⇡ (=1_4G?D )
16: =1_4G?D  0
17: end if
18: end if
19: end for
20: `4G? ,f4G?  (C0CB (4G?D )
21: `A4C ,fA4C  (C0CB (A4CD )
22: if ;0BC = e and =1_4G?D 2 [`4G? ± f4G? ] or ;0BC = r and =1_A4CD 8 [`A4C ±

fA4C ] then
23: return e ù Predict an exploration
24: else
25: return r ù Predict a return
26: end if
27: end function

Inter Exploration Interval Predictor (IEIP): Temporal occur-
rence of exploration visits is the main and unique parameter con-
sidered in prediction decisions. To predict the # + 1C⌘ type of
movement, we consider the trace TD of size # . We focus on explo-
ration events, as previously shown in [3] the temporal exploration
activities appear to be regular. Therefore, we compute the Inter-
Exploration Interval (IEI), i.e., the elapsed time between two consec-
utive explorations [3] (cf. Algorithm 2, lines 2–5). Final decision:
If the elapsed time since the last exploration event is included in
the interval [`�⇢� ±f�⇢� ], we forecast that the next movement is an
exploration else we forecast a return (cf. Algorithm 2, lines 9–13).
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Algorithm 2 Inter Exploration Interval Predictor – IEIP –
1: function IEIP ()D , LD )
2: for (C , ;) in)D do ù IEI sequence computation
3: if ; 8 LD then
4: C01_4G?_8=C4AE0; .�⇡⇡ (C � ;0BC )
5: ;0BC  C
6: end if
7: end for
8: `�⇢� ,f�⇢�  (C0CB (C01_4G?_8=C4AE0;)
9: if C# +1 � ;0BC 2 [`�⇢� ± f�⇢� ] then
10: return e ù Predict an exploration
11: else
12: return r ù Predict a return
13: end if
14: end function

4.2 Spatial Prediction
Recall that return visits are highly foreseeable due to their high tem-
poral periodicity and partial regularity [1]. Likewise, exploration
visits are not completely random if we consider a coarse-grained
spatial scope [3]. In what follows, we propose two spatial predictors
leveraging the results of purpose predictors to improve exploration-
like forecasts: (i) Personal Spatial Predictor (PSP), (ii) Joint Spatial
Predictor (JSP). The description of such predictors is preceded by
the introduction of three prediction methods used by PSP or JSP
according to the type of movement issued by the purpose predictors.

4.2.1 Prediction methods. Considering the mobility trace TD =
h(C0, ;0, I00, I10, I20, I40), . . . , (C# , ;# , I0# , I1# , I2# , I4# )i, of the
user D, with # records, we �rstly leverage three distinct methods
(cf. ME) for next visits’ prediction, accordingly adjusted to operate
(i) on two spatial resolutions (i.e., location or zones) and (ii) with
two mobility views (i.e., personal or joint):
(ME) MC Location-Predictor: This predictor gets as input the
mobility trace of an individual only. To predict the next location
where the user will go, the MC Location-Predictor considers the
stochastic sequence of the visited locations G#0 = ;0, ;1, . . . , ;# . Next,
it trains a �rst-order MC predictor on the #B = 2

3 ⇥# �rst elements.
Following, the MC Location-Predictor forecasts the next location
;#+1 that will be visited by the user.
(ME) Personal Zone-Predictor:We slightlymodify theMCLocation-
predictor to predict the future coarse-grained zone, instead of loca-
tions, where the user will be. It considers the stochastic sequence
of visited zones G#0 = IG0, IG1, . . . , IG# . Then, similar to the MC
Location-Predictor, it trains a �rst-order MC predictor using the �rst
#B = 2

