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Abstract—Online product ratings are an immensely important
source of information for consumers and accordingly a strong
driver of commerce. Nonetheless, interpreting a particular rating
in context can be very challenging. Ratings show significant
variation over time, so understanding the reasons behind that
variation is important for consumers, platform designers, and
product creators. In this paper we contribute a set of tools
and results that help shed light on the complexity of ratings
dynamics. We consider multiple item types across multiple

ratings platforms, and use a interpretable model to decompose
ratings in a manner that facilitates comprehensibility. We show
that the various kinds of dynamics observed in online ratings are
largely understandable as a product of the nature of the ratings
platform, the characteristics of the user population, known trends
in ratings behavior, and the influence of recommendation systems.
Taken together, these results provide a framework for both
quantifying and interpreting the factors that drive the dynamics
of online ratings.

Index Terms—Recommender System; User Experience; Met-
rics

I. INTRODUCTION

One of the ways that the Web has revolutionized society is

through crowdsourced reviews. Almost any situation in which

alternative choices may be evaluated is now supported by one

or more review systems that record experiences and ratings

that users have provided for items of interest.

From the standpoint of the review user, the value of a review

system is to allow the user to assess the perceived quality of

various alternatives before making a decision. However, there

is considerable evidence that online reviews show considerable

temporal dynamics [1], [2], so an important question concerns

how to understand the dynamics of item reviews before using

them to make decisions.

In this paper we seek to understand how item ratings change

over time and what factors affect those changes. This is a

complex question because there are many dimensions that

can play a role in review dynamics. Of course, ratings may

shift because the popular perception of an item is actually

changing within the user population. However, many more

factors come into play. For example, ratings can be affected

by shifts in the nature of the population of users providing

ratings. They can be affected by closed-loop effects in which

previous ratings influence the set of users that are interested

in and subsequently review the item. Ratings shifts can occur

for some items in a manner that is different from other

items. Furthermore, the dynamics of ratings can differ among

different ratings platforms – even for the same set of items.

In this paper we show how to tease apart all of these effects,

characterize them, and quantify their relative importance. Our

goal is to form an integrated view of how the interplay of

these effects ultimately determine the changes in item ratings

over time. To do so, we make use of a variety of datasets,

chosen for their ability to explore all of the questions above.

To study platform effects, we study the dynamics of movie

ratings across three major ratings platforms; and to study

item category effects, we study various item categories on

a single platform. We use clustering to distinguish items

showing different rating dynamics on the same platform. And

within a given platform and item category, we fit a nonlinear

model that allows us to distinguish factors such as changes in

user population, changes in user behavior, intrinsic changes in

perceived item quality, and closed-loop interactions between

previous ratings and changes in user population. This latter

factor essentially captures the impact of the ratings platform

as a recommender system.

Our multi-platform, multi-factor study goes beyond prior

work by considering a much broader set of factors than

previous studies. Using our methods, we show that there are

consistent differences in rating dynamics that depend on the

nature of the rating platform. These differences are not due

to different sets of items being rated on different platforms –

they persist even when looking at the same set of items on

different platforms. We also show that on each platform, there

are understandable shifts in the kinds of users that rate an item

over time, and that in each case this population shift makes

sense due to the nature of the platform. We show that there

are consistent general trends in how perceived item quality

changes over time, which are understandable in light of past

studies. And we show that recommender systems play a role

in affecting rating dynamics on some platforms, but not others,

in a way that correlates with the nature of the rating platform.

II. FACTORS AFFECTING RATING DYNAMICS

Our goal is to form a holistic picture of the forces that

combine to determine online rating dynamics. In particular,

we seek to understand how the following factors interact in

shaping online ratings:

Platform Characteristics. We consider first, does the plat-

form explicitly support item sales, or is it purely informa-

tional? And second, does the platform provide a recommen-

dation system as a service, or does it merely display ratings?

User Population. We want to evaluate whether their are dif-

ferent user types, and if so whether the balance among those

types changes over time, and how those shifts affect ratings

dynamics.

Item Perception. We seek to quantify the extent to which the

popular perception of an item is shifting over time. This can

reflect a shift in tastes in the population at large, or a tendency

for a less-appreciated item to become better appreciated by

the population over time.



Item Type. We seek to understand whether different types of

items show different dynamics, and why. We also seek to

understand the prevalence of non-trivial dynamics, i.e., the

proportion of items within a category that typically show

detectable dynamics over time, as opposed to the proportion

of items whose ratings are approximately unchanging.

