
In Proceedings of Performance Tools ’98

Lecture Notes in Computer Science, Vol. 1468, pp. 231-242, September 1998

On Choosing a Task Assignment Policy for a

Distributed Server System

Mor Harchol-Balter?;1, Mark E. Crovella??;2, and Cristina D. Murta? ? ?;2

1 Laboratory for Computer Science, MIT
harchol@theory.lcs.mit.edu

2 Department of Computer Science, Boston University
fcrovella,murtag@bu.edu

Abstract. We consider a distributed server system model and ask which
policy should be used for assigning tasks to hosts. In our model each
host processes tasks in First-Come-First-Serve order and the task's ser-
vice demand is known in advance. We consider four task assignment
policies commonly proposed for such distributed server systems: Round-
Robin, Random, Size-Based, in which all tasks within a give size range
are assigned to a particular host, and Dynamic-Least-Work-Remaining,
in which a task is assigned to the host with the least outstanding work.
Our goal is to understand the inuence of task size variability on the
decision of which task assignment policy is best. We �nd that no one of
the above task assignment policies is best and that the answer depends
critically on the variability in the task size distribution. In particular
we �nd that when the task sizes are not highly variable, the Dynamic
policy is preferable. However when task sizes show the degree of variabil-
ity more characteristic of empirically measured computer workloads, the
Size-Based policy is the best choice. We use the resulting observations
to argue in favor of a speci�c size-based policy, SITA-E, that can out-
perform the Dynamic policy by almost 2 orders of magnitude and can
outperform other task assignment policies by many orders of magnitude,
under a realistic task size distribution.

1 Introduction

To build high-capacity server systems, developers are increasingly turning to
distributed designs because of their scalability and cost-e�ectiveness. Examples
of this trend include distributed Web servers, distributed database servers, and
high performance computing clusters. In such a system, requests for service arrive
and must be assigned to one of the host machines for processing. The rule for
assigning tasks to host machines is known as the task assignment policy.

? Supported by the NSF Postdoctoral Fellowship in the Mathematical Sciences.
?? Supported in part by NSF Grants CCR-9501822 and CCR-9706685.

? ? ? Supported by a grant from CAPES, Brazil. Permanent address: Depto. de In-
form�atica, Universidade Federal do Paran�a, Curitiba, PR 81531, Brazil.



In this paper we concentrate on the particular model of a distributed server
system in which each incoming task is immediately assigned to a host machine,
and each host machine processes its assigned tasks in �rst-come-�rst-served
(FCFS) order. We also assume that the task's service demand is known in ad-
vance. Our motivation for considering this model is that it is an abstraction of
some existing distributed servers, described in Section 3.

We consider four task assignment policies commonly proposed for such dis-
tributed server systems: Round-Robin, in which tasks are assigned to hosts in a
cyclical fashion; Random, in which each task is assigned to each host with equal
probability; Size-Based, in which all tasks within a certain size range are sent
to an individual host; and Dynamic (also known as Least-Work-Remaining) in
which an incoming task is assigned to the host with the least amount of out-
standing work left to do (based on the sum of the sizes of those tasks in the
queue).

Our goal is to study the inuence of task size variability on the decision
of which task assignment policy is best. We are motivated in this respect by
the increasing evidence for high variability in task size distributions, witnessed
in many measurements of computer workloads. In particular, measurements of
many computer workloads have been shown to �t a heavy-tailed distributions
with very high variance, as described in Section 2.2.

In comparing task assignment policies, we make use of simulations and also
analysis or analytic approximations. We show that the variability of the task size
distribution makes a crucial di�erence in choosing a task assignment policy, and
we use the resulting observations to argue for a speci�c task assignment policy
that works well under conditions of high task size variance.