3 ⇥ # elements of the coarse-grained sequence. Afterward, it
forecasts the next visited zone IG#+1.
(ME) Joint Zone-Predictor: We go further here and design a
benchmark predictor that leverages the collective exploratory mo-
bility behavior of the population, as input. Besides, prediction is
done in terms of zones where a user will perform an exploration, in
case she is more prone to discover a new place. First, it constructs
an Exploration Origin-Destination (EOD) matrix E(C) at time C . The
matrix gives an estimation of the probability to make a discovery in
a zone 9 after visiting the location 8 . More precisely, the EODmatrix
is of size = ⇥<, where = is the number of di�erent "Origins" and
< is the number of the di�erent "Destinations". The "Origins" set
contains only locations after which explorations happened. Hence,
it is at most equal to the total number of locations visited by the

users. The "Destinations" contains all the distinct zones where users
explore. Each e8, 9 gives the probability of exploring in the zone 9
after visiting the location 8 . For instance, in Figure 2, if the user
in the location !3 is more prone to explore at time C , the Joint
Zone-Predictor �rst constructs the EOD(C ) matrix. Next, it identi�es
the most likely zone - where users usually explore after being in
!3, i.e., the zone with the highest 4!3- . Finally, it suggests the zone
- = /1 as the next spatial unit where the user will explore, i.e.,
discover a new location.
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L3

Ln

�

Z1 Z2 Z3 Z4 Zm
e11

e21

en1

e31
�

… … … …
e12 e13 e14 e1m…

…
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where to explore

Highest joint 
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e31

e32

e33

e34

e36

e35

Figure 2: Joint Zone-Predictor.

4.2.2 Designed Spatial Predictors. Using the aforementioned pre-
diction methods, we design two spatial predictors:
Personal Spatial Predictor (PSP): The PSP takes as input the
predicted type of movement. In case, the forecasted movement is a
return, it uses theMC Location-Predictor to forecast the next visited
location. Hence it provides a �ne-grained intuition on where the
user will be next. On the other side, if the predicted movement
is an exploration, the PSP employs the Personal Zone-Predictor.
Accordingly, a coarse-grained spatial unit is returned.
Joint Spatial Predictor (JSP): Similar to the PSP, the JSP takes
the outcomes of a movement predictor as an entry. If the forecasted
movement is a return, the MC Location-Predictor is used to infer
the next location. Else, the Joint Zone-Predictor is used to infer the
zone where an exploration might occur.

Note that the geographical accuracy of the proposed spatial
predictors decays when the considered user is assumed to be ex-
ploring. Although this decay in performance, the inferred zones are
of reasonable size that might lure and bene�t many applications,
such as recommendation systems or Multi-access Edge Computing
infrastructures improvement.

5 EXPERIMENTAL SETTINGS
We present next the used data sources and describe the procedure
ensued to complete the missing records and to �lter out bad users.
Finally, we present a simple mobility pro�ler that we apply to
discuss the optimal use of the proposed prediction framework,
whether it bene�ts the whole population or is more suited to users
exhibiting a high exploration activity.

5.1 Datasets
Three real-world GPS mobility traces are used to evaluate the per-
formance of our proposed exploration-aware predictor. The charac-
teristics of the datasets are detailed in Table 1.
Macaco [13]: it collects 900k GPS records of users from more than
6 di�erent countries lasting for about 34 months (from May 2015
to April 2018) with a frequency of one sample each 5minutes. Each
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record includes a user ID, a timestamp, and location information, i.e.,
GPS coordinates (latitude and longitude). The dataset was collected
by the MACACO project, but for project-related privacy policies,
this dataset is not publicly available.
Privamov: [17]: it contains around 156 million GPS records of 100
volunteers from the city of Lyon in France. The data collection spans
15 months, from October 2014 to January 2016 with a frequency
of sampling roughly equal to a few seconds. Every tuple consists
of four parts, an anonymized user ID, the date of collection, the
latitude, and longitude. The dataset was collected by the Privamov
sensing campaign and is available on request.
Geolife: [22]: it is a public dataset collected by Microsoft Research
Asia, it collects more than 900 k GPS records of 182 individuals
distributed in over 30 cities mainly in China, the USA, and Europe.
The data collection lasted more than 64 months, from April 2007
to August 2012 with a frequency of 1 sample every 1⇡5 seconds.
Each GPS tuple contains an anonymized user ID, a timestamp, and
location information (latitude, longitude, and altitude).

Dataset Users Duration Frequency Records
Macaco [13] 132 34 months 5 min 900 k
Privamov [17] 100 15 months few seconds 156 M
Geolife [22] 182 64 months 1 to 5 seconds 900 k

Table 1: Datasets description.

