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1 Introduction

Over the last decade an important new direction has developed in the perfor-
mance evaluation of computer systems: the study of heavy-tailed distributions.
Loosely speaking, these are distributions whose tails follow a power-law with low
exponent, in contrast to traditional distributions (e.g., Gaussian, Exponential,
Poisson) whose tails decline exponentially (or faster). In the late '80s and early
'90s experimental evidence began to accumulate that some properties of com-
puter systems and networks showed distributions with very long tails [7, 27, 28],
and attention turned to heavy-tailed distributions in particular in the mid '90s
[3, 9, 23, 34, 42].

To de�ne heavy tails more precisely, let X be a random variable with cu-
mulative distribution function F (x) = P [X � x] and its complement �F (x) =
1� F (x) = P [X > x]. We say here that a distribution F (x) is heavy tailed if

�F (x) � cx�� 0 < � < 2 (1)

for some positive constant c, where a(x) � b(x) means limx!1 a(x)=b(x) = 1:
This de�nition restricts our attention somewhat narrowly to distributions with
strictly polynomial tails; broader classes such as the subexponential distributions
[19] can be de�ned and most of the qualitative remarks we make here apply to
such broader classes.

Heavy tailed distributions behave quite differently from the distributions
more commonly used in performance evaluation (e.g., the Exponential). In par-
ticular, when sampling random variables that follow heavy tailed distributions,
the probability of very large observations occurring is non-negligible. In fact,
under our de�nition, heavy tailed distributions have in�nite variance, reect-
ing the extremely high variability that they capture; and when � � 1, these
distributions have in�nite mean.



2 Evidence

The evidence for heavy-tailed distributions in a number of aspects of computer
systems is now quite strong. The broadest evidence concerns the sizes of data
objects stored in and transferred through computer systems; in particular, there
is evidence for heavy tails in the sizes of:

{ Files stored on Web servers [3, 9];
{ Data �les transferred through the Internet [9, 34];
{ Files stored in general-purpose Unix �lesystems [25]; and
{ I/O traces of �lesystem, disk, and tape activity [21, 36{38]

This evidence suggests that heavy-tailed distributions of data objects are
widespread, and these heavy-tailed distributions have been implicated as an
underlying cause of self-similarity in network traÆc [9, 29, 33, 42].

Next, measurements of job service times or process execution times in
general-purpose computing environments have been found to exhibit heavy tails
[17, 23, 27].

A third area in which heavy tails have recently been noted is in the distribu-
tion of node degree of certain graph structures. Faloutsos et al. [14] show that
the inter-domain structure of the Internet, considered as a directed graph, shows
a heavy-tailed distribution in the outdegree of nodes. Another study shows that
the same is true (with respect to both indegree and outdegree) for certain sets of
World Wide Web pages which form a graph due to their hyperlinked structure
[1]; this result has been extended to the Web as a whole in [6].

Finally, a phenomenon related to heavy tails is the so-called Zipf's Law [43].
Zipf's Law relates the \popularity" of an object to its location in a list sorted
by popularity. More precisely, consider a set of objects (such as Web servers,
or Web pages) to which repeated references are made. Over some time interval,
count the number of references made to each object, denoted by R. Now sort
the objects in order of decreasing number of references made and let an object's
place on this list be denoted by n. Then Zipf's Law states that

R = cn��

for some positive constants c and �. In its original formulation, Zipf's Law set
� = 1 so that popularity (R) and rank (n) are inversely proportional. In practice,
various values of � are found, with values often near to or less than 1. Evidence
for Zipf's Law in computing systems (especially the Internet) is widespread [2,
13, 18, 31]; a good overview of such results is presented in [5].

3 Implications of Heavy Tails

Unfortunately, although heavy-tailed distributions are prevalent and important
in computer systems, their unusual nature presents a number of problems for
performance analysis.



The fact that even low-order distributional moments can be in�nite means
that many traditional system metrics can be unde�ned. As a simple example,
consider the mean queue length in an M=G=1 queue, which (by the Pollaczek-
Khinchin formula) is proportional to the second moment of service time. Thus,
when service times are drawn from a heavy-tailed distribution, many properties
of this queue (mean queue length, mean waiting time) are in�nite. Observations
like this one suggest that performance analysts dealing with heavy tails may need
to turn their attention away from means and variances and toward understanding
the full distribution of relevant metrics. Most early work in this direction has
focused on the shape of the tail of such distributions (e.g., [32]).

Some heavy-tailed distributions apparently have no convenient closed-form
Laplace transforms (e.g., the Pareto distribution), and even for those distribu-
tions possessing Laplace transforms, simple systems like the the M=G=1 must
be evaluated numerically, and with considerable care [39].

