
Software Interleaving *

Ricardo Bianchini Mark E. Crovella Leonidas Kontothanassis Thomas J. LeBlanc

{ ricardo,crovella, kthanasi,leblanc} @cs.rochester. edu

Department of Computer Science
University of Rochest er

Rochester, New York 14627
(716) 275-5426

Abstract
In this paper, we investigate the costs and benefits of
implementing memory interleaving in software. As
our main contribution, we compare software memory
interleaving to row-major allocation and logarithmic
broadcasting. Our analysis demonstrates the clear su-
periority of software interleaving over row-major al-
location in the presence of memory contention. Our
analysis also indicates that the choice between soft-
ware interleaving and logarithmic broadcasting is less
clear, as it depends both on the type of synchroniza-
tion used and the number of processors. We conclude
that, on large-scale multiprocessors, software memory
interleaving and lock-based synchronization is the most
effective combination for reducing memory contention
in matrix computations.

1 Introduction
In order to effectively exploit large-scale shared-
memory multiprocessors, we must eliminate all bot-
tlenecks that limit scalability. One such bottleneck
is limited memory or interconnection network band-
width. Even well-designed machines can exhaust the
available bandwidth when a program issues an exces-
sive number of remote memory accesses or when re-

'This research was supported under NSF CISE Institu-
tional Infrastructure Program Grant No. CDA-8822724, and
ONR Contract No. N00014-92-J-1801 (in conjunction with the
DARPA HPCC program, ARPA Order No. 8930). Ricardo
Bianchini is supported by Brazilian CAPES and NUTES/UFRJ
fellowships. Mark Crovella is partially supported by a DARPA
Research Assistantship in Parallel Processing administered by
the Institute for Advanced Computer Studies, University of
Maryland.

mote accesses are distributed non-uniformly. While
techniques for improving locality of reference are of-
ten successful at reducing the number of remote ref-
erences, a non-uniform distribution of references may
still result.

A non-uniform distribution of remote accesses can
be found in several classes of applications. For exam-
ple, in many parallel graph algorithms, such as tran-
sitive closure and Warshall-Floyd's all-pairs shortest
paths, a single processor writes a row of the adjacency
matrix that is then read by every other processor.
Many linear algebra algorithms, including a straight-
forward parallelization of Gaussian elimination and
LU decomposition, exhibit this same structure. In
each case, a non-uniform distribution of accesses re-
sults, wherein most processors require simultaneous
access to a single memory module.

A non-uniform distribution of accesses can cause
contention both in the interconnection network and at
remote memories. Although network contention may
decrease performance under certain circumstances,
the expected increases in interconnection network
bandwidth (particularly with the use of optical net-
works) lead us to believe that contention for memory
modules should almost always dominate. In addition,
any technique successful at alleviating memory con-
tention is likely as a result to alleviate interconnection
network contention. Thus, memory contention allevi-
ation is the key to significant performance improve-
ment.

Several techniques have been developed for reduc-
ing memory contention. Linear algebra algorithms can
exploit the properties of numerical equations to im-
prove locality of reference, and as a side-effect elimi-
nate most non-uniform memory addressing [4]. How-

0-8186-6427494 $04.00 0 1994 IEEE
56

ever, this approach may introduce significant complex-
ity in the algorithm, and does not generalize to other
classes of applications, such as the graph algorithms
used in our study. Many other techniques for alleviat-
ing the effects of a non-uniform distribution of mem-
ory accesses assume special hardware support, such
as multi-stage interconnection networks with combin-
ing of memory references [5, 71, interleaved memory
[7], eager sharing [8], and eager combining [l]. Al-
though these techniques are known to reduce or elimi-
nate memory contention, the associated hardware can
be both complex and expensive, and may depend on
particular properties of the interconnection network.
Thus, general software solutions are an attractive al-
ternative.

Two software techniques for alleviating contention
are software combining trees [9] and data replica-
tion. Software combining trees are analogous to hard-
ware combining networks, and incorporate logarithmic
broadcasting. We can also limit memory contention by
replicating data across multiple memory modules. By
distributing the requests for data evenly among the
copies, we can reduce or eliminate memory contention
for the original copy.

Each of the techniques described above is general
enough 'to use in any program. However, our inves-
tigation of memory contention in programs for solv-
ing linear algebra and graph problems suggests that
techniques devoted specifically to parallel matrix com-
putations [6] can also be very effective at alleviating
contention. In this paper, we evaluate the effective-
ness of memory interleaving implemented in software.
This technique is motivated by the observation that
memory contention in matrix computations is typi-
cally caused by simultaneous access to a single row
of the matrix by multiple processors. If matrices are
allocated among memories by rows, simultaneous ac-
cess to any part of a row requires that processors con-
tend for a single memory module. Memory interleav-
ing spreads memory accesses across several memory
modules when multiple processors access a single row
of the matrix.