5.2 Data handling
We extract the GPS mobility trajectory of each individual D, TD =
h(C0, ;0, I00, I10, I20, I40), . . . , (C# , ;# , I0# , I1# , I2# , I4# )i. To elim-
inate the harmful sparsity e�ects, we complete the mobility traces
according to steps in [8]. We identify three locations per user:
• Workplace A (;F?� ): the most frequent daily location between
10 am and 11 am.

• Workplace B (;F?⌫ ): the most visited location between 2 pm
and 5 pm.

• Home (;� ): the most prevalent place between 2 am and 6 am
(night).

If a record is missing at time CG between 10am – 11am / 2pm –
5pm / 2am – 6am, we complete the mobility trajectory TD with a
new tuple, with the timestamp CG , a location ;F?�/;F?⌫ /;� , and
the associated zones.

Afterwards, we de�ne a complete day for the GPS datasets as a
day in which an individual has on average one record each 15min.
We �lter out "bad" users and select only participants who have
at least 1 month of complete days of data (i.e. have between 2688
and 8064 records). We are left with 266 users: 84 in Macaco, 77 in
Privamov, and 105 in Geolife.

After �ltering and completing the datasets, we uniformize their
frequency of sampling and take one month of data for all the users.
Finally, given the small number of users in each dataset, we aggre-
gate them to have on trace with 266 users that we label Agg_gps.

To better understand the characteristics of the mobility traces
and the types of movements (transition) habits of the population, we
analyze the detailed information of data and draw several statistical
features in Appendix A.1.

5.3 Identifying hard- and easy-to-predict users
Exploration activities are a key reason for the low accuracy of mo-
bility prediction tasks [1, 3]. Individuals exhibiting a high tendency

to explore are hence less likely to be foreseeable with predictors
relying on past history. Therefore, to examine the e�ciency of our
proposed mobility prediction framework and investigate if it is
more �tted to users who exhibit high exploration activities or is
bene�cial to all users. We propose a simple mobility pro�ler that
seeks to isolate hard-to-predict from easy-to-predict users, according
to their level of exploratory activities.

For each individual D, with an # -long mobility trajectory, TD =
h(C0, ;0, I00, I10, I20, I40), . . . , (C# , ;# , I0# , I1# , I2# , I4# )i, we train
a simple MC predictor on the �rst #B = 2

3# records and predict
the future location ;#B+1 . Then, we increment #B and repeat until
#B = # . Afterward, we compute the accuracy of prediction that
is a commonly used prediction evaluation metric, and is given by,
022DA02~ = number of correct predictions

total number of predictions . We also compute the explo-

ration ratio for each user, U = number of transitions of type exploration
total number of transitions .

(a) All users. (b) Per pro�le as proposed in [3].

Figure 3: Accuracy of prediction vs exploration ratio.

Figure 3a depicts the accuracy of prediction achieved by a �rst-
order MC predictor against the exploration ratio. In general, we can
observe that the MC predictor performs poorly with users having a
high exploration ratio, particularly those holding a ratio above 0.4.

In Figure 3b, we apply to the previous Figure 3a the pro�ling
proposed in [3]. Scouters are de�ned as users with a high tendency
to explore, Routiners are individuals who rarely interrupt their
returning routine to explore, and Regulars exhibit an intermediate
behavior.We can observe that Scouters typically have an exploration
ratio above 0.4 and hold the lowest predictive scores.

Accordingly, hereafter, we will �rst evaluate the performance
of the proposed predictor on the whole population. Next, we will
apply the proposed framework only on the hard-to-predict users
and employ a simple MC with the rest of the population as depicted
in Figure 4.

Input 
Trajectory

Isolate Hard-
to-predict

Hard to predict

Easy to predict
MC Location-Predictor 

Purpose Prediction 
(IEIP, STMP)

Spatial Prediction 
(PSP, JSP)

Exploration-Aware Mobility Predictor

Figure 4: Global Prediction Framework.