2 Background and Previous Work

2.1 Fundamental Results in Task Assignment

The problem of task assignment in a model like ours has been extensively stud-
ied, but many basic questions remain open. In the case where task sizes are
unknown, the following results exist: Under an exponential task size distribu-
tion, the optimality of Shortest-Line task assignment policy (send the task to
the host with the shortest queue) was proven by Winston [14] and extended
by Weber [12] to include task size distributions with nondecreasing failure rate.
The actual performance of the Shortest-Line policy is not known exactly, but is
approximated by Nelson and Phillips [9]. In fact as the variability of the task
size distribution grows, the Shortest-Line policy is no longer optimal, Whitt [13].

In the case where the individual task sizes are known, as in our model, equiv-
alent optimality and performance results have not been developed for the task
assignment problem, to the best of our knowledge. For the scenario in which the
ages of the tasks currently serving are known, Weber [12] has shown that the
Shortest-Expected-Delay rule is optimal for task size distributions with increas-
ing failure rate, and Whitt [13] has shown that there exist task size distributions
for which the Shortest-Expected-Delay rule is not optimal.



Distribution of process lifetimes (log plot)
(fraction of processes with duration > T)

Duration (T secs.)

1

1/2

1/4

1/8

1/16

1/32

1/64

1 2 4 8 16 32 64

Fig. 1. Measured distribution of UNIX process CPU lifetimes, from [5]. Data indicates
fraction of jobs whose CPU sevice demands exceed T seconds, as a function of T .

2.2 Measurements of task size distributions in computer

applications

Many application environments show a mixture of task sizes spanning many or-
ders of magnitude. In such environments there are typically many small tasks,
and fewer large tasks. Much previous work has used the exponential distribution
to capture this variability, as described in Section 2.1. However, recent mea-
surements indicate that for many applications the exponential distribution is a
poor model and that a heavy-tailed distribution is more accurate. In general a
heavy-tailed distribution is one for which PrfX > xg � x��; where 0 < � < 2.

Task sizes following a heavy-tailed distribution show the following properties:

1. Decreasing failure rate: In particular, the longer a task has run, the longer
it is expected to continue running.

2. In�nite variance (and if � � 1, in�nite mean).
3. The property that a very small fraction (< 1%) of the very largest tasks

make up a large fraction (half) of the load. We will refer to this important
property throughout the paper as the heavy-tailed property.

The lower the parameter �, the more variable the distribution, and the more
pronounced is the heavy-tailed property, i.e. the smaller the faction of large
tasks that comprise half the load.

As a concrete example, Figure 1 depicts graphically on a log-log plot the
measured distribution of CPU requirements of over a million UNIX processes,
taken from paper [5]. This distribution closely �ts the curve

PrfProcess Lifetime > Tg = 1=T:

In [5] it is shown that this distribution is present in a variety of computing envi-
ronments, including instructional, reasearch, and administrative environments.



In fact, heavy-tailed distributions appear to �t many recent measurements of
computing systems. These include, for example:

{ Unix process CPU requirements measured at Bellcore: 1 � � � 1:25 [8].
{ Unix process CPU requirements, measured at UC Berkeley: � � 1 [5].
{ Sizes of �les transferred through the Web: 1:1 � � � 1:3 [1, 3].
{ Sizes of �les stored in Unix �lesystems: [7].
{ I/O times: [11].
{ Sizes of FTP transfers in the Internet: :9 � � � 1:1 [10].

In most of these cases where estimates of � were made, 1 � � � 2. In fact,
typically � tends to be close to 1, which represents very high variability in task
service requirements.

3 Model and Problem Formulation

We are concerned with the following model of a distributed server. The server
is composed of h hosts, each with equal processing power. Tasks arrive to the
system according to a Poisson process with rate �. When a task arrives to the
system, it is inspected by a dispatcher facility which assigns it to one of the
hosts for service. We assume the dispatcher facility knows the size of the task.
The tasks assigned to each host are served in FCFS order, and tasks are not
preemptible. We assume that processing power is the only resource used by
tasks.