We seek to characterize the source and extent of
memory contention in SPMD matrix computations,
quantify the costs and benefits of software memory
interleaving, and evaluate the tradeoffs between soft-
ware interleaving and logarithmic broadcasting on
large shared-memory multiprocessors.

2 Methodology
We simulate a large-scale multiprocessor (up to 200
processors) based on a multi-stage interconnection
network executing our example applications. Our sim-
ulations consist of two distinct steps: a trace collec-
tion process, and a trace analysis process. The trace-
collection step uses Tango [2] to simulate a multipro-
cessor with (infinite) write-back caches. The traces
generated by Tango contain the data references that
missed in the local cache of each processor, and all
synchronization events.

Our analyzer process takes as input an address
trace produced by Tango, and simulates execution of
the references in the trace on a distributed shared
memory multiprocessor. The analyzer respects the
synchronization behavior of the application as repre-
sented by the synchronization events contained in the
trace. We simulate hardware barriers by allowing all
synchronizing processors to leave a barrier at the same
time. Lock and unlock operations introduce a short
execution delay, 5 cycles. Synchronization events are
not allowed to cause contention in our model, although
they are critical in maintaining the relative timing of
events during trace analysis.

In our machine model, a memory module can pro-
cess only one request at a time. Requests arriving
when the module is busy are rejected and must be
reissued. Our analyzer measures contention for mem-
ory at the page level; thus each 4KB page is treated
as a separate memory module to which requests may
be directed. We treat each page as a separate mem-
ory module so as to simulate an ideal page placement
policy in which contention caused by simultaneous ac-
cesses to multiple pages does not occur.

Our simulations assume a cache line size of 64 bytes,
a fixed network latency of 36 processor cycles, and lo-
cal memory latency of 10 processor cycles per cache
line. In the absence of contention, a remote memory
request requires a request message, a reply message,
and memory service time, or 82 cycles total. Each
request rejected due to contention suffers a 72 cycle
penalty, corresponding to an immediate re-issue of the
request. Our assumption that network latency is fixed
(i.e., there is no network contention) allows us to iso-
late the effects of memory contention from network
contention. This assumption corresponds to a ma-
chine architecture where the network bandwidth per
node is much larger than the memory bandwidth. In
addition, including network contention in our simula-
tions would assign some of the contention we observe
to the network rather than the memory, but would
not be likely to affect the tradeoffs we consider here.

57

Our simulation parameters are somewhat optimistic.
Throughout the paper, we present results demonstrat-
ing the performance effect of changing each of our pa-
rameters.

Our application workload consists of four parallel
programs: two linear algebra applications (Gaussian
elimination and matrix inversion), two graph algG
rithms (transitive closure and all-pairs shortest paths).

Our linear algebra applications are similar in that,
during each phase of the computation, processors need
access to a pivot row of the matrix describing the lin-
ear equations. This pivot row is written by one pro-
cessor and then read by every other processor. In our
graph applications, processors also require access to a
pivot row of the adjacency matrix (where each vertex
is connected to each other vertex with probability 0.5)
representing the graph. The pivot row is written by
one processor and then read by many other (possibly
all) processors. In all the applications, the elements
of a matrix row are allocated to consecutive addresses
in a single memory module, so all processors direct a
request to the same memory module after synchroniz-
ing.

The input to all our applications is a 512 x 512
matrix, except for all-pairs which takes a 400 x 400
matrix as input. Synchronization is implemented with
locks in Gaussian elimination and transitive closure,
while barrier synchronization is used for matrix inver-
sion and all-pairs shortest paths.

3 Effects and Source of Con-
tent ion

3.1 The Effects of Memory Contention
Table 1 shows how memory contention affects the run-
ning time of our applications. For Gaussian elimina-
tion and all-pairs shortest paths, memory contention
causes the running time to increase with an increase in
processors. In fact, moving from 50 to 200 processors
increases the running time of these applications by a
factor of 2-3, rather than cutting the running time
by a factor of 4. The situation is not quite as bleak
in the case of matrix inversion, where 100 processors
perform slightly better than 50 processors; however,
200 processors perform no better than 50 processors.
Transitive closure is the only program that benefits
from an increase in processors, although doubling the
number of processors from 50 to 100 only improves
performance by a factor of 1.8, and multiplying the
number of processors by 4 only improves performance
by a factor of 2.4. It is important to note that, for the

21.7 26.0
12.3 9.0

All D i r S 43.0 71.3 136.8

Table 1: Running time (in millions of cycles) under
row-major allocation.

inputs used in our simulations, these programs have
good locality of reference and load balancing proper-
ties, and achieve good speedup when contention is not
considered. Thus, for all of these programs, memory
contention is the major obstacle to effective speedup.