We use the exploration ratio metric to determine if a user is
hard-to-predict or not and variate the selection threshold in the set
)⌘ = {0.2, 0.4, 0.6}. So, a user holding an exploration score above
a given threshold is classi�ed as hard-to-predict, else as an easy-
to-predict individual. Hence, low )⌘ results in a higher number
of hard-to-predict users to whom we apply a double prediction
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(movement and spatial). Whereas, high )⌘ allows selecting users
exhibiting high exploratory activities to be a candidate for a double
prediction, while others are subject to a direct spatial prediction.

According to Figure 4, a ratio below 0.2 isolates Routiners, who
get high accurate predictions with traditional MC due to their easy-
to-predict mobility. The ratio range [0.2,0.4] isolates Regulars users.
Finally, the values higher than 0.6 identi�es Scouters or hard-to-
predict users (i.e., high probable users to get low traditional MC
prediction accuracy) requiring the improvement of prediction meth-
ods. Scouter users trigger the exploration-enhanced MC predictor.

6 MOVEMENT PREDICTION EVALUATION
Recall that our �rst goal is to infer an individual’s next type of
movement given the movement history. In what follows, we eval-
uate the performance of each of the STMP Algorithm 1 and the
IEIP Algorithm 2. Given the imbalanced ratio between exploration
and return transitions (see AppendixA.1 Figure 12), to measure the
performance of the proposed movement predictors in forecasting
each type of movement, we employ three widely used information
retrieval measures:

• Precision % : it is a measure of relevance, it shows the ability of a
classi�er in not labeling as positive a sample that is negative. It is
de�ned as the number of true positives)? over the number of true
positives plus the number of false positives �? [11], % =

)?
)?+�? .

• Recall ': it measures the ability of a classi�er in �nding all
positive samples. It is de�ned as the ratio between true positive
)? samples over the number of true positive )? plus the number
of false negatives �= [11], ' =

)?
)?+�= .

• 51-score �1: it is the harmonic mean of precision and recall [11],
it is given by, �1 = 2 ⇥ %⇥'

%+' .

By considering returns as positive events and explorations as neg-
ative events, a true positive result)? refers to the correct prediction
of a return, a false positive result �? indicates that an exploration
is predicted to be a return, a false negative �= refers to a return
predicted to be an exploration, and a true negative result)= related
to the correct prediction of an exploration (see Table 2).

Actual Return Actual Exploration
Predicted Return )? �?

Predicted Exploration �= )=

Table 2: Matrix of correct and misleading results.

We compare our proposed methods with the performance of
the widely used state-of-the-art MC predictor. As in conventional
personal predictors relying on location data, the MC predictor as-
sumes that the next location a user will visit can be found in the
set of known places [1, 23]. This means that the MC model is con-
stantly forecasting returns. Thus, it holds the best scores in terms
of predicting returns as a type of movement. Moreover, in view
of the large proportion of returns compared to explorations (see
Appendix A.1 Figure 12), the MC allows evaluating how often the
proposed algorithms are accurate in predicting the next type of
movement. Alternatively stated, it helps to tune the movement pre-
dictors in favor of explorations/returns or to have global satisfying
results.

Return visits: Figures 5 and 6 represent the performance of both
of the STMP (Algorithm 1) and IEIP (Algorithm 2) in accurately pre-
dicting the occurrence of return and exploration events respectively.
The proposed algorithms are �rst applied for the whole population,
then only for hard-to-predict users while for the easy-to-predict
users anMC predictor is applied. For the hard-to-predict users selec-
tion, as previously stated, we vary the exploration ratio’s selection
threshold U in the set )⌘ = {0.2, 0.4, 0.6}, i.e., a lower threshold
induces a higher labeling of hard-to-predict users.

Figure 5 shows the precision, recall, and 5 1-score achieved by the
STMP, the IEIP, and the conventional MC predictor. In Figure 5a, we
can see that with more than 60% of the population STMP and IETP
predictors achieve a precision above 70% in predicting returns. This
indicates that more than 70% of the time the forecasted returns are
real revisits to known places. We also notice that the IEIP reaches
the highest scores, the precision value is above 90% for more than
40% of the users. Furthermore, applying the proposed algorithms
only on users classi�ed as hard-to-predict engenders slight changes
in the precision scores when predicting returns.