The above model for a distributed server was initially inspired by the xolas
batch distributed computing facility at MIT's Laboratory for Computer Science.
Xolas consists of 4 identical multiprocessor hosts. Users specify an upper bound
on their job's processing demand. If the job exceeds that demand, it is killed.
The xolas facility has a dispatcher front end which assigns each job to one of
the hosts for service. The user is given an upper bound on the time their job
will have to wait in the queue, based on the sum of the sizes of the jobs in that
queue. The jobs queued at each host are each run to completion in FCFS order.

We assume that task sizes show some maximum (but large) value. As a re-
sult, we model task sizes using a distribution that follows a power law, but has
an upper bound. We refer to this distribution as a Bounded Pareto. It is charac-
terized by three parameters: �, the exponent of the power law; k, the smallest
possible observation; and p, the largest possible observation. The probability
mass function for the Bounded Pareto B(k; p; �) is de�ned as:

f(x) =
�k�

1� (k=p)�
x���1 k � x � p: (1)

Throughout this paper we model task sizes using a B(k; p; �) distribution,
and vary � over the range 0 to 2 in order to observe the e�ect of changing
variability of the distribution. To focus on the e�ect of changing variance, we
keep the distributional mean �xed (at 3000) and the maximum value �xed (at



power law 
w/ exponent
−α−1

k p

f(x)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10

7

10
8

10
9

10
10

10
11

10
12

10
13

10
14

Second Moment of Bounded Pareto Distribution

alpha

Fig. 2. Parameters of the Bounded Pareto Distribution (left); Second Moment of
B(k; 1010; �) as a function of �, when E fXg = 3000 (right).

Number of hosts h = 8.

System load � = :8.

Mean service time E fXg = 3000 time units

Task arrival process Poisson with rate � = � � 1=E fXg �h = :0021
tasks/unit time

Maximum task service time p = 1010 time units

� parameter 0 < � � 2

Minimum task service time chosen so that mean task service time stays
constant as � varies (0 < k � 1500)

Table 1. Parameters used in evaluating task assignment policies

p = 1010). In order to keep the mean constant, we adjust k slightly as � changes
(0 < k � 1500). The above parameters are summarized in Table 1.

Note that the Bounded Pareto distribution has all its moments �nite. Thus, it
is not a heavy-tailed distribution in the sense we have de�ned above. However,
this distribution will still show very high variability if k � p. For example,
Figure 2 (right) shows the second moment E

�
X2

	
of this distribution as a

function of � for p = 1010, where k is chosen to keepE fXg constant at 3000, (0 <
k � 1500). The �gure shows that the second moment explodes exponentially as
� declines. Furthermore, the Bounded Pareto distribution also still exhibits the
heavy-tailed property and (to some extent) the decreasing failure rate property
of the unbounded Pareto distribution.

Given the above model of a distributed server system, we ask how to select
the best task assignment policy. The following four are common choices:

Random : an incoming task is sent to host i with probability 1=h. This policy
equalizes the expected number of tasks at each host.

Round-Robin : tasks are assigned to hosts in cyclical fashion with the ith
task being assigned to host i mod h. This policy also equalizes the expected



number of tasks at each host, and typically has less variability in interarrival
times than Random.

Size-Based : Each host serves tasks whose service demand falls in a designated
range. This policy attempts to keep small tasks from getting \stuck" behind
large tasks.

Dynamic : Each incoming task is assigned to the host with the smallest amount
of outstanding work, which is the sum of the sizes of the tasks in the host's
queue plus the work remaining on that task currently being served. This
policy is optimal from the standpoint of an individual task, and from a
system standpoint attempts to achieve instantaneous load balance.

In this paper we compare these policies as a function of the variability of
task sizes. The e�ectiveness of these task assignment schemes will be measured
in terms of mean waiting time and mean slowdown, where a task's slowdown is
its waiting time divided by its service demand. All means are per-task averages.

3.1 A New Size-Based Task Assignment Policy: SITA-E

Before delving into simulation and analytic results, we need to specify a few
more parameters of the size-based policy.