The effects of contention are magnified even more
if we relax some of our optimistic assumptions. For
example, if we double the memory latency to 20 pro-
cessor cycles, the effect of contention is even more
pronounced. On 200 processors, 92% of the misses in
Gaussian elimination suffer contention (up from 84%),
the average remote reference latency increases to 2910
cycles (up from 1546), and the running time increases
to 28.8 M cycles (up from 15.6 M cycles). Similarly,
if we keep memory latency at 10 cycles and reduce
the cache line size to 32 bytes, then 90% of the misses
in Gaussian elimination suffer contention, the aver-
age remote latency increases slightly to 1571 cycles,
and the running time increases dramatically to 30.9 M
cycles (since we have doubled the number of remote
references). If we both double the memory latency
and reduce the cache line size to 32 bytes, then the
average remote latency increases to 2904 cycles, and
the running time increases to 55.2 M cycles. These
results suggest that under less optimistic (and per-
haps more realistic) assumptions, memory contention
is likely to be an extremely serious problem in the
large-scale shared-memory machines we consider.

3.2 The Source of Memory Contention
From the results presented in the previous section,
it is obvious that all of our example programs suf-
fer from memory contention. Our hypothesis was that
the major component of the performance degradation
observed in our experiments was due to simultane-
ous access to a single row of the matrix, as opposed
to a accesses to a single element. We validated this
hypothesis with a simple experiment in which we sim-
ulated Gaussian elimination on 50 processors, using
a matrix that was allocated so that elements within

58

the same row were placed in different pages. This al-
location strategy reduced the average remote access
latency from 164 cycles to 83 cycles, which is near
optimal. This experiment confirms that the memory
contention seen in our examples is due primarily to
simultaneous access to the elements of a row, all of
which reside in one memory module.

We can also see from our examples that synchro-
nization plays an important role in memory con-
tention. All-pairs shortest paths experiences the worst
contention by far, in part because our implementation
uses barriers to implement the parallel loop. Transi-
tive closure is similar in structure, but we used locks in
its implementation. By using barriers in the all-pairs
shortest paths program, we force all processes to ac-
cess the same row at the same time on every iteration
of the outermost loop, thereby increasing contention.
To confirm the role of barrier synchronization as a
root cause of memory contention in all-pairs short-
est paths, we implemented the program using locks
instead of barriers on 50 processors. The average la-
tency of a remote memory access fell from 2764 cycles
to 247 cycles, and the running time decreased from
43M cycles to 14.4M cycles. It is clear from this exper-
iment that barriers exacerbate the problem of memory
contention.'

We conclude from these experiments that the ma-
jor source of contention in our application programs
is due to synchronized access to the elements of a sin-
gle row of the matrix, all of which reside in a single
page (or memory module). Although relaxing syn-
chronization constraints (by replacing barriers with
locks) helps to reduce contention, we still observe sub-
stantial performance degradation due to contention in
large-scale machines. In the next section we consider
an alternative data allocation strategy designed to ad-
dress this problem.

ROW I

4 Reducing Contention with

BLOCK1 BLOCK2 B W K 3 ... MEMORY MODULE P

Software Interleaving

Our experiments in the previous section suggest that
the main cause of memory contention in our example
programs is the row-major allocation we used for ma-
trices. Row-major allocation places an entire row of
the matrix in a single page (or memory module), so
that access to the row by multiple processors results

'Note that the effects of memory contention are greater in
the lock-based implementation of all-pairs shortest paths than
in the lock-based implementation of transitive closure, since
there are many more cache misses in all-pairs shortest paths.

... ROW I + 1 MEMORY M O D V L E P i I

BLOCK 1 ..,

SOFIWARE MEMORY mlEIU€4VING A W C A I l O N

MEMORY MODULE P

BLOCK 2 . . .

Figure 1 : Software Interleaving Matrix Allocation.

MEMORY MODULE P + I

in memory contention. Since none of our example pro-
grams access a matrix by columns, one obvious way
to alleviate memory contention is to allocate the ma-
trices in column-major order. That way, each element
of a row resides in a different memory module. How-
ever, column-major allocation merely trades memory
contention for additional cache misses (due to false
sharing), and does not solve the performance prob-
lem. We require an allocation strategy that has the
spatial locality properties of row-major allocation, and
the memory contention properties of column-major al-
location. Software interleaving has both properties.