Figure 5b depicts that the STMP succeeds at least 80% of the time
in predicting returns for 80% of the population. On the contrary, the
IEIP that focuses on exploration visits comes o� badly in forecasting
returns when applied to all users. Furthermore, we can observe that
applying the proposed algorithms only on users exhibiting high
exploratory activities allows improving the recall score, notably, the
IEIP. Actually, reducing the proportion of users to whom we apply
the proposed algorithms leads to an increase in the probability of
predicting returns. Hence, the obtained recall scores are expected to
improve with the decrease in the size of the selected hard-to-predict
users. Curiously, the best average scores that we obtain with both of
the STMP and IEIP movement predictors are when applying them to
users having an exploration ratio above 40%, which approximately
corresponds to the Scouter pro�le proposed in [3] 1.

As reported by the weighted average of precision and recall in
Figure 5c, the STMP performs better than the IEIP in predicting
returns. Namely, the average 5 1-score held by STMP exceeds 80%,
and in general, its performance is very close to the MC’s. On the
contrary, the average 5 1-score reached by IEIP is less than 40%when
applied to all users. Furthermore, Figure 5c reveals that increasing
the exploration ratio for hard-to-predict user selection increases
the achieved performance by both algorithms.
Exploration visits: Figure 6 presents the performance evaluation
of the STMP and IEIP only, provided that a conventional predictor
such as MC will always predict returns and fail at each discovery
of a new location.

Figure 6a shows that the precision achieved by STMP in predict-
ing explorations for 60% of the population surpasses 35%. Whereas
for the same proportion of the population only 20% of the explo-
rations inferred by IEIP are in fact discoveries of new places. The
partial application of the proposed STMP and IEIP to the population
leads to a decrease in the attained precisions. Indeed, for users clas-
si�ed as easy-to-predict, the application of the MC to them induces
null scores when predicting explorations.

1Note that in Figure 5b the curve corresponding to the MC is not represented as the
recall score is equal to 1 for all users.
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(a) Precision (b) Recall (c) F1-Score
Figure 5: Performance comparison for returns forecasts (better seen in color).

(a) Precision (b) Recall (c) F1-Score
Figure 6: Performance comparison for exploration type of movement forecasts (better seen in color).

Figure 6b depicts that for 60% of the population at least 18% of
the time explorations are correctly predicted by the STMP when
applied for all users. Conversely, for the same percentage of users,
more than 80% of moments of discovery are accurately foreseen by
the IEIP. Similarly, to the measure of precision, the recall decreases
with the decrease in the size of the selected population.

Figure 6c shows that the IEIP outperforms the STMP in predicting
explorations, whether it is applied to all users or for the categories
of users with a high proclivity to explore.

Figure 7: Accuracy of prediction of the type of movement.

General visits: Next, we want to investigate how often the pro-
posed movement predictors are accurate in predicting the next type
of movement. We compute the accuracy of prediction achieved by
the MC predictor and each of the proposed movement predictors.
Here, the accuracy of prediction is the ratio between the number
of correctly predicted types of movement and the total number of
predictions.

Figure 7 shows the accuracy of prediction in terms of types of
movement achieved by STMP, IEIP, and MC. It is noted that apart
from IEIP and IEIP (0.2), the other predictors perform almost equally
well, but with a slight dominance of the IEIP (0.6). The accuracy
of prediction is on average above 75% for the predictors except for
the IEIP and IEIP (0.2) that have a score around 50%. Based on the
aforementioned results, we can draw two main conclusions. First,
the strategy adopted by conventional predictors, as MC, assumes
constant returns what is a key lowering factor for the predictive
performance. Figure 7 shows that on average more than 20% of
users’ transitions are explorations. Second, the proposed movement

predictors are faced with a trade-o�, gaining accuracy in predicting
explorations at the cost of losing e�ciency in forecasting returns.
We point out that the proposed movement predictors are prelim-
inary versions, that we aim to propose advanced versions in our
future works. We claim here that the proposed movement predic-
tors can be tuned to �t the requirements and needs of the using
applications, unlike conventional models that focus on returns only.