Closed-Loop Effects. Finally, we are interested in the extent

to which online ratings or recommendations affect the set of

users that subsequently consume an item, leading to shifts

in dynamics of future ratings. This tells us the impact of

“tuning” between items and the users that consume and rate

the items, a tuning that is induced by recommendations.

To separate and evaluate these effects, we use the data and

methods described in the next section.

III. METHODS

In order to effectively disentangle all of these effects, we

use a combination of carefully chosen datasets, unsupervised

learning in the form of clustering, and supervised learning in

the form of a model fitted to our various datasets.

A. Data
We make use of the following datasets to help distinguish

the five factors above:

Movie Tweetings. This dataset is collected from well-

structured movie evaluation tweets on Twitter from 2013

to 2017 [3]. This dataset represents a platform in which

there is no explicit recommendation system, and there is no

commercial entity providing the reviews for the purpose of

commerce.

We selected a relatively dense subset of this dataset, namely

movies that have at least 10 ratings and users that have at

least 5 ratings. We denote this dataset MT. This dataset has

15632 users, 5780 movies and 521214 ratings. We centered

the ratings in MT by rescaling them from [1:10] to [1:5].

Rotten Tomatoes. This dataset was crawled from the Rotten

Tomatoes website [4] in late 2016, which we denote as RT.

This dataset represents a platform in which there is a known

distinction between two user types: critics, and general users.

Like MT there is no explicit recommendation system or

commercial role for the platform.

From the entire dataset we also selected the subset consisting

of movies that have at least 10 ratings and users that have

at least 5 ratings. The resulting dataset has 165585 users,

12122 movies, and 4845884 ratings. We centered the ratings

in RT by rescaling them to the range [1:5].

Amazon. This dataset contains product reviews from Amazon

spanning from May 1996 to July 2014 [5] and [6]. This

dataset represents a platform in which there is an explicit

recommendation system that makes personalized purchase

suggestions to users. The platform also has a commercial

role in support of sales in the Amazon store. Furthermore,

the Amazon dataset contains items from multiple categories.

In addition to movies, we use it to study electronics, home

goods, CDs, mobile apps, and ebook (Kindle) titles. From

the Movies and TV category, we first disambiguated movies

names, including merging movies available in different media

such as DVDs and BluRay which appeared as separate

products. Next we select a dense subset of movies that had

at least 5 reviews. We denote this dataset AZ, and it has

1957899 users, 53633 movies, and 4291173 ratings.

From the other categories, we selected their 5-core dataset

- the dense subset of items with at least 5 reviews and

users with at least 5 reviews. The resulting datasets are:

Electronics (AZ-Ele) and with 192401 users, 63001 items,

and 1689129 ratings; Home and Kitchen (AZ-Hom) and with

66518 users, 28237 items, and 551656 ratings; Kindle Store

(AZ-Kin) and with 68222 users, 61933 items, and 982197

ratings; Apps for Android (AZ-App) with 87267 users, 13209

items, and 752832 ratings; and CDs and Vinyl (AZ-CDs) with

75256 users, 64443 items, and 1097555 ratings. Note that in

what follows, AZ refers to Amazon movies, while the other

Amazon categories have specialized names.

B. Modelling Temporal Dynamics

1) Definitions: In each application of our model, we con-

sider a dataset having n users and m items. Items are objects

over which the user provides a rating, e.g., movies. Each rating

has an associated timestamp t (in units of days), and we denote

a rating provided by user u for item i at time t as rui(t). All

ratings range from 1 (worst) to 5 (best).

For each rating, we define an associated system time which

is the time since the item first appeared in the system. That

is, if t
(i)
0 is the timestamp of item i’s first recorded rating and

t the timestamp of a given rating rui(t), the system time for

that rating is ts = t− t
(i)
0 .

In presenting our results, we are primarily concerned with

item progression. This is defined as the index of where a

review falls in the ordered set of reviews for an item. So

item progression from 0 to 99 reflects the first 100 reviews

of an item in order (regardless of how much real time elapsed

between the first and last reviews in the sequence).

2) Model: To separate the factors at work in a sin-

gle dataset, we fit the data to a predictive model we call

timeSVD--. This model is a simplified version of the

timeSVD++ for collaborative filtering as proposed in [7] .