In size-based task assignment, a size range is associated with each host and a
task is sent to the appropriate host based on its size. In practice the size ranges
associated with the hosts are often chosen somewhat arbitrarily. There might be
a 15-minute queue for tasks of size between 0 and 15 minutes, a 3-hour queue
for tasks of size between 15 minutes and 3 hours, a 6-hour queue, a 12-hour
queue and an 18-hour queue, for example. (This example is used in practice at
the Cornell Theory Center IBM SP2 job scheduler [6].)

In this paper we choose a more formal algorithm for size-based task assign-
ment, which we refer to as SITA-E | Size Interval Task Assignment with Equal
Load. The idea is simple: de�ne the size range associated with each host such
that the total work (load) directed to each host is the same. The motivation for
doing this is that balancing the load minimizes mean waiting time.

The mechanism for achieving balanced expected load at the hosts is to use
the task size distribution to de�ne the cuto� points (de�ning the ranges) so that
the expected work directed to each host is the same. The task size distribution
is easy to obtain by maintaining a histogram (in the dispatcher unit) of all task
sizes witnessed over a period of time.

More precisely, let F (x) = PrfX � xg denote the cumulative distribution
function of task sizes with �nite mean M . Let k denote the smallest task size,
p (possibly equal to in�nity) denote the largest task size, and h be the number
of hosts. Then we determine \cuto� points" xi, i = 0 : : : h where k = x0 < x1 <
x2 < : : : < xh�1 < xh = p, such that

Z x1

x0=k

x � dF (x) =

Z x2

x1

x � dF (x) = � � � =

Z xh=p

xh�1

x � dF (x) =
M

h
=

R p
k x � dF (x)

h

and assign to the ith host all tasks ranging in size from xi�1 to xi.



SITA-E as de�ned can be applied to any task size distribution with �nite
mean. In the remainder of the paper we will always assume the task size distri-
bution is the Bounded Pareto distribution, B(k; p; �).

4 Simulation Results

In this section we compare the Random, Round-Robin, SITA-E, and Dynamic
policies via simulation. Simulation parameters are as shown in Table 1.

Simulating a server system with heavy-tailed, highly variable service times is
di�cult because the system approaches steady state very slowly and usually from
below [2]. This occurs because the running average of task sizes is typically at the
outset well below the true mean; the true mean isn't achieved until enough large
tasks arrive. The consequence for a system like our own is that simulation outputs
appear more optimistic than they would in steady-state. To make our simulation
measurements less sensitive to the startup transient, we run our simulation for
4�105 arrivals and then capture data from the next single arrival to the system
only. Each data point shown in our plots is the average of 400 independent runs,
each of which started from an empty system.

We consider � values in the range 1.1 (high variability) to 1.9 (lower vari-
ability). As described in Section 2.2, � values in the range 1.0 to 1.3 tend to be
common in empirical measurements of computing systems.

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
10

3

10
4

10
5

10
6

10
7

10
8

Simulated mean waiting time

alpha

− Random

−. Round−Robin

... Dynamic

−− SITA−E

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
10

−1

10
0

10
1

10
2

10
3

10
4

10
5

Simulated mean slowdown

alpha

− Random

−. Round−Robin

... Dynamic

−− SITA−E

(a) (b)

Fig. 3. Mean Waiting Time (a) and Mean Slowdown (b) under Simulation of Four
Task Assignment Policies as a Function of �.

Figure 3 shows the performance of the system for all four policies, as a func-
tion of � (note the logarithmic scale on the y axis). Figure 3(a) shows mean
waiting time and 3(b) shows mean slowdown. Below we simply summarize these
results; in the next section, we will use analysis to explain these results.



First of all, observe that the performance of the system under the Random
and Round Robin policies is similar, and that both cases perform much more
poorly than the other two (SITA-E and Dynamic). As � declines, both of the
performance metrics under the Random and Round-Robin policies explode ap-
proximately exponentially. This gives an indication of the severe impacts that
heavy-tailed workloads can have in systems with naive task assignment policies.

