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ABSTRACT
Estimating the intrinsic dimension of a data set from pairwise
distances is a critical issue for a wide range of disciplines,
including genomics, finance, and networking. Current esti-
mation techniques are agnostic to structure in the data, failing
to exploit properties that can improve efficiency. In this pa-
per, we present a methodology that uses inherent clustering
present in data to efficiently and accurately estimate intrin-
sic dimension. Our experiments show that this approach has
greater accuracy and better scalability than prior techniques,
even when the data does not conform to an obvious clustering
structure.

1. INTRODUCTION

Modern data analysis problems often rely on the study of ob-
jects observed in some high D-dimensional space, making
direct analysis computationally intractable (the “curse of di-
mensionality”). However, frequently one finds that the data
approximately lies on a lower-dimensonal manifold of, say,
dimension d. This intrinsic dimension d represents the actual
number of parameters needed to accurately approximate the
data set. The intrinsic dimension can be much smaller than
the observed dimension (d ≪ D), allowing for tractable so-
lutions to problems once the data is expressed in terms of d
parameters. The property of low intrinsic dimension is com-
monly found in problems as diverse as genomics [1], network
analysis [2], computational finance [3], and computer vision
[4], to name only a few.

Estimating intrinsic dimension is a well-studied problem
[5, 6, 7, 8, 9, 10]. However, despite the considerable prior
work on estimating intrinsic dimension, prior methods have
not sought to exploit structure in the data to decrease compu-
tational complexity. Examples of structure that could be used
include clusters and hierarchy.

To exploit such structure in the data, we develop the
CLUSTERDIMENSION algorithm, which efficiently calcu-
lates the intrinsic dimension of a data set using a particular
kind of hierarchical clustering. We present sufficient condi-
tions on data sets under which the output of CLUSTERDI-
MENSION will converge to the true intrinsic dimension. We
show that CLUSTERDIMENSION has both decreased com-
putational complexity and increased accuracy compared to
state-of-the-art methods.

CLUSTERDIMENSION allows the analysis of data sets in
which only distances (with or without metric embedding co-
ordinates) can be observed. This makes it useful whether or
not the data exhibits metric distance. Analysis of data sets
which do not satisfy metric distance is important in gene mi-
croarray analysis [11] and Internet measurements [12].

2. CLUSTERING-BASED INTRINSIC DIMENSION
ESTIMATION

To illustrate the intuition behind CLUSTERDIMENSION, we
examine limitations of standard intrinsic dimension estima-
tion techniques. Specifically, consider the performance of
box-counting in Figure 1-(A). As seen in the figure, a fixed
grid requires 6 boxes to cover this set of data points. However
the best possible covering, as shown in Figure 1-(B), only re-
quires 3 boxes of the same size. This inflation of the covering
occurs because box-counting is agnostic to structure in the
data.

To introduce CLUSTERDIMENSION we start with some
definitions. Let X = {x1,x2, . . . ,xN} be a collection of N
items. Our observations consist of a set of values D = {dij}
giving the distance between items i and j, from which we
seek to determine the intrinsic dimension of X.

Definition 1. A cluster C is a subset of X. A collection
of clusters T is called a hierarchical clustering of X if
∪Ci∈T Ci = X and for any Ci, Cj ∈ T , only one of the
following is true (i) Ci ⊂ Cj , (ii) Cj ⊂ Ci, (iii) Ci ∩ Cj = ∅.

Given the set of pairwise distances D = {dij}, CLUS-
TERDIMENSION starts by constructing a hierarchical cluster-
ing T . A hierarchical clustering can be constructed using a
variety of methodologies, including divisive [13] and agglom-
erative methods [14]; CLUSTERDIMENSION uses minimum-
linkage agglomerative clustering. The approach starts by
placing each object into a distinct cluster. It then iteratively
finds the smallest cluster distance, and creates a new cluster
containing those clusters. This process repeats until a single
cluster is constructed which contains every object in X.

We denote the hierarchical clustering obtained using this
technique as T̂ . The clustering T̂ is isomorphic to a tree in
which each interior node corresponds to a cluster that contains
all descendants of the node. (We often treat T̂ as a tree in
the rest of the paper.) Each interior node of T̂ is annotated
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Fig. 1. (A) Six grid boxes covering a set of points; (B) The same set of points covered by only three boxes of the same size; (C)
Points with selected pairwise distances labeled ; (D) Annotated hierarchical clustering. (For clarity, only distances dA, dB , dC
are shown.)

with the maximum distance between any pair of items in the
corresponding cluster. An example of this annotated tree is
shown in Figure 1-(D) for the example data in Figure 1-(C).