To model a rating rui(t), timeSVD-- incorporates three

kinds of information. First, it uses properties of the user u: a

term capturing the user’s time-invariant average rating (bias),

and a term capturing the evolution of the user’s average rating

over time. Second, it uses properties of the item i: a term

capturing the item’s time-invariant average rating, and a term

capturing the evolution of the item’s average rating over time.

Finally, it incorporates latent factors for both the user and item,

whose inner product models the personalization of the item to

the user. This latter factor is essentially a matrix-factorization

approach to personalization (as reflected by the ‘SVD’ in the

name of the model).

Specifically, timeSVD-- is parameterized as follows:



µ Global mean of all ratings

bi Time-invariant bias (average rating) of item i

bi,Bin(t) Time-varying bias of item i at timebin Bin(t)
bu Time-invariant bias of user u

αudevu(t) Time-varying bias of user u

qi k-dimensional latent factor of item i

pu(t) Time-varying k-dimensional latent factor of user u

The model reflects the assumption that user preferences

may change over time (pu(t)) while item features are

time-invariant (qi).

The timeSVD-- model is then:
rui(t) = µ+ bi + bi,Bin(t) + bu + αudevu(t) + qTi pu(t) (1)

timeSVD-- incorporates various strategies to capture time

evolution of model components without unduly expanding the

set of parameters to be learned. In the case of item bias, time

is discretized into bins of seven days. For time-varying user

parameters, the model fits a symmetrized polynomial:

devu(t) = sign(t− tu)|t− tu|
β

where tu is the mean date of rating of user u. This function is

used in time-varying user bias as well as in the time-varying

user latent factor:
puℓ(t) = puℓ + σuℓdevu(t) ℓ = 1, . . . , k

In the rest of the paper, we will refer to qTi pu(t) as the

interaction score between u and i, and the rest of the terms

in (1) as the baseline score between u and i.

We train timeSVD-- on each dataset using system time

ts as the value of t for each rating. To learn model param-

eters we apply stochastic gradient descent to a risk function

incorporating a regularization to (1):
f(θ) =

∑
all ratings(rui(t)− (µ+ bi + bi,Bin(t) + bu + αudevu(t) + qTi pu(t)))

2

+γ(
∑

i(b
2
i + ||qi||

2 +
∑

Bin(t) b
2
i,Bin(t)) +

∑
u(b

2
u + α2

u + ||pu||
2 + ||σu||

2))

We set model hyperparameters γ and β by cross-validation.

4) Clustering: Within a particular dataset, we expect dif-

ferent items to show different dynamics over time. In order

to efficiently separate items by the properties of their ratings

dynamics, we use a clustering algorithm well-suited to work

on timeseries: k-Shape [8]. To study factors at work for

different kinds of items, we apply both timeSVD-- and

k-Shape, and take averages of the timeSVD-- results over

clusters identified by k-Shape.

IV. ANALYSIS

We divide our analysis into two parts: first we characterize

the range of observed phenomena in review dynamics, and

then we decompose those phenomena to gain understanding

of how they arise.

A. Characterizing Ratings Dynamics

Our basic tool for studying review dynamics is the relative

rating score. This is the average value of ratings on a daily

basis, offset by a constant that makes the first set of average

ratings equal to zero. We call the average value of the first

item ratings the initial score and the average across the study
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Fig. 1: Relative ratings progression

period (usually 200 reviews) the average score. We focus on

item progression which, as described above, is the ordered

sequence of reviews for an item.

Throughout our analysis consider only movies with at least

200 reviews, and analyze the first 200 reviews. This means

that the set of movies contributing to each average rating is

not changing over time.

How do item ratings change over time? We start by

addressing this basic question in Figure 1. This figure shows

that each dataset shows distinctive behavior. The RT dataset

shows a generally increasing trend; the MT dataset shows a

generally decreasing trend; and the AZ dataset shows a trend

that first decreases, and then increases.

Are platform-specific ratings dynamics consistent? One

possible explanation for the platform-specific differences in

rating dynamics shown in Figure 1 could be that they are due

to the fact that the set of movies rated on each platform is

different. First, we show that differences shown in Figure 1

in platform-specific dynamics are not due to the different sets

of movies rated.