The Dynamic policy shows the bene�ts of instantaneous load balancing. Dy-
namic is on the order of 100 times better for both metrics when compared to
Random and Round Robin. For large �, this means that Dynamic performs quite
well|with mean slowdown less than 1. However as the variability in task size
increases (as � ! 1), Dynamic is unable to maintain good performance. It too
su�ers from roughly exponential explosion in performance metrics as � declines.

In contrast, the behavior of SITA-E is quite di�erent from that of the other
three. Over the entire range of � values studied, the performance of the system
under SITA-E is relatively unchanged, with mean slowdown always between 2
and 3. This is the most striking aspect of our data: in a range of � in which per-
formance metrics for Random, Round Robin, and Dynamic all explode, SITA-E's
performance remains remarkably insensitive to increase in task size variability.

As a result we �nd that when task size is less variable, Dynamic task assign-
ment exhibits better performance; but when task sizes show the variability that is
more characteristic of empirical measurements (� � 1:1), SITA-E's performance
can be on the order of 100 times better than that of Dynamic.

In [4] we simulate a range of loads (�) and show that as load increases,
SITA-E becomes preferable to Dynamic over a larger range of �.

The remarkable consistency of system performance under the SITA-E policy
across the range of � from 1.1 to 1.9 is di�cult to understand using the tools of
simulation alone. For that reason the next section develops analysis of SITA-E
and the other policies, and uses that analysis to explain SITA-E's performance.

5 Analysis of Task Assignment Policies

To understand the di�erences between the performance of the four task assign-
ment policies, we provide a full analysis of the Round-Robin, Random, and
SITA-E policies, and an approximation of the Dynamic policy.

In the analysis below we will repeatedly make use of the Pollaczek-Kinchin
formula below which analyzes the M/G/1 FCFS queue:

E fWaiting Timeg = �E
�
X2

	
=2(1� �) [Pollaczek-Kinchin formula]

E fSlowdowng = E fW=Xg = E fWg �E
�
X�1

	

where � denotes the rate of the arrival process, X denotes the service time
distribution, and � denotes the utilization (� = �E fXg). The slowdown formulas
follow from the fact that W and X are independent for a FCFS queue.



Observe that every metric for the simple FCFS queue is dependent onE
�
X2

	
,

the second moment of the service time. Recall that if the workload is heavy-
tailed, the second moment of the service time explodes, as shown in Figure 2.

Random Task Assignment. The Random policy simply performs Bernoulli split-
ting on the input stream, with the result that each host becomes an independent
M=B(k; p; �)=1 queue. The load at the ith host, is equal to the system load, that
is, �i = �. So the Pollaczek-Kinchin formula applies directly, and all performance
metrics are proportional to the second moment of B(k; p; �). Performance is gen-
erally poor because the second moment of the B(k; p; �) is high.

Round Robin. The Round Robin policy splits the incoming stream so each host
sees an Eh=B(k; p; �)=1 queue, with utilization �i = �. This system has per-
formance close to the Random case since it still sees high variability in service
times, which dominates performance.

SITA-E. The SITA-E policy also performs Bernoulli splitting on the arrival
stream (which follows from our assumption that task sizes are independent). By
the de�nition of SITA-E, �i = �. However the task sizes at each queue are deter-
mined by the particular values of the interval cuto�s, fxig; i = 0; :::; h. In fact,
host i sees a M=B(xi�1; xi; �)=1 queue. The reason for this is that partitioning
the Bounded Pareto distribution into contiguous regions and renormalizing each
of the resulting regions to unit probability yields a new set of Bounded Pareto
distributions. In [4] we show how to calculate the set of xis for the B(k; p; �)
distribution, and we present the resulting formulas that provide full analysis of
the system under the SITA-E policy for all the performance metrics.