In practice, random variables that follow heavy tailed distributions are char-
acterized as exhibiting many small observations mixed in with a few large ob-
servations. In such datasets, most of the observations are small, but most of the
contribution to the sample mean or variance comes from the rare, large obser-
vations. This means that those sample statistics that are de�ned converge very
slowly. This is particularly problematic for simulations involving heavy tails,
which many be very slow to reach steady state [12].

Finally, because arbitrarily large observations can not be ruled out, issues of
scale should enter in to any discussion of heavy tailed models. No real system
can experience arbitrarily large events, and generally one must pay attention
to the practical upper limit on event size, whether determined by the timescale
of interest, the constraints of storage or transmission capacity, or other system-
de�ned limits. On the brighter side, a useful result is that it is often reasonable
to substitute �nitely-supported distributions for the idealized heavy-tailed dis-
tributions in analytic settings, as long as the approximation is accurate over the
range of scales of interest [16, 20, 22].

4 Taking Advantage of Heavy Tails

Despite the challenges they present to performance analysis, heavy tailed distri-
butions also exhibit properties that can be exploited in the design of computer
systems. Recent work has begun to explore how to take advantage of the presence
of heavy tailed distributions to improve computer systems' performance.

4.1 Two Important Properties

In this regard, there are two properties of heavy tailed distributions that o�er
particular leverage in the design of computer systems. The �rst property is re-
lated to the fact that heavy tailed distributions show declining hazard rate, and
is most concisely captured in terms of conditional expectation:

E[XjX > k] � k



when X is a heavy tailed random variable and k is large enough to be \in the
tail." We refer to this as the expectation paradox, after [30, p. 343]; it says that
if we are making observations of heavy-tailed interarrivals, then the longer we
have waited, the longer we should expect to wait. (The expectation is unde�ned
when � � 1, but the general idea still holds.) This should be contrasted with
the case when the underlying distribution has exponential tails or has bounded
support above (as in the uniform distribution); in these cases, eventually one
always gets to the point where the longer one waits, the less time one should
expect to continue waiting.

The second useful property of heavy tailed distributions we will call the
mass-count disparity. This property can be stated formally as [19]:

lim
x!1

P [X1 + :::+Xn > x]

P [max(X1; :::; Xn) > x]
= 1 for all n � 2

which is the case when the Xi are i.i.d. positive random variables drawn from a
heavy-tailed distribution. This property states that when considering collections
of observations of a heavy-tailed random variable, the aggregated mass contained
in the small observations is negligible compared to the largest observation in
determining the likelihood of large values of the sum.

In practice this means that the majority of the mass in a set of observations
is concentrated in a very small subset of the observations. This can be visualized
as a box into which one has put a few boulders, and then �lled the rest of the
way with sand. This mass-count disparity means that one must be careful in
\optimizing the common case" [26]. The typical observation is small; the typical
unit of work is contained in a large observation.

This disparity can be studied by de�ning the mass-weighted distribution
function:

Fw(x) =

R x
�1

u dF (u)
R
1

�1
v dF (v)

(2)

and comparing Fw(x) with F (x). Varying x over its valid range yields a plot of
the fraction of total mass that is contained in the fraction of observations less
than x: An example of this comparison is shown in Figure 1. This �gure shows
Fw(x) vs. F (x) for the Exponential distribution, and for a particular heavy-tailed
distribution. The heavy-tailed distribution is chosen to correspond to empirical
measurements of �le sizes in the World Wide Web [4]; it has � = 1:0. Since
the denominator in (2) is in�nite for heavy tailed distributions with � � 1, the
actual distribution used has been truncated to span six orders of magnitude |
which is reasonable for �le size distributions (which can range in size from bytes
to megabytes).

The �gure shows that for the Exponential distribution, the amount of mass
contained in small observations is roughly commensurate with the fraction of
total observations considered; i.e., the curve is not too far from the line y = x.
On the other hand, for the heavy tailed distribution, the amount of mass is not
at all commensurate with the fraction of observations considered; about 60% of
the mass is contained in the upper 1% of the observations! This is consistent
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with results in [35] showing that 50-80% of the bytes in FTP transfers are due
to the largest 2% of all transfers.

4.2 Exploiting The Heavy Tail Properties

Once these properties are understood, they can be exploited in a number of ways
to improve system performance. This section summarizes some (though not all)
recent attempts to do this.

Load Balancing in Distributed Systems In some distributed systems, tasks can
be pre-empted and moved from one node to another, which can improve load
balance. However, the cost of migration is not trivial and can outweigh perfor-
mance gains from improved load balance if not used carefully. In [23], the authors
show that previous assessments of the potential for pre-emptive migration had
mainly used exponential tasks size assumptions and concluded that the potential
gains from task migration were small. However, once the task size distribution
is understood to be heavy-tailed, two bene�ts emerge: 1) the mass-count dis-
parity means that relative few tasks need to be migrated to radically improve
load balance; and 2) the expectation paradox means that a task's lifetime to
date is a good predictor of its expected future lifetime. Taken together, these
two bene�ts form the foundation for a enlightened load balancing policy that
can signi�cantly improve the performance of a wide class of distributed systems.