7 SPATIAL PREDICTION EVALUATION
We evaluate here the predictive power of the two proposed spatial
predictors. First, the outcomes of the STMP and the IEIP predictors
with their variations feed the spatial predictors. For the computation
of the prediction accuracy, we consider a prediction to be correct
if the inferred location or zone is correct. This is done through a
comparison with three baseline predictors operating on di�erent
spatial scales: MC Location-Predictor, MC Location-Oracle-Predictor,
and MC Zone-Oracle-Predictor.

• MC Location-Predictor: It is described in Section 4.2.
• MC Location-Oracle-Predictor: It performs as well as the MC
Location-Predictor in predicting returns, but reaches perfect scores
in forecasting explorations. Given the mobility trace of the userD,
TD = h(C0, ;0, I00, I10, I20, I40), . . . , CG , ;G , I0G , I1G , I2G , I4G )i, if
next the user makes a transition to a location ;G+1 that is not
present in TD the MC Location-Oracle-Predictor will accurately
predict ;G+1. This predictor holds the best feasible scores that an
MC predictor endowed with a perfect movement predictor and
spatial exploration forecaster can achieve.

• MC Zone-Oracle-Predictor: It follows the same strategy as
the MC Location-Oracle-Predictor. Yet, it operates on a coarse-
grained spatial resolution. Instead of predicting the next visited
location, it predicts large zones. Given the mobility trace TD =
h(C0, ;0, I00, I10, I20, I40), . . . , (CG , ;G , I0G , I1G , I2G , I4G )i, this pre-
dictor forecasts the next zone I2G+1 of size c km ⇥ c kmwhere the
user is going to move. Besides, it is always accurate in predicting
the right zone in case the user is exploring a new place. It holds
the best achievable performance and we take it as a reference to
evaluate the e�ciency of the proposed framework.
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(a) Zones = 800m ⇥ 800m (b) Zones = 1km ⇥ 1km (c) Zones = 2km ⇥ 2km (d) Zones = 4km ⇥ 4km
Figure 8: Accuracy of the Personal Spatial Prediction (common labels, better seen in color).

(a) Zones = 800m ⇥ 800m (b) Zones = 1km ⇥ 1km (c) Zones = 2km ⇥ 2km (d) Zones = 4km ⇥ 4km
Figure 9: Accuracy of the Joint Spatial Prediction (common labels, better seen in color).

In what follows, we compare the performance of the PSP and JSP
spatial predictors with the three baselines. As input, the spatial
predictors receive the results from the STMP and IEIP movement
schemes with their di�erent settings. As previously indicated, loca-
tions are squared cells of size (200<)2. We consider 4 distinct sizes
for the zones: (800<)2, (1:<)2, (2:<)2, and (4:<)2.
PSP: Figure 8 reports the prediction accuracy of the PSP predictor
with the di�erent inputs and zone sizes. First, we can see that the
prediction accuracy of the PSP with the distinct inputs outperforms
the MC Location-Predictor’s scores. Second, applying the proposed
framework to larger proportions of users allows increasing the
overall accuracy of prediction. We have two hypotheses with re-
gard to the last observation: (a) applying the proposed framework
is relevant to the whole population (b) by increasing the num-
ber of considered users, the number of false-negative forecasts
(i.e., returns predicted to be explorations) increase and given the
coarse-grained spatial prediction, in this case, the predictive perfor-
mances are enhanced [1]. Third, with the expansion of the size of
the zones, the accuracy of prediction of the PSP combined with the
di�erent movement predictors grows to approach the MC Location-
Oracle-Predictor performance. Notably, the accuracy of prediction
is substantially improved when considering zones of size (2:<)2 or
zones of size (4:<)2. We can also see that the PSP fed with the IEIP
algorithm applied to the whole population slightly surpasses the
score obtained by the MC Location-Oracle-Predictor. This is mainly
due to false-negative forecasts.
JSP: Figure 9 depicts the prediction accuracy of the JSP and its
di�erent settings and the baseline spatial predictors. Unexpectedly,
the accuracy of prediction is at most equal to the MC Location-
Predictor. Besides, expanding the zone size helps in improving the
minimal achieved scores only, but not the overall performance.
Spatial prediction for each type of movement: Next, to under-
stand how the spatial predictors perform in predicting the locality
of each type of movement. We report in Figure 10 and Figure 11
the CDF of the accuracy of the spatial prediction for each type of

movement by the PSP and JSP respectively. We depict the results
with zones of size (4:<)2. For other spatial resolutions of the zones,
we provide descriptive tables in Appendix A.2. Figure 10 shows