Dynamic. The Dynamic policy is not analytically tractable, which is why we
performed the simulation study. However, in [4] we prove that a distributed
system of the type in this paper with h hosts which performs Dynamic task
assignment is actually equivalent to an M/G/h queue. Fortunately, there exist
known approximations for the performance metrics of the M/G/h queue [15]:

E
�
QM=G=h

	
= E

�
QM=M=h

	
�E

�
X2

	
=E fXg

2
;

where X denotes the service time distribution and Q denotes the number in
queue. What's important to observe here is that the mean queue length, and
therefore the mean waiting time and mean slowdown, are all proportional to the
second moment of the service time distribution, as was the case for the Random
and Round-Robin task assignment policies.

Using the above analysis we can compute the performance of the above task
assignment policies over a range of � values. Figure 4 shows the analytically-
derived mean waiting time and mean slowdown of the system under each pol-
icy over the whole range of �. Figure 5 again shows these analytically-derived
metrics, but only over the range of 1 � � � 2, which is the range of � corre-
sponding to most empirical measurements of process lifetimes and �le sizes (see
Section 2.2). (Note that, because of slow simulation convergence as described at
the beginning of Section 4, simulation values are generally lower than analytic
predictions; however all simulation trends agree with analysis).



First observe that the performance of the Random and Dynamic policies in
both these �gures grows worse as � decreases, where the performance curves
follow the same shape as the second moment of the Bounded Pareto distribu-
tion, shown in Figure 2. This is expected since the performance of Random and
Dynamic is directly proportional to the second moment of the service time dis-
tribution. By contast, looking at Figure 5 we see that in the range 1 < � < 2,
the mean waiting time and especially mean slowdown under the SITA-E policy
is remarkably constant, with mean slowdowns around 3, whereas Random and
Dynamic explode in this range. The insensitivity of SITA-E's performance to �
in this range is the most striking property of our simulations and analysis.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10

3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

Analytically−derived mean waiting time

alpha

− Random

−− SITA−E

... Dynamic Approximation 

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10

0

10
5

10
10

10
15

10
20

10
25

10
30

Analytically−derived mean slowdown

alpha

− Random

−− SITA−E

... Dynamic Approximation

Fig. 4. Analysis of mean waiting time and mean slowdown over whole range of �,
0 < � � 2.

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
10

3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

Analytically−derived mean waiting time: Upclose

alpha

− Random
−− SITA−E
... Dynamic Approximation

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
10

0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Analytically−derived mean slowdown: Upclose

alpha

− Random

−− SITA−E

... Dynamic Approximation

Fig. 5. Analysis of mean waiting time and mean slowdown over empirically relevant
range of �, 1 � � � 2.



Why does SITA-E perform so well in a region of task size variability wherein
a Dynamic policy explodes? A careful analysis of the performance of SITA-E at
each queue of the system (see [4]) leads us to the following answers:

1. By limiting the range of task sizes at each host, SITA-E greatly reduces
the variance of the task size distribution witnessed by the lowered-numbered
hosts, thereby improving performance at these hosts. In fact the performance
at most hosts is superior to that of an M/M/1 queue with utilization �.

2. When load is balanced, the majority of tasks are assigned to the low-numbered
hosts, which are the hosts with the best performance. This is intensi�ed by
the heavy-tailed property which implies that very few tasks are assigned to
high numbered hosts.

3. Furthermore, mean slowdown is improved because small tasks observe pro-
portionately lower waiting times.

For the case of � � 1, shown in Figure 4, even under the SITA-E policy,
system performance eventually deteriorates badly. The reason is that as over-
all variability in task sizes increases, eventually even host 1 will witness high
variability. Further analysis [4] indicates that adding hosts can extend the range
over which SITA-E shows good performance. For example, when the number of
hosts is 32, SITA-E's performance does not deteriorate until � � :8.

6 Conclusion

In this paper we have studied how the variability of the task size distribution
inuences which task assignment policy is best in a distributed system. We
consider four policies: Random, Round-Robin, SITA-E (a size-based policy), and
Dynamic (sending the task to the host with the least remaining work).

We �nd that the best choice of task assignment policy depends critically
on the variability of task size distribution. When the task sizes are not highly
variable, the Dynamic policy is preferable. However, when task sizes show the
degree of variability more characteristic of empirical measurements (� � 1),
SITA-E is best.