For each pair of platforms, we select the set of movies

that are rated at least 100 times on both platforms (we use

a smaller window of 100 reviews to increase the size of the

sets being analyzed). We match movies based on title and

year (where available), discarding any cases in which duplicate

matches occur. Figure 2 shows the item progression for

movies in common between each pair of datasets, and that in

each case, platform-specific trends are preserved. Specifically,

Figure 2a shows the 127 movies in common among AZ and

MT, Figure 2b shows the 1451 movies in common among RT

and AZ, and Figure 2c shows the 387 movies in common

among RT and MT.

In each case, the platform-specific trends shown in Figure 1

a preserved (although due to the smaller dataset sizes, there

is more variability and trends are correspondingly weaker

in some cases.) We conclude that the differences shown in

Figure 1 are consistently present when studying the same sets

of movies on different platforms.

We also note that the relationships between initial and

average scores across platforms are preserved when restricting

attention to common movies, with AZ > MT in Figure 2a

((4.24, 4.12) > (3.87, 3.86)), AZ > RT in Figure 2b ((4.29,

4.16) > (2.93, 3.08)), and MT > RT in Figure 2c ((3.59, 3.54)

> (2.87, 3.00)).

Another way to assess whether platform-specific ratings

dynamics are consistent is to ask whether the same dynamics

are seen across multiple item categories on a given platform.
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(c) RT and Movie MT: 387 common movies
Fig. 2: Common movies: relative ratings progression.

To confirm this, we look at relative ratings scores across the

six categories of Amazon data, shown in Figure 3a . This

Figure shows that the general behavior of declining followed

by increasing ratings is widespread across most of the item

categories on the Amazon platform.

The above results suggest that the platform-specific ratings

dynamics we observe are not due solely to differences in items

rated on the different platforms, but rather that these effects

are relatively consistent.

Do all items change in the same way within each

platform? A final characterization question concerns how the

platform-wide effects seen in Figure 1 are produced from

the individual contributions of each movie. We explore this

question by clustering the movies individual item progressions

using the k-Shape algorithm [8], and studying cluster-wide

averages. We use a default of five clusters in each case, which

we observe to balance clear separation of classes against noise

introduced due to small samples.

Figure 4 shows the results of this clustering for all platforms.

The Figure shows that the characteristic dynamics on each

platform are not always present for all movies. In the case

of AZ, the characteristic decrease/increase pattern is primarily

present in a cluster 1, comprising about 12% of all movies. The

other clusters primarily show a simpler decreasing trend. In the

case of RT, the characteristic increase is primarily present in

clusters 0 and 4, comprising about 45% of all movies. Finally,

in the case of MT, in general all movie clusters show the

platform’s characteristic downward trend, with the strongest

trends in clusters 0, 2, and 3.

We conclude from Figure 4 that not all items are showing

strong dynamics in each dataset and that, furthermore, dynam-

ics are not occurring uniformly in each. As a result, in what

follows we will generally distinguish between “large effect”

movies (AZ cluster 1, MT clusters 0, 2, 3, RT clusters 0,4) and

“small effect” movies (movies in the remaining clusters).
B. Decomposing Ratings Dynamics

To develop an understanding of the forces driving the

effects seen in Section IV-A, we decompose ratings using

timeSVD--. The components of the model bear direct rela-

tionship to various factors of interest as described in Section II.

In particular, we can study the impact of the user population

by looking at the user time-varying and invariant components

of the model (αudevu(t) and bu), we can study the impact

of item perception by studying the item time-varying and

invariant components of the model (bi,Bin(t) and bi), and we

can study the impact of closed-loop effects by studying the

model’s interaction score (qTi pu(t)).

What are the main model factors affecting ratings dy-

namics? We start by decomposing the three datasets according

to our model, and according to movie type (small effect vs.

large effect as described above). The results are shown in

Figure 5.

We start first with Figure 5a, Figure 5d, and Figure 5g which

show relative contributions of factors, respectively, for AZ, MT,

and RT. There are a number of high-level observations. First,

user invariant components and item time-varying components

are the largest and primary contributors to ratings dynamics.

Furthermore, the only platform in which interaction score

shows significant dynamics is AZ.

Figures 5c, 5f, and 5i show the corresponding breakdowns

for the large-effect movies, and the results there confirm the

conclusion that user invariant and item time-varying com-

ponents are the main contributors to the respective platform

dynamics. (Figures 5b, 5e and 5h show the small-effect movies

– note the difference in scale on the y-axes).

We now explore each of the factors in turn.