. , . B W K 3

4.1 Software Interleaving
In software interleaving, we divide each row of the
input matrix into cache blocks, and map the cache
blocks of a single row into different memory modules.
Figure 1 shows how matrices are allocated under soft-
ware interleaving.

Software interleaving is a specific instance of the
more general data allocation strategy, referred to as
block scattered decomposition [3], in which the size of
the block is determined by the architecture's cache
line size. In effect, we use column-major allocation
of cache blocks, rather than column-major allocation
of elements. Since no cache block contains elements
from multiple rows, we eliminate the additional cache
misses due to false sharing in column-major alloca-
tion. Since the cache blocks of a single row map to
different memory modules, no memory contention oc-
curs when multiple processors simultaneously access
different cache blocks of the same row.

Software interleaving can be implemented easily by

MEMORY MODULE P + 2

59

the compiler, as it only requires the strip-mining loop
transformation, and a slightly more complicated ad-
dressing of the interleaved data structures. A smart
compiler can also determine whether or not to trans-
form a program based on an analysis of its parallel
loops. Note that software interleaving avoids mod-
ifying the allocation of work to processors and the
synchronization determined by the original loop struc-
ture.

Software interleaving has a tremendous effect on
the average latency of remote accesses observed by
our sample parallel programs. For Gaussian elimina-
tion, the average remote access latency on 200 pro-
cessors is 82 cycles, which is optimal. The results for
transitive closure are also close to optimal. Average
latency for matrix inversion under software interleav-
ing increases slightly with an increase in processors,
but still manages a 6-10 fold decrease in average la-
tency when compared with row-major allocation. And
even though all-pairs shortest paths still suffers from
contention, which results in an average remote access
latency of 366 cycles on 200 processors, software in-
terleaving improves the average remote access latency
by a factor of 18 to 33.

This decrease in remote access latency produces a
corresponding improvement in running time, as seen
in Table 2. Under software interleaving, each of our
applications runs faster with an increase in proces-
sors. For Gaussian elimination and transitive closure,
doubling the number of processors cuts the running
time nearly in half. Additional processors also improve
the running time of matrix inversion, although not in
the same proportion. Even all-pairs shortest paths
continues to exhibit improved running time with an
increase in processors, although the performance im-
provements offered by 200 processors are insignificant.
The speedup of matrix inversion and all-pairs shortest
paths is limited by the use of barrier synchronization;
too many processors waste cycles waiting for a barrier.

Software interleaving is also effective at reducing
contention under less optimistic assumptions than
those used in the majority of our experiments. For
example, even if we double the memory latency to 20
cycles, software interleaving eliminates most memory
contention in Gaussian elimination. On 200 proces-
sors, only 0.78% of the misses suffer contention, the
average latency of remote accesses is only 95 cycles,
and the running time only increases by 15%. The same
observation applies if we reduce the cache line size to
32 bytes. For Gaussian elimination on 200 processors
with a cache line size of 32 bytes, only 0.23% of the
remote references suffer from contention, the average

r AmLCation I Running Time I

Gaussian e h
Matrix inversion 25.3 15.3 10.1

All pairs 15.4 10.5 10.3
11.8

Table 2: Running time (in millions of cycles) under
software interleaving.

remote latency is 82 cycles, and the running time is
only 4.0 M cycles. (By way of comparison, Gaussian
elimination under row-major allocation takes 30.9 M
cycles on 200 processors when the cache line size is 32
bytes.) If we both double the memory latency and re-
duce the cache line size to 32 bytes, then only 0.9% of
the remote references suffer from contention, the av-
erage remote latency rises slightly to 98 cycles (where
the minimum is now 92 cycles), and the running time
increases to 4.7 M cycles. Thus, the enormous per-
formance advantages of software interleaving are rel-
atively insensitive to memory latency and cache line
size.

The conclusion that software interleaving can effec-
tively eliminate the effects of contention holds even if
we allocate multiple data rows to a memory module
(rather than assign each row of the matrix to a sepa-
rate page, and treat each page as a memory module).
As long as consecutive rows are allocated in different
memory modules, there is no significant contention for
data within a memory module other than the con-
tention measured in our simulations.

As a final observation, we note that Gaussian elimi-
nation runs slightly faster on 50 processors under row-
major allocation than under software interleaving. In
this case, the additional addressing costs of software
interleaving outweigh the benefits associated with re-
ducing memory contention. We will examine those
costs in the next section.

4.2 Overhead in Software Interleaving
As we discussed earlier, software interleaving trans-
forms the code by applying strip-mining to certain
loops. The effect of strip-mining is to replace one loop
with two, thereby increasing loop overhead. This over-
head is not present when using row-major allocation,
and therefore increases the running time of any pro-
gram using software interleaving, unless offset by a
reduction in memory contention.