(a) STMP (b) IEIP
Figure 10: Accuracy of the PSP for each type of movement.

that the accuracy of predicting returns and explorations by the
PSP predictor. First, we can see that the performance achieved by
the combination of the PSP with the STMP in predicting returns
is very close to the MC’s, with slight improvements when apply-
ing partially the proposed framework to users exhibiting a high
exploration activity. Speci�cally, when applying it to users having
an exploration ratio U above 40% (see Figure 10a). When the PSP
takes as input the IEIP’s outcomes, the improvement in the predict-
ing returns is more noticeable. Namely, when using the proposed
framework with hard-to-predict users (see Figure 10b).

On the contrary, whereas the prediction accuracy of the MC
Location-Predictor in forecasting explorations is equal to zero, the
PSP achieves appealing performance. Notably, it is more bene�cial
when using it with all users. Recall that for users classi�ed as easy-
to-predict we apply the MC Location-Predictor for the forecasts.

In Figure 11, we depict the accuracy of predicting the locality of
each type of movement by the JSP. First, for return forecasts, the
JSP and PSP are alike, in view of the fact that they rely on the same
location predictor and take the same inputs. Second, the di�erence
in performance between the JSP and PSP emanates from exploration
forecasts. Compared to the SPS, the JSP works poorly in predicting
the locality of explorations. This suggests that the overall weak
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(a) STMP (b) IEIP
Figure 11: Accuracy of the JSP for each type of movement.

predictive power of the JSP presented in Figure 9 follows from
the low potential of the Joint Zone-Predictor in forecasting the
locality of explorations. Unlike return patterns that can be common
to many individuals that are strangers to each other, exploration
patterns are more personal. Furthermore, we measured the Jaccard
similarity for the top 5 most visited zones when exploring between
users within the same city (Beijing). We report very lows scores, the
similarity is at most equal to 0.22. This implies, that when it is about
forecasting explorations it is better to rely on the individual’s mobility
behavior than looking at the global patterns. Note, that similarities in
exploration spatial patterns might be observed among users within
the same social circle and who are not perfect strangers to one
another.

8 CONCLUSIONS AND FUTUREWORK
Individuals’ novelty-seeking tendencies in mobility bring impacting
e�ects to mobility prediction. We tackle this problem and propose
a novel 2-step adaptive prediction framework composed of (i) a
purpose prediction (i.e., exploration or return) that feeds (ii) a spatial
prediction. Contrary to existing methods, the proposed framework
does not naively rely on mobility return’s regularity, but adjusts
its forecasts when explorations are more probable to happen. We
designed two purpose prediction algorithms that base their fore-
casts on coarse- or �ne-grained regularities observed in exploratory
and return visits. We then develop two spatial prediction tasks that
take the outcomes of the purpose predictors as input and operate
on di�erent spatial scales. The two spatial predictors are similar
in predicting returns, but employ di�erent strategies in case the
input is an exploration. The �rst relies its forecasts on the personal
data of the considered user, whereas the second one exploits com-
mon exploratory tendencies among the population to infer the next
coarse-grained zones. Not that, though opening privacy concerns,
the leveraging of population mobility data is not an issue for some
entities – such as telecom operators in resource allocation plan-
ning – due to their natural global view of the network population.
Our proposed framework achieves interesting results both in infer-
ring the next type of movement as well as in forecasting the spatial
occurrence of the visits. Moreover, they con�rm that exploration vis-
its are not completely random if the spatial resolution is increased.
Besides, we �nd that explorations are more personal contrary to
returns where common patterns are shared between users. Unlike
conventional methods that are always wrong when explorations
occur, the proposed framework does predict new visits for spatial
units of excellent precision when networks planning are concerned;
and reasonable precision for more personalized applications, as for
recommendation services.