How do users contribute to rating dynamics? We first

examine the role of users in rating dynamics. We note from

Figure 5 that the user time-varying component (purple line)

does not show significant contribution to rating dynamics,

but the user time-invariant component (green line) does show

significant contribution. This means that while users individual

ratings averages are not changing over time, users’ contribu-

tion to changes in ratings are nonetheless significant. In other

words, changes in the user population – in a consistent way –

are a major driver of ratings dynamics (on all three platforms).

For AZ the contribution of changes in user population (green

line) reflects the overall platform pattern of initial decline

followed by increase. This component contributes about 50%

of the overall change at the end of the 200 review period.

For MT the contribution of changes in user population has a

decreasing trend of similar range for the whole dataset analysis

(Figure 5d) as well both subsets (Figures 5e and5f). This also

covers above 50% of the relative changes in ratings for the

large-effect set (Figure 5f). For RT, we also see that changes

in user population play a significant role, contributing about

50% of the change in the large effects subset.

To understand how this significant shift in user population

comes about, we turn to the RT dataset. In that dataset, we have

the advantage that users are classified as either (professional)

critics or general reviewers. We use this classification to

achieve a better understanding of role of user population in

rating dynamics.
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(b) Amazon early user effect
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(c) Amazon Interaction Score - all items
Fig. 3: Relative progression across Amazon categories.

0 25 50 75 100 125 150 175 200
item progression

3.6

3.8

4.0

4.2

4.4

ra
tin

g

cluster 0
cluster 1

cluster 2
cluster 3

cluster 4

(a) Amazon (AZ)

0 25 50 75 100 125 150 175 200
item progression

3.2

3.4

3.6

ra
tin

g

cluster 0
cluster 1

cluster 2
cluster 3

cluster 4

(b) Movie Tweetings (MT)
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(c) Rotten Tomatoes (RT)
Fig. 4: Relative ratings progression by cluster.
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(b) AZ - small effect movies
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Fig. 5: Relative timeSVD-- Components Progression

Figure 6 breaks down relative ratings score according to

user type in RT. In each plot of that figure the blue line

represents the critic’s reviewers contribution, the green line

represents the general’s reviewers contribution, the red line

the general contribution of all reviewers. The grey line (with

y-axis scale on the left side) represents the proportion of critics

that are reviewers contributing to the average across movies.

The proportion (grey line) of critics is the same in all plots.

Figures 6a and 6b shed considerable light on the user

population component of ratings dynamics. It shows that

critics are responsible for most of the initial reviews, and that

critics on the whole tend to have lower average reviews than

general users. (The facts that the user line in each figure drops

at the beginning, and the critic lines rise at the end, are due

to small-sample effects.) The effect is particularly clear when

extracting just the user time-invariant component in Figure 6b.

The contrast to MT is interesting, because there the user

population shift has a decreasing effect on ratings. We note

that the MT platform is quite different from the other two,

because of the absence of a well-defined critic population, as

well as the fact that previous ratings of a movie are not as

easily accessible. We hypothesize that this means that users

whose average ratings are lower will be more likely to review

movies later in time.

Overall, this analysis goes a long way to explaining how

user population shifts contribute to ratings dynamics. In RT it

can help explain the entire dynamics of the user time-invariant

component of the model. In AZ it can help explain the eventual

increase in the user time-invariant component; we will explore

the initial decrease later in the paper.

How do items contribute to ratings dynamics? The

second significant component exposed by timeSVD-- in

Figure 5 is the item time-varying contribution (red line).

For AZ in the all movies case (Figure 5a) we can ob-
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Fig. 7: Amazon [Movie and TV] early user effect.

serve that the item time-varying component accounts for a

substantial proportion of the relative change in ratings score,

reaching almost 80% at the end of the progression. For MT the

item time-varying component always has a decreasing trend

– i.e., when the items lose value while aging. We note that

this is consistent with previous work (eg, [9]) showing that,

in the absence of other factors, online ratings tend to decline

when prior reviews are hard to access or evaluate. The fraction

of contribution is considerable – reaching up to 40% of the

relative score – in the large effect subset (Figure 5f), and it

is present across essentially all clusters within the RT dataset

(Figure 4b). Finally, in RT the item time-varying component

has an increasing trend – i.e. items get a higher score when

time progresses – for the all movies case (Figure 5g) and for

the subset of large effect moives (Figure 5i) where it accounts

up to 40% of the relative predicted score. The difference in

the case of RT can also be understood in the context of [9]

due to the presence of a large set of reliable reviews (reviews

that are labeled as coming from critics).