Table 3 illustrates the tradeoff between the over-

60

Application

Gaussian elim

Running Time
RM-NC I RM-C I SI-NC I SI-C

2.4 I 15.6 I 2.7 I 3.0

Table 3: Running time (in millions of cycles) with and
without contention on 200 procs.

Matrix inversion
Transitive closure
All pairs

head associated with software interleaving (SI) and
the memory contention associated with row-major al-
location (RM). In the table, the NC and C suffixes
stand for “no contention” and “contention”, respec-
tively. In the absence of memory contention (that is,
under the assumption that a memory module can sat-
isfy any number of requests simultaneously), all of our
programs execute 3-15% faster on 200 processors using
row-major allocation, due to the overhead associated
with software interleaving. When memory contention
is included, software interleaving clearly dominates,
improving performance by an order of magnitude in
the case of all-pairs shortest paths. Recall from Ta-
bles l and 2 that software interleaving performs signif-
icantly better on 50 processors only for those programs
with a large amount of contention (matrix inversion
and all-pairs shortest paths). For programs with lower
contention levels, software interleaving performs either
slightly better (transitive closure) or slightly worse
(Gaussian elimination) than row-major allocation on
50 processors. These data suggest that i t is not al-
ways obvious how to resolve the tradeoffs involved. In
the next section we analyze these tradeoffs to deter-
mine the circumstances under which to use software
interleaving.

7.7 26.0 8.7 10.1
6.1 9.0 6.3 6.4
4.0 136.8 4.4 10.3

5 Determining When to Use
Software Interleaving

The previous section presented examples of the ben-
efits of software interleaving, and mentioned some of
the tradeoffs associated with the technique. This sec-
tion develops analytical models that explain why soft-
ware interleaving usually outperforms row-major allo-
cation, and under what circumstances software inter-
leaving outperforms logarithmic broadcasting.

In each case, it is necessary to consider the two
kinds of producer-consumer synchronization sepa-
rately: barrier synchronization and lock synchroniza-
tion. Under barrier synchronization, we assume that

each task begins trying to access a new matrix row
immediately after the barrier. This leads to a differ-
ent analysis from lock synchronization, in which tasks
access rows after a lock is set. Under lock synchro-
nization, conflicts in accessing a matrix row are less
frequent.

The metric we will use in our comparison is the in-
crease in running time over the optimal case, which
has no memory contention and no additional instruc-
tion overhead. We measure the running time of the
optimal case by simulating the simplest program (row-
major allocation) on a system with infinite memory
bandwidth (but nonzero memory latency).

Our purpose in performing these analyses is not to
develop highly detailed models that can be used to
predict the performance of programs. We focus in-
stead on simple models that provide insight into rea-
sons for preferring one technique over another, and
that serve as a means of verifying our understanding
of the tradeoffs involved.

5.1 Modeling Software Interleaving
and Row-Major Allocation

For a given cache line size and matrix size, the loop
overhead introduced by strip mining is a constant
number of cycles. These cycles are distributed among
the various processors, and therefore have a decreas-
ing effect on running time as we increase the number
of processors. The contention effects under software
interleaving depend on the form of synchronization. If
processes are loosely synchronized (as is the case when
we use locks), then the overhead introduced by soft-
ware interleaving is almost entirely attributed to loop
overhead as follows:

L
P S I (P) = - + K1

where L is the execution time of the additional in-
structions introduced by strip mining, and P is the
number of processors (assuming good load balance).
K 1 , which is typically small relative to L , represents
the small amount of contention that still occurs under
lock synchronization. We find that the quantity K 1 is
fixed for each of our programs.

Software interleaving can suffer from memory con-
tention when using barrier synchronization, but only
for the first cache line of a row. Subsequent accesses
to the same row are skewed by the serial access to the
first cache line. The overhead of software interleaving
in this case is:

Application

Opt Gauss

Running Time
50 procs I 100 procs I 200 procs

6.5 I 3.7 I 2.4

Table 4: Running time of Gauss and All pairs (in mil-
lions of cycles) under software interleaving, compared
to optimal.

Application

Opt Gauss

where R is the number of rows in the matrix, and T
is the transfer time of a cache line (82 cycles).

As seen in Table 4, our experimental results agree
with this analysis. For Gaussian elimination, we mea-
sure L a approximately 50M cycles and K1 as approx-
imately 300,000 cycles. For all-pairs shortest paths,
we measure L as approximately 70M cycles; from the
program, we know that R is 400, and as noted above,
T = 82. These parameters result in good agreement
with the data in all cases.