CLUSTERDIMENSION uses each annotated distance as an
estimate for the minimum covering diameter for the items in
the corresponding cluster. Given a threshold r, the strategy
taken by CLUSTERDIMENSION is to remove all nodes in the
tree whose parent has annotation less than r. The number of
leaves found in the pruned tree, m̂ (r), is used as an estimate
of the size of the minimum covering using balls of diameter
r. In what follows we establish conditions under which this
estimate is accurate.

2.1. Performance

Consider the following condition on the observed pairwise
distances D with an associated hierarchical clustering T over
a set of items X.

Definition 2. The triple (X, T ,D) satisfies the Complete
Linkage Condition if for every set of three items {xi,xj ,xk}
such that xi,xj ∈ C and xk ̸∈ C for some C ∈ T , the
distances satisfy dij < min (dik, djk).

For data sets satisfying the Complete Linkage Condition,
we now show that the number of clusters found for distance r
is equal to the minimum number of balls of diameter r needed
to cover X.

Proposition 1. If (X, T ,D) satisfies the Complete Linkage
Condition, then using the annotated minimum-linkage tree
approach, the estimated covering number is equal to the min-
imum covering number, m̂ (r) = m (r), for all values of r.

Proof. Consider a violation of this proposition. In that case
there exists an r such that the number of leaves in the col-
lapsed tree is not equal to the minimal ball covering with di-
ameter r, i.e., m̂ (r) ̸= m (r). By definition m̂ (r) cannot be
less than m (r), since each cluster with annotation r can be
covered by a ball of diameter r. Hence, m̂ (r) > m (r), so it
must be that there exist (at least) two items, xi and xj such
that xi and xj are in different clusters in T but are covered
by the same ball. Then the distance between xi, xj , dij < r
which violates the Complete Linkage Condition.

Next, we review a standard definition of ball-covering di-
mension:

Definition 3. A point set X has ball-covering dimension d if
and only if limr→0

logm(r)
log r = d.

We can now state the following theorem establishing the
performance of CLUSTERDIMENSION:

Theorem 2.1. For a triple (X, T ,D) that satisfies the Com-
plete Linkage condition, if limr→0

log m̂(r)
log r = d then X has

ball-covering dimension d.

Proof. Follows directly from Proposition 1 and Definition 3.

Theorem 2.1 shows that CLUSTERDIMENSION accu-
rately estimates the intrinsic dimension of data sets that sat-
isfy the Complete Linkage Condition.

2.2. The CLUSTERDIMENSION Algorithm

Using the insights of Theorem 2.1, we introduce the CLUS-
TERDIMENSION algorithm. The strategy starts by obtaining
an annotated minimum-linkage hierarchical clustering that
conforms to the given set of pairwise distances, D. The an-
notated clustering is then used to find m̂ (r) — the inferred
minimum number of clusters corresponding to covering X

with balls of size r. Finally, the the intrinsic dimension d̂ is
estimated as the power law relationship between the observed
values of m̂ (r) and r, such that m̂ (r) = r−d̂. A formal de-
scription of CLUSTERDIMENSION is given in Algorithm 1.
Although we have only established the performance of CLUS-
TERDIMENSION under the Complete Linkage Condition, the
experiments later will not impose this condition on the data
sets observed, and will demonstrate the generality of our
technique.

2.3. Implementation Details

When working with finite data, one obviously cannot resolve
m̂(r) as r → 0. Instead, one must examine the scaling of
m̂(r) over an appropriate range of scales. This is a standard



Algorithm 1 - CLUSTERDIMENSION

Input:

A set of items: X = {x1,x2, ...,xN}.

An N ×N matrix of pairwise distances: D = {dij}.

Minimum and maximum scales of interest: rmin and rmax.

Scaling increment: ∆r.

Main Body:

Using the pairwise distances D, construct T̂ using minimum
linkage agglomerative clustering [14].

Annotate each interior node of T̂ with the maximum dis-
tance between any two nodes in its cluster.

For r = {rmin, rmin +∆r, rmin + 2∆r, ..., rmax}

1. Prune T̂ by removing all nodes whose parent has
annotation ≤ r.

2. Set m̂(r) = number of leaf nodes in pruned T̂

Output:

Return the estimated intrinsic dimension, d̂, as the power-
law scaling relationship between m̂(r) and r.

problem that is common to all techniques for estimating in-
trinsic dimension; addressing this problem optimally is out-
side the scope of this paper. For the purposes of evaluating
CLUSTERDIMENSION in this paper, we adopt simple heuris-
tics for determining the range of scales r, and we apply the
same heuristics across all algorithms we compare. To de-
termine the minimum scale of interest rmin, we choose the
smallest value of r for which the median cluster size is greater
than one (i.e., the diameter where less than half of the found
clusters are singletons). The maximum scale of interest rmax

is taken to be the diameter of X. These heuristics allow us
to estimate intrinsic dimension despite the finiteness of the
data set and without the need to manually inspect the data.
The same range of scales is used in all dimension estima-
tion methodologies that require scale examination (e.g., box
counting, MST, MLE, etc.) to provide a consistent and fair
comparison.