Movies with a strong increasing time-varying component

are those that show significant improvement in rating over

time; they can be thought of as “sleepers” that take time to

become well-liked. A more detailed analysis including the

separation of the item time-varying component among critics

and general reviewers in Figure 6c shows that general reviews

tend to view “improving” movies earlier in time, while critics

tend to view “improving” movies later. This suggests that

users are quicker to identify “sleeper” movies and that critics

follow. Overall, our analysis shows that on a platform like

Twitter, movies with declining ratings over time are more

likely to accumulate subsequent reviews than on platforms

like Amazon and Rotten Tomatoes, where previous reviews

are more accessible and more easily interpreted.

Why do ratings initially decline on the Amazon plat-

form? One of the striking properties of ratings on the Amazon

platform is the initial decline followed by subsequent increase.

Figure 1 shows this effect, Figure 4a shows that it primarily

derives from about 12% of all movies (although most movies

show an initial decline) and Figure 5c shows that the effect

has contributions from both item time-varying and user time-

invariant components. This behavior constrasts starkly with the

case for MT and RT.

In investigating this we note that AZ has a numerous

quantity of users that just provided a small number of reviews;

this, combined with the fact that Amazon is an e-commerce

platform, raise the questions of whether initial reviews are

intentially inflated in some way. This could be a strategy to

attract buyers when a product is first introduced.

We investigated this hypothesis by analyzing the users

in the AZ dataset. We conjecture that if large numbers of

early reviews were artificially inflated, then there should be a

subpopulation of users who are providing almost exclusively

early reviews for items.

Hence, fo each user, we compute their average movie rating

time (i.e., how early in the item progression time the user

provides a review), the user’s average rating score, and the

number of reviews that that user provided. We summarize the

results in Figure 7.

In the Figure 7, we show the distribution of average rating

score of a user versus the average item progression time for

that user’s ratings. We separate users that contributed less

than eight reviews from those that gave more than eight. The

figure shows that users that proffered less than eight reviews

have a higher average score than users that provide more than

eight. This can be observed by comparing the user’s results

(green over yellow) at each bin time of the item progression.

Furthermore, by observing the distribution of those users that

provided less than eight reviews overtime (green box), we can

see that their average score declines over time.

These results suggest that the initial drop in ratings seen

on the Amazon platform is driven at least in part by a sub-

population of users who provide few reviews overall and who

provide inflated ratings for a product early in its lifetime. We

hypothesize that this arises due to the nature of the Amazon

rating system’s existence in support of product purchases.

Figures 3a and 3b confirm this effect and explanation across

Amazon categories.

We note that if this explanation holds, then it should be a

consistent property across the Amazon platform. Indeed, we

find that this is the case, as shown in Figure 3a. All categories

from Amazon present an initial drop in ratings and most of

them – except for AZ-App – have an average rating increase

afterward. That figure shows that the initial-decline of ratings

is a fairly common feature across categories on the Amazon

platform.

We can likewise explore our hypothetical explanation – that

a subset of reviewers provide early, inflated ratings – for each



of the Amazon categories. The results are shown in Figure 3b.

The figure shows that the early-reviewer effect is present in

every Amazon category, and that it is particularly pronounced

in certain product categories (Apps and Kindle books).

How do recommendations contribute to ratings dynam-

ics? The final factor to consider, as discussed in Section II, is

the presence of a recommendation system on a given platform.

We expect that if a recommendation system is suggesting items

to users, then subsequent ratings for the item should show a

higher interaction score because this would reflect an improved

‘match’ between the preferences of users and the features of

the item.

We can assess this effect in two ways: we can ask whether

individual items show higher interaction scores over time,

and we can ask whether items that have high interaction

scores receive more ratings. In the latter case, this may be

because more ratings allows the system to do a better job of

forming recommendations, and it may be because items that

are successfully recommended will garner more ratings.

To ask whether individual items show higher interaction

scores over time, we recall from Figure 5 that RT and MT show

essentially zero variation in interaction score (yellow lines).

This is consistent with the observation that those platforms

are not actively providing users with recommendations that

affect which items a user consumes or chooses to rate.

However, that Figure 5 shows an interaction score effect

for the AZ platform. To augment that result, we perform

timeSVD-- decomposition of each of the other Amazon

categories. The results are shown in Figure 8. Interestingly,

it appears that individual items do not show an increased in-

teraction score over time (yellow lines). In general, interaction

scores decline somewhat over time.