In contrast, row-major allocation adds no addi-
tional loop overhead. However, it suffers serious con-
tention under both barrier and lock synchronization.
Under barrier synchronization, all processors contend
for the entire row. Since all rows are eventually re-
quired by all processors, row-major allocation under
barrier synchronization adds overhead equal to the
cost of transferring the entire matrix, times P . This is
because the last processor to receive a row will get it
after P - 1 other row transfers have completed. Under
barrier synchronization, all the other processors will
be forced to wait for the last processor at the next
barrier, ‘so all are slowed equally. In other words:

Running Time
50 procs I 100 procs I 200 procs

6.5 I 3.7 I 2.4

M
E

R M (P) = -TP

SI Gauss
Opt All pairs
SI All pairs

where M is the number of elements in the entire ma-
trix, and E is the number of elements per cache line.

Under lock synchronization, contention occurs due
to random conflicts between processors, as before.
However, random conflicts are more common, since
processors access a single module repeatedly while
transferring a row, and the demand for a particular
row tends to be greatest immediately after it is pro-
duced. In fact, we can determine from the character-
istics of our simulated machine that under row-major
allocation, it only takes 8 processors transferring rows
to saturate a memory module. Since the network trip
lasts for 72 cycles, but the memory access itself only
takes 10 cycles (which we will call service t ime) , no

7.7 4.5 3.0
12.4 6.7 4.0
15.4 10.5 10.3

RM Gauss
Opt All pairs
RM All pairs

7.4 8.5 15.6
12.4 6.7 4.0
43.0 71.3 136.8

Table 5: The running time of Gauss and All pairs (in
millions of cycles) under row-major allocation, com-
pared to optimal.

more than 7 consecutive memory accesses can occur
during a network trip.

Beyond a certain number of processors, we can ex-
pect that at any point in time, at least one mem-
ory module is saturated. This observation holds be-
cause there are only a fixed number of memories in
use; adding more processors adds to the number of
requests sent to each memory. The delay caused by a
memory module’s saturation is eventually propagated
to all processes, since each processor (in addition to
consuming rows) is producing a row that eventually
the other processors will need.

Thus, although it is difficult to model the random
contention for memory when the number of processors
is small, we can provide an estimate of overhead when
the number of processors is large. This estimate is
based on the assumption that at any point in time,
some module is saturated. We can then see that each
additional processor adds an additional service time
to the transfer of each cache line, since the additional
processor will likely access the module while it is satu-
rated. This means that each additional processor adds
the cost of an entire matrix’s memory service time, or
10 cycles times the number of cache lines in an entire
matrix. So we estimate the overhead of row-major
allocation, for large P , and lock synchronization, as:

M
R M (P) = -C(P E - 0)

where C is the memory’s service time (10 cycles), and
B is the threshold number of processors beyond which
the system shows memory saturation.

As seen in Table 5, our experimental results for
row-major allocation generally confirm our analysis.
For all-pairs shortest paths, where M = 4002, our
predictions are about 30% too high; however, these
running times are extremely long and our model pre-
dicts them well enough for comparison purposes with
software interleaving. For Gaussian elimination, we
determine by inspecting the data that memory satu-

62

a " - , , , , , . , I I i ---
RaruoruDIIbn -

O I ' 1 8 " I " "
20 Y) a M im iar 140 i~ iaa 1(1

P-
0 0

Figure 2: Overhead of Row-Major Allocation compared to Software Interleaving for Barrier (Left) and Lock
Synchronization (Right)

ration is reached at about 40 processors, so 6 = 40;
also, since pivot rows only constitute the upper half
of the matrix in Gaussian elimination, M = 5122/2.
Our model of overhead for lock synchronization is then
quite accurate.

Using this analysis, we can determine when the ex-
tra cost of software interleaving is worth paying in ex-
change for the reduction in contention that it provides.
Figure 2 shows plots of the analytic models developed
above, for the cases of all-pairs shortest paths (on the
left) and Gaussian elimination (on the right). The
all-pairs graph shows that under the high contention
costs of barrier synchronization, software interleaving
is preferable even on as few as 10 processors. Beyond
about 50 processors, the cost of software interleaving
begins to rise, but at a slower rate than the cost of
row-major allocation. This trend reflects the differ-
ence between contending for the first cache line of the
row in the interleaving case, and contending for the
entire row in the row-major case.

The analytic models for lock synchronization in
Gaussian elimination are plotted on the right side of
Figure 2. Since contention under lock synchronization
starts more slowly than under barriers, more proces-
sors are required before software interleaving is pre-
ferred over row-major, but the same basic effect is
observed: beyond some number of processors (in this
case about 50) software interleaving is always prefer-
able.