Likewise, it is necessary to estimate the power-law scal-
ing relationship between m̂(r) and r. For this purpose we fit
a least-squares line to the points given by (log r, log m̂(r)).
Again, this approach is applied to all algorithms that require
estimating a power-law relationship.

2.4. Complexity

Estimating the intrinsic dimension of large data sets in accept-
able time requires a method with low computational complex-

ity. Table 1 compares the computational complexity of CLUS-
TERDIMENSION with that of the most commonly used alter-
natives: a Maximum Likelihood technique [7], box count-
ing [9], correlation dimension [6], a minimum spanning tree-
based approach [8], and linear PCA [14].

The Table shows that there is no algorithm with lower
computational complexity than CLUSTERDIMENSION. CLUS-
TERDIMENSION requires only O

(
N2

)
operations, as O

(
N2

)
operations are required to construct the minimum-linkage hi-
erarchical clustering ([14]), and O (N) operations are then
required to prune the tree to obtain the number of leaf nodes
for a given distance (as there are at most N interior nodes in
the tree structure).

In evaluating computational complexity, it is important
to consider the form in which the data is presented. CLUS-
TERDIMENSION only requires knowledge of inter-point dis-
tances; however, methods that rely on a linear embedding of
the data (e.g., PCA or box counting) are dependent on the
embedding dimension of the data (dℓ) which for non-linear
real-world data can potentially approach the size of the data
set, N .

Table 1. Computational Complexity of Intrinsic Dimension
Estimation Algorithms (for N items with linear embedding
dimension dℓ)

Dimension Estimation Computational
Method Complexity
CLUSTERDIMENSION O

(
N2

)
Maximum Likelihood [7] O

(
N2

)
Box Counting [9] O

(
dℓN

2
)

Correlation Dimension [6] O
(
N2

)
Minimum Spanning Trees [8] O

(
N2 logN

)
PCA [14] O

(
dℓN

2
)

2.5. Accuracy

To evaluate the accuracy of each of the dimension estimation
techniques in Table 1, we apply each technique to a collection
of fractals with known intrinsic dimension. We use the Koch
Curve, the Sierpinski Triangle, and the Sierpinski Carpet. Use
of these fractals allows us to validate our dimension estima-
tion techniques on data with known ground-truth non-integer
intrinsic dimension, and the choice of these fractals spans a
range of true dimensions. To demonstrate the performance
on high-dimensional data, we also test on a 1-D line in 100
dimensional space.

Table 2 shows the estimated intrinsic dimension over 10
random realizations of each of the data sets where each real-
ization samples 750 points at random. The fractal data sets
are constructed to a depth of 50 self-similar iterations. For
all data sets, the pairwise distance between two points is the
Euclidean distance. The table presents the results in terms of
both the average intrinsic dimension using the various esti-



mation techniques, and the root mean squared error (RMSE)
over all realizations for the estimated intrinsic dimension. We
find that CLUSTERDIMENSION gives the best estimate over
all methods for two of the three fractals, and the RMSE of
CLUSTERDIMENSION is consistently among the smallest for
all four data sets.

Table 2. Intrinsic Dimension Estimation Root Mean Squared
Error (RMSE) for self-similar fractals (Koch Curve, Sierpin-
ski Triangle, and Sierpinski Carpet) in 2-D space and a 1-D
line in 100-D space from 750 uniformly sampled points and
error results across 10 realizations.

Koch Sierp. Sierp. 1-D
Curve Triangle Carpet Line

Method d = 1.26 d = 1.58 d = 1.89 d = 1

CLUSTER
DIMENSION 0.030 0.083 0.062 0.041
MLE 0.062 0.065 0.245 0.043
Box Count. 0.172 0.273 0.444 0.035
Correlation 0.280 0.250 0.491 0.191
MST 0.248 0.221 0.091 0.131
PCA 0.738 0.416 0.107 0

3. CONCLUSIONS

Estimating the intrinsic dimension of data is critical for a
wide range of real world problems. In this paper, we present
a new approach to intrinsic dimension estimation, requir-
ing only pairwise distances between data items. This new
approach uses clustering rather than geometric embedding,
which affords both low complexity and improved perfor-
mance compared to state of the art alternatives. Experiments
on both synthetic and real-world data show the improve-
ments of these techniques over prior methods. In future
work we look to examine multi-class classification using our
dimension-based clustering, and intrinsic dimension estima-
tion using incomplete observations of pairwise distance.
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