The magnitude of the di�erence in performance of these policies can be quite
large: Random and Round-Robin are inferior to both SITA-E and Dynamic by
several orders of magnitude. And in the range of task size variability charac-
teristic of empirical measurements, SITA-E outperforms Dynamic by close to 2
orders of magnitude.

More important than the above results, though, is the insights about these
four policies gleaned from our analysis:

Our analysis of the Random, Round-Robin and Dynamic policies shows that
their performance is directly proportional to the second moment of the task
size distribution, which explains why their performance deteriorates as the task
size variability increases. Thus, even the Dynamic policy, which comes closes to
achieving instantaneous load balance and directs each task to the host where



it waits the least, is not capable of compensating for the e�ect of increasing
variance in the task size distribution.

To understand why size-based policies are so powerful, we introduce the
SITA-E policy which is a simple formalization of size-based policies, de�ned to
equalize the expected load at each host. This formalization allows us to obtain
a full analysis of the SITA-E policy, leading to a 3-fold characterization of its
power: (i) By limiting the range of task sizes at each host, SITA-E greatly reduces
the variability of the task size distribution witnessed by each host { thereby
improving the performance at the host. (ii) When load is balanced, most tasks
are sent to the subset the hosts having the best performance. (iii) Mean slowdown
is improved because small tasks observe proportionately lower waiting times.
These 3 properties allow SITA-E to perform very well in a region of task size
variability in which the Dynamic policy breaks down.

References

1. M. E. Crovella and A. Bestavros. Self-similarity in World Wide Web tra�c: Evi-
dence and possible causes. IEEE/ACM Transactions on Networking, 5(6):835{846,
December 1997.

2. M. E. Crovella and L. Lipsky. Long-lasting transient conditions in simulations with
heavy-tailed workloads. In 1997 Winter Simulation Conference, 1997.

3. M. E. Crovella, M. S. Taqqu, and A. Bestavros. Heavy-tailed probability distri-
butions in the world wide web. In A Practical Guide To Heavy Tails, pages 1{23.
Chapman & Hall, New York, 1998.

4. M. Harchol-Balter, M. E. Crovella, and C. D. Murta. On choosing a task assign-
ment policy for a distributed server system. Technical Report MIT-LCS-TR-757,
MIT Laboratory for Computer Science, 1998.

5. M. Harchol-Balter and A. Downey. Exploiting process lifetime distributions for
dynamic load balancing. ACM Transactions on Computer Systems, 15(3), 1997.

6. S. Hotovy, D. Schneider, and T. O'Donnell. Analysis of the early workload on the
Cornell Theory Center IBM SP2. Technical Report 96TR234, CTC, Jan. 1996.

7. G. Irlam. Unix �le size survey. http://www.base.com/gordoni/ufs93.html, 1994.
8. W. E. Leland and T. J. Ott. Load-balancing heuristics and process behavior. In

Proceedings of Performance and ACM Sigmetrics, pages 54{69, 1986.
9. R. D. Nelson and T. K. Philips. An approximation for the mean response time for

shortest queue routing with general interarrival and service times. Performance
Evaluation, 17:123{139, 1998.

10. V. Paxson and S. Floyd. Wide-area tra�c: The failure of Poisson modeling.
IEEE/ACM Transactions on Networking, pages 226{244, June 1995.

11. D. L. Peterson and D. B. Adams. Fractal patterns in DASD I/O tra�c. In CMG
Proceedings, December 1996.

12. R. W. Weber. On the optimal assignment of customers to parallel servers. Journal
of Applied Probability, 15:406{413, 1978.

13. Ward Whitt. Deciding which queue to join: Some counterexamples. Operations
Research, 34(1):226{244, January 1986.

14. W. Winston. Optimality of the shortest line discipline. Journal of Applied Proba-
bility, 14:181{189, 1977.

15. R. W. Wol�. Stochastic Modeling and the Theory of Queues. Prentice Hall, 1989.