5.2 Comparing Software Interleaving
and Logarithmic Broadcasting

The previous section showed that, as the number of
processors increases, eventually there comes a point
when it is more profitable to use software interleaving

over row-major allocation. However, to adequately as-
sess when to use software interleaving, we must com-
pare it to the best known software alternative: loga-
rithmic broadcasting.

We implemented two versions of broadcasting for
the row-major Gaussian elimination program. The
two versions differ in terms of who drives the broad-
cast, the producer or the consumers of the data. AS
our consumer-driven implementation performed sig-
nificantly better, it is the only one we will present
results for.

As pointed out in the last section, 8 processors
reading a row can saturate a memory module when
the memory latency is 10 cycles and the network la-
tency is 72 cycles; however, as long as the number of
processors contending is less than 8, each processor
is delayed only a small amount. Thus, in our sim-
ulated machine, logarithmic broadcasting should not
use a tree of degree greater than 8. With this assump-
tion, logarithmic broadcasting can completely elimi-
nate contention when used with lock synchronization.
This is because the condition in which some memory
module is always saturated does not occur, as it did
under simple row-major allocation. Memory modules
do not saturate since the complete broadcast of each
row is implemented using a much larger set of mem-
ory modules, and the number of processors accessing
a single module will never be greater than the degree
of the tree.

For this reason we can estimate the cost of loga-
rithmic broadcasting under lock synchronization as a
constant, which is equal to the extra instructions and
synchronization necessary to implement the technique.
Thus,

L B (P) = K2

63

Sam , , , , . . , , , ---
sm, -B"n

Application

Opt Gauss

w 40 M w im iw im i w IM 200 -

Running Time
50 procs I 100 procs I 200 procs

6.5 I 3.7 I 2.4

25m ;

2 o O o ' ' . 8 ' " ' '

20 M M w im iw 140 180 i~ 200
P"

Figure 3: Overhead of Logarithmic Broadcasting compared to Software Interleaving for Lock (Left) and Barrier
Synchronization (Right)

where K2 depends on the specific program. Interest-
ingly, in the programs we studied, K2 was significant;
for example, in Gaussian elimination, K2 = 1.OM cy-
cles. This occurs partly due to the synchronization
needed to access broadcast buffers. Ideally each row
would have a broadcast buffer on each processor, but
that would require expanding the memory usage of the
program by a factor of P , which is impractical. Since
the amount of buffer space used for row broadcast on
each processor must be bounded, buffer space must be
re-used, which requires synchronization.

In contrast, under barrier synchronization, the cost
of logarithmic broadcasting is not independent of P .
The broadcast of each row requires d steps, where d+ 1
is the depth of the broadcast tree.2 For a tree of degree
r , each step requires r row transfers. The first row
causes a delay equal to its transfer time; the other
rows cause a delay equal only to their memory service
times (as discussed earlier in this section). Thus we
can estimate the overhead of logarithmic broadcasting
under barrier synchronization as:

M M LB(P) = d x T + d(r - 1)-C E

where d is proportional to [log, PI.
In our experiments we held d equal to 3, while we

varied r to attain the lowest possible value consistent
with d = 3. For the 50 processor case, we set r = 4;
for P = 100, r = 5 ; and for P = 200, r = 6. Table 6
shows the results of our experiments with All pairs and
Gaussian elimination under logarithmic broadcasting,
and compares them to their ideal cases. The table

2For a tree of degree t, the depth of the broadcast tree is
roughly pog, PI, although details of how the tree is constructed
can change this value by 1 in some cases. In all our experiments,
d = 3.

Broad Gauss I 7.4 I 4.7 I 3.4
Opt All pairs I 12.4 I 6.7 I 4.0

I Broad A i Dairs I 15.9 I 10.3 I 7.8

Table 6: The running time of Gauss and All pairs
(in millions of cycles) under logarithmic broadcasting,
compared to optimal.

shows that Kz = 1.OM cycles is a good estimate of
the constant overhead for Gaussian elimination under
logarithmic broadcasting. It also shows that our esti-
mate of the overhead due to logarithmic broadcasting
under barriers in all-pairs shortest paths is fairly ac-
curate.

Figure 3 shows how the two techniques compare.
The comparison for lock synchronization is on the left,
while the comparison for barrier synchronization is on
the right. For lock synchronization, beyond about 50
processors, software interleaving performs better than
logarithmic broadcasting. This is because the fixed
overhead under software interleaving is lower than
that under logarithmic broadcasting. Since contention
is much less severe under lock synchronization, the
extra cycles required to implement logarithmic broad-
casting are more expensive than necessary; software
interleaving is preferable due to its simplicity.