For future work, we aim at investigating temporal visiting pat-
terns associated with the purposes of movements. Correlating time
of the day with purposes of movement may bring an additional
dimension on the exploration handing.
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A APPENDIX
A.1 Data

Figure 12: Ratio of types of transition.

In Figure 12, we report the CDF of the proportions of transitions
of types exploration (Exp) and returns (Ret). We can see that the
majority of the population has a low exploration activity, more
than 60% of the population has an exploration ratio lower than 40%.
Inversely, all users depict a high returning activity, 80% of the users
have a degree of return above 50%. Indeed, routine patterns are
embedded in today’s societies.

Figure 13: Number of successive types of movement mean
and standard deviation.

Figure 13 reports the average number of successive same type
of movement ` (C~?4) against the standard deviation f (C~?4). First,
we can see that the average number of successive returns is substan-
tially higher than explorations. This means that individuals usually
spend longer periods revisiting known places than discovering new
ones. Moreover, we observe that the standard deviation takes small
values for the average number of sequential exploration, implying
that although the assigned randomness to this type of movement,
explorations occurrences are less irregular than thought.

Figure 14 shows the hourly �uctuations of the IEI mean and
standard deviation. We can see that the IEI mean varies throughout
the week, it is lower during day time, particularly on weekends.
This means that exploration activities are more numerous during
the daytime and increase on weekends. Yet, we can also observe a
regularity in exploratory visits during weekdays.

Figure 14: IEI mean.

A.2 Spatial Prediction
In Table 3 and Table 4 we report the average accuracies of prediction
achieved by the PSP and JSP in predicting the spatial occurrence of
explorations while varying the spatial resolution.

PSP Explorations
Spatial Units (800<)2 (1:<)2 (2:<)2 (4:<)2
STMP 0.39 0.41 0.50 0.63
STMP (0.2) 0.26 0.28 0.35 0.44
STMP (0.4) 0.10 0.11 0.14 0.18
STMP (0.6) 0.03 0.03 0.05 0.06
IEIP 0.34 0.36 0.45 0.58
IEIP (0.2) 0.22 0.24 0.32 0.4
IEIP (0.4) 0.09 0.09 0.12 0.16
IEIP (0.6) 0.02 0.02 0.04 0.05

Table 3: Ratio of correctly predicted explorations and re-
turns for the PSP.

From Table 3 we can see that the accuracy of predicting the
spatial units where explorations might occur is relatively high
for the PSP. Additionally, it increases with the increase of zones
size. On the contrary, Table 4 shows that the JSP performs poorly
in predicting the locality of exploration events, and the changes
in performance are not noticeable with the change in the spatial
resolution

JSP Explorations
Spatial Units (800<)2 (1:<)2 (2:<)2 (4:<)2
STMP 0.17 0.17 0.16 0.14
STMP (0.2) 0.11 0.11 0.11 0.10
STMP (0.4) 0.03 0.05 0.05 0.04
STMP (0.6) 0.01 0.01 0.02 0.04
IEIP 0.15 0.16 0.15 0.14
IEIP (0.2) 0.11 0.11 0.11 0.10
IEIP (0.4) 0.04 0.04 0.05 0.04
IEIP (0.6) 0.01 0.01 0.02 0.02

Table 4: Ratio of correctly predicted explorations and re-
turns for the JSP.
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Exploration-Aware Mobility Prediction Framework
Modules 1- Purpose Prediction (Section 4.1) 2- Spatial Prediction (Section 4.2)

Description Aims to predict the next type of movement: an explo-
ration or a return

Aims to predict the spatial locality of the visits

Methods • STMP: bases it forecasts on the average number of
successive explorations and returns

• IEIP: bases its forecasts on the time intervals be-
tween explorations

• PSP: bases its predictions by solely using personal
data

• JSP: when the anticipated movement is an explo-
ration, the spatial predictions is made by looking
at the group-level exploratory behavior

.

Table 5: A general overview of the exploration-aware mobility prediction framework and the used methods.

A.3 Exploration-aware mobility prediction
framework

Table 5 gives a general overview of the algorithms employed within
each prediction step of the exploration-aware mobility predictor.