However, the effect on an individual item may be subtle

over time. A more likely effect of a recommender system

would occur between the number of ratings an item receives

and the interaction score of the item. For this analysis, we

return to looking at all items in the dataset (not just those

having 100 or more ratings). The results (looking only at

interaction score) are shown in Figure 9. This figure shows that

on the Amazon platform, there is a strong positive correlation

between the interaction score (a measure of the effectiveness

of the recommendation system) and the number of ratings that

an item receives.

V. RELATED WORK

In this section we review work that relates to our study. A

number of previous studies have looked at temporal dynamics

in online reviews but to the best of our knowledge we are

the first that addresses the role played by the complete set of

factors listed in Section II.

One starting point for our analysis is [7], which proposes

a recommender system based on collaborative filtering that

incorporates temporal dynamics, and splits prediction score

between various factors. The authors in [10] present a temporal

rating model that additionally incorporates review text; we

focus just on review scores as a function of time.

McAuley and Leskovec propose a latent factor recom-

mender system in [1] that models user development caused by

the consumption of products over time. They show the role of

user experience and expertise through analysis of beer, wine,

food, and movie reviews; we do not find a significant impact

of user evolution in our study. The authors in [11], [12], and

[13] also model temporal dynamics as a strategy to improve

recommendation accuracy, and use models similar in spirit to

our model; however their purpose is not to understand ratings

dynamics. Likewise, the authors in [14] study how positive

and negative movie reviews change over time and propose

a recommender system model that takes into account time-

varying and temporal effect of positive and negative reviews

for future behavior.

While all of these studies propose new methods for improv-

ing recommendations, none seeks to understand a broad set of

factors underlying the evolution of rating dynamics observed

in practice such as platform differences or population shift.

The authors in [9] analyzed the evolution of online ratings

over sequence and time for a book ratings dataset. They

show that, on average, ratings in sequence and time decrease,

although there are distinct dynamic processes occurring. Al-

though they provide some explanations for those dynamic

processes their analysis is limited to a specific platform and

item type.

Finally, we point out some studies that are looking at

the dynamics of online reviews focused in some particular

correlations. Tha authors in [15] model the positive feedback

mechanism between online word-of-mouth (WOM) and retail

using a movie dataset. Authors in [16] create a model to

understand online product ratings from a consumer perspec-

tive and comparing evaluations of products from consumer

magazine and online ratings they observed that besides the

product quality online ratings reflects the customer’s satisfac-

tion. Authors in [17] analyzed the role of social dynamics in

cultural markets. In a similar perspective [18] and [19] analyze

in online systems the effect of conformity or social influence

bias – the inclination to conform to the observed norm of

a community. Furthermore, [20] proposes a recommender

system that mitigates this conformity effect while [21] a

system to embrace it.

VI. CONCLUSION

In this paper we’ve taken a broad look at the factors that

drive changes in item ratings in online review systems.

Our results take two parts. First, we characterize the range of

ratings dynamics and show how platforms differ. Importantly,

different platforms have different and distinctive dynamics.

These are preserved when looking at the same sets of items

across platforms, and they are preserved when looking across

different types of items on the same platform.

Next, we use our model to unravel the factors affecting

rating dynamics. First and foremost, we show that changes in

user populations are a significant driver of ratings dynamics.

In general we observe a trend for user population shifts to

increase ratings over time and our RT analysis suggests that
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an important factor is the shift from critics to general users

over time. Next, we show that there is in general significant

variation in the perceived quality of items over time. This

suggests a general trend that may be due to presence of

accessible, well characterized reviews (eg in RT) or the lack

thereof (in MT). Then, we show that in the case where ratings

are in support of an e-commerce platform (ie, AZ) there is a

significant tendency for a subset of users who provide few

reviews overall to provide early, inflated ratings for items.

This is consistent across categories of Amazon products but

does not occur in ratings-only sites like Rotten Tomatoes and

Twitter. Finally, we find that the presence of a recommendation

system on a site like Amazon helps explain the tendency for

items (across all categories) that show higher interaction scores

to acquire more ratings overall.

Taken as a whole, we show both the complexity behind

the dynamics of online reviews and a set of understandable

factors that interact to generate that complexity. Hence, we

believe that these results provide a framework for interpreting

item reviews and how they may be expected to change over
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