The situation is different for barrier synchroniza-
tion, as shown on the right side of Figure 3. This figure
shows the overhead of software interleaving compared
to logarithmic broadcasting using a tree of fixed de-
gree (equal to 5) . The step-function nature of the log-

64

arithmic broadcasting curve is due to changes in the
depth of the tree as the number of processors increases.
The figure also shows an upper bound on logarithmic
broadcasting to show that as P grows large, logarith-
mic broadcasting eventually outperforms software in-
terleaving everywhere. This figure shows that under
barrier synchronization contention is so severe that
the linearly increasing costs of accessing the first cache
line in each row under software interleaving eventually
grow larger than the logarithmically increasing costs
of broadcast.

Figure 3 shows that for large numbers of proces-
sors, logarithmic broadcasting is best when using bar-
rier synchronization, but software interleaving is best
when using lock synchronization. It also shows that
for small numbers of processors, the situation is re-
versed: software interleaving is best when using bar-
rier synchronization, while logarithmic broadcasting is
best when using lock synchronization.

6 Conclusions

In this paper we used detailed simulations of appli-
cation kernels to show that memory contention can
substantially degrade the performance of SPMD com-
putations on large-scale shared-memory multiproces-
sors based on multi-stage interconnection networks.
We showed that under row-major allocation, memory
contention is due to synchronized access to entire rows
of a matrix, rather than simultaneous accesses to iso-
lated data elements. We also showed that software
interleaving dramatically reduces memory contention,
and therefore performs much better than row-major
allocation on large-scale machines.

We analyzed the costs associated with software in-
terleaving and logarithmic broadcasting, and showed
how the choice between these two techniques for alle-
viating memory contention depends both on the type
of synchronization used and the number of processors.
For large numbers of processors, logarithmic broad-
casting is best when using barrier synchronization, but
software interleaving is best when using lock synchro-
nization. For small numbers of processors, the situa-
tion is reversed: software interleaving is best when us-
ing barrier synchronization, while logarithmic broad-
casting is best when using lock synchronization. Since
the use of barrier synchronization exacerbates mem-
ory contention, we conclude that software interleav-
ing and lock-based synchronization is the most effec-
tive combination for reducing memory contention in
SPMD matrix computations on large-scale machines.

References
[l] R. Bianchini and T. J . LeBlanc. Eager Combining:

A coherency protocol for increasing effective net-
work and memory bandwidth in shared-memory
multiprocessors. In Proceedings of the 6th Sympo-
sium on Parallel and Distributed Processing, Oc-
tober 1994.

[2] Helen Davis, Stephen R. Goldschmidt, and John
Hennessy. Multiprocessor simulation and tracing
using Tango. In Proceedings of the 1991 Inter-
national Conference on Parallel Processing, pages
11-99 - 11-107, August 1991.

[3] J. Dongarra, R. van de Geijn, and D. Walker. A
look at scalable dense linear algebra libraries. In
Proceedings of the 1992 Scalable High Peformance
Computing Conference, pages 372-379, 1992.

[4] K. A. Gallivan, R. J . Plemmons, and A. H. Sameh.
Parallel algorithms for dense linear algebra compu-
tations. SIAM Review, 32(1):54-135, March 1990.

[5] A. Gottlieb, R. Grishman, C. P. Kruskal, K . P.
McAuliffe, L. Rudolph, and M. Snir. The NYU ul-
tracomputer - designing an MIMD shared memory
parallel computer. IEEE Transactions on Comput-
ers, C-32(2):175-189, Feb 1983.

[6] J . M. Ortega and C. H. Romine. The ijk forms of
factorization methods ii. parallel systems. Parallel
Computing, 7:149-162, 1988.

[7] G. F. Pfister, W. C. Brantley, D. A. George, S. L.
Harvey, W. J . Kleinfelder, K. P. McAuliffe, E. A.
Melton, V. A. Norton, and J. Weiss. The IBM
research parallel processor prototype (RP3): In-
troduction and architecture. In Proceedings of
the 1985 International Conference on Parallel Pro-
cessing, pages 764-771, Aug 1985.

[8] Larry Wittie and Creve Maples. MERLIN: Mas-
sively parallel heterogeneous computing. In Pro-
ceedings of the f 989 International Conference on
Parallel Processing, pages 1-142 - 1-150, August
1989.

[9] Pen-Chung Yew, Nian-Feng Tzeng, and Duncan H.
Lawrie. Distributing hot-spot addressing in large-
scale multiprocessors. IEEE Transactions on Com-
puters, C-36(4):388-395, April 1987.

65