When pre-emption is not an option, understanding of heavy tailed distribu-
tions can still inform load balancing policies. The question in these systems is
\which queue should an arriving task join?" In the case when service at the nodes
is FCFS, and knowledge is available about the size of the arriving task, the best
policy is commonly assumed to be joining the queue with the shortest expected



delay [41] although this is known to be best only for task size distributions with
increasing failure rate. In [24], the authors show a better policy for the case in
which task sizes have a heavy-tailed distribution, which they call SITA-E. The
idea is to assign an incoming task to a queue based on the incoming task's size.
Each queue handles tasks whose sizes lie in a contiguous range, and ranges are
chosen so as to equalize load in expectation. This policy is shown to signi�cantly
outperform shortest-expect-delay assignment, when 1 < � � 2. The bene�ts
of the policy accrue primarily from the the mass-count disparity in task sizes:
grouping like tasks together means that the vast majority of tasks are sent to
only a few queues; at these queues, task size variability is dramatically reduced
and so FCFS service is very eÆcient.

Finally, in another paper [8, 11], the authors show that in the same setting
(distributed system of FCFS servers, task sizes are heavy tailed, and incoming
task sizes are known) the expected slowdown metric is optimized by policies that
do not balance load. (Slowdown is de�ned as a job's waiting time in queue divided
by its service demand.) This is possible because of the mass-count disparity; when
most tasks are sent to only a few queues, reducing the load at those queues
decreases the slowdown experienced at those queues. In this case, most tasks
experience decreased slowdown, while the relatively few large tasks experience
only slightly increased slowdown. In expectation, slowdown is decreased.

Scheduling in Web Servers In single-node systems, attention has been given to
the scheduling issue. Most systems use a variant of timesharing to schedule tasks,
possibly incorporating multilevel feedback; this is e�ective when task sizes are
unknown. In [22], the authors argue that Web servers are in a unusual position;
they can estimate task size upon task arrival because, for static Web pages,
the �le size is known at request time. As a result, they argue for the use of
shortest-remaining-processing-time (SRPT) scheduling within Web servers. One
signi�cant drawback of SRPT is that it improves the response time of small tasks
at the expense of large tasks; however the authors argue that this is acceptable
when tasks follow heavy-tailed distributions such as are encountered in the Web.
The reason is that the mass-count disparity means that under SRPT, although
large tasks are interrupted by small tasks, the small tasks represent only a minor
fraction of total system load. Thus the great majority of tasks have their response
time improved, while the relatively few large tasks are not seriously punished. In
[10] the authors describe an actual Web server implemented to use this scheduling
policy. The paper shows evidence that the new server exhibits mean response
times 4-5 times lower than a popularly deployed server (Apache); and that the
performance impacts on large tasks are relatively mild.

Routing and Switching in the Internet In Internet traÆc management, a number
of improved approaches to routing and switching have been proposed, based on
the observation that the lengths of bulk data ows in the Internet exhibit heavy
tails.

One promising routing technique is to use switching hardware, by creating
shortcuts (temporary circuits) for long sequences of packets that share a common



source and destination. Shortcuts provide the bene�ts of fast switch-based rout-
ing, at the expense of network and switch overhead for their setup. The authors
in [15] argue that Web traÆc can be eÆciently routed using this technique. Their
results rely on the mass-count disparity, showing that the majority of the bytes
can be routed by creating shortcuts for only a small fraction of all data ows.
They show that in some settings, a setup threshold of 25 packets (the number
of same-path packets to observe before creating a switched connection) is suf-
�cient to eliminate 90% of the setup costs while routing more than 50% of the
bytes over switched circuits. The choice of threshold implicitly makes use of the
expectation paradox: longer thresholds can be used to o�set larger setup costs,
since longer thresholds identify ows whose expected future length is longer as
well.

Another proposed routing technique is load-sensitive routing. Load sensitive
routing attempts to route traÆc around points of congestion in the network;
current Internet routing only makes use of link state (up or down). Unfortunately,
load-sensitive routing can be expensive and potentially unstable if applied to
every routing decision. However, the authors in [40] show that if applied only
to the long-lived ows, it can be eÆcient and considerably more stable. The
success of this technique relies on the heavy tailed distribution of Internet ows:
the mass-count disparity means that a large fraction of bytes can be routed by
rerouting only a small fraction of the ows; and the expectation paradox allows
the policy to observe a ow for some period of time to classify it as a long ow.
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