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Abstract

Understanding the nature of the workloads and system demands created by users of the World Wide Web is

crucial to properly designing and provisioning Web services. Previous measurements of Web client workloads

have been shown to exhibit a number of characteristic features; however, it is not clear how those features

may be changing with time. In this study we compare two measurements of Web client workloads separated

in time by three years, both captured from the same computing facility at Boston University. The older

dataset, obtained in 1995, is well-known in the research literature and has been the basis for a wide variety

of studies. The newer dataset was captured in 1998 and is comparable in size to the older dataset. The new

dataset has the drawback that the collection of users measured may no longer be representative of general

Web users; however using it has the advantage that many comparisons can be drawn more clearly than

would be possible using a new, di�erent source of measurement. Our results fall into two categories. First

we compare the statistical and distributional properties of Web requests across the two datasets. This serves

to reinforce and deepen our understanding of the characteristic statistical properties of Web client requests.

We �nd that the kinds of distributions that best describe document sizes have not changed between 1995

and 1998, although speci�c values of the distributional parameters are di�erent. Second, we explore the

question of how the observed di�erences in the properties of Web client requests, particularly the popularity

and temporal locality properties, a�ect the potential for Web �le caching in the network. We �nd that for

the computing facility represented by our traces between 1995 and 1998, (1) the bene�ts of using size-based

caching policies have diminished; and (2) the potential for caching requested �les in the network has declined.

ii
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1 INTRODUCTION

Understanding the nature of the workloads and system demands created by users of the World Wide

Web is crucial to properly designing and provisioning Web services. While much can be inferred from

observing the request streams arriving at servers, a complete picture of Web workloads requires measurements

of the behavior of clients.

Previous measurements of Web client workloads have been shown to exhibit a number of characteristic

features. In this paper we concentrate on two general categories of workload characteristics: �rst, statistical

characterization of client requests; and second, the potential bene�ts from the use of caching in the network

to satisfy client requests.

The statistical properties of Web client workloads are typically characterized by high variability.

Previous studies have shown that the variability in �le sizes, transfer times, and request interarrivals tend

to be very high (see [Feldmann and Whitt 1997] for a review). Often the best distributional model for such

highly variable datasets seems to be one with a heavy tail , that is, one whose upper tail declines like a power-

law with exponent less than 2. Random variables with heavy tails have in�nite variance; in practice this is

exhibited as lack of convergence of the sample variance to any value, as sample sizes are increased [Crovella

and Lipsky 1997].

The potential for the use of caching to satisfy requests is of considerable interest to designers of Web

transfer protocols and Web infrastructure developers. The e�ectiveness of caching schemes relies on the

presence of temporal locality in Web reference streams and on the use of appropriate cache management

policies that are appropriate for Web workloads. Much previous work has focused on characterizing reference

locality in Web reference streams, and typical results have shown that the potential bene�ts of caching in

the network (or proxy caching) are moderate, typically in the 30-50% range [Bestavros et al. 1995; Abrams

et al. 1995].

While these properties have been well documented in the literature, an important question concerns

how these properties may be changing over time. For example, these properties were all noted in data

collected during early 1995 at Boston University and discussed in [Cunha et al. 1995; Bestavros et al. 1995].

However the Web and the uses to which it is put have changed enormously since 1995. In many ways, the

Web in early 1995 was in a nascent state, not yet supporting the sophisticated information sources and

applications that are crucial components of the Web today. Just as important is the fact that today's users

of the Web are quite di�erent from those in 1995: a much wider population segment is familiar with the Web

and uses it regularly; and the users of the Web may take for granted a wider variety of information sources

and media types than did the users of 1995.

As a result, it is important to ask whether the observed statistical and caching properties of Web
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workloads are changing over time, and in particular whether they have changed since 1995. To answer this

question we undertook new measurements of Web client workloads, in the same computing facility used for

the 1995 study. Our measurements span a period of seven weeks from April 4 to May 22, 1998 and the

resulting dataset is comparable in some size respects to the older dataset. Both datasets were collected in a

laboratory of Sun SparcStation 2 workstations used primarily by undergraduates in the Boston University

Computer Science Department. While the 1995 data was collected using an instrumented version of NCSA

Mosaic, the 1998 data was gathered using non-caching HTTP proxy software which recorded all requests

made by uninstrumented Netscape Navigator browsers.

While it may have been reasonable to consider the users in our laboratory in 1995 typical Web users,

it is not clear that the same is true for our 1998 study. Signi�cant Web content is now only accessible

on personal computer platforms such as Windows 95. However, the value in this study is precisely that

by focusing on a single computing environment, we have controlled for a number of factors that otherwise

would not be controlled. In particular, the type of work being performed by Web users, and in the general

purposes for which the Web is being used, are the same in both traces.

Using these two datasets, we conducted statistical analyses of the 1998 data and formed comparisons

between the old and new datasets both in their statistical and cacheability properties. Of particular interest

were questions of the distributions of requested and unique document sizes, the popularity of documents

relative to each other and as a function of their size, as well as trace-driven studies of cacheability.

Our statistical observations serve to reinforce and deepen our understanding of the characteristic

statistical properties of Web client requests. With respect to the distributional properties of Web requests,

we �nd that while model parameters have changed, that the kinds of distributions that are appropriate to

model workloads have not changed. File size distributions are still well modeled as hybrids having lognormal

bodies, and power-law (i.e., Pareto) tails. This suggests that the hybrid lognormal-Pareto model is still a

valid one for characterizing �le sizes in the Web. We also �nd that the characteristic nature of �le popularity,

in which a small set of documents receives the majority of requests, is present in both datasets, but is less

pronounced in the 1998 dataset than in the 1995 dataset.

The suggestion that popularity pro�les may be less extreme in the newer dataset suggests the need

to compare the e�ects of caching applied to the two workloads. We are particularly concerned with the

potential bene�ts of �le caching in the network, that is, between the client and the server. We show that in

evaluating cache replacement policies, quite di�erent conclusions are obtained depending on whether one is

concerned with the hit rate (fraction of requests that hit in the cache) or the byte hit rate (fraction of bytes

that are served by the cache). We show that the di�erence between these two metrics is a direct function of

the covariance of the number of requests per �le and the sizes of �les. For example, our conclusions examine
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the covariance between document popularity and document size, and show that for the same type of users,

in the same computing environment, this value has changed signi�cantly (by a factor of 20). Our results

also indicate that for the computing facility represented by our traces, the potential for caching requested

�les in the network has declined from 1995 to 1998. We explore several hypotheses regarding this di�erence,

including increased e�ectiveness of the browser's cache, the degree of temporal overlap of user sessions, and

the degree of content overlap of user sessions.

2 RELATED WORK

The statistical properties of Web workloads that we study in this paper have also been examined in a

number of other studies. One of the �rst studies to quantitatively explore user behavior was [Catledge and

Pitkow 1995]. A detailed look at the properties of server workloads is presented in [Arlitt and Williamson

1997]. Subsequent signi�cant studies include [Abdulla et al. 1997; Manley and Seltzer 1997; Deng 1996;

Iyengar et al. 1998]. Finally, our previous work has been reported in [Cunha et al. 1995; Bestavros et al.

1995; Almeida et al. 1996; Crovella et al. 1998; Crovella and Bestavros 1997; Barford and Crovella 1998].

A good recent review of progress in characterizing Web workloads is given in [Pitkow 1997].

In characterizing the relative number of requests made to di�erent Web documents, previous work

has often referred to Zipf 's law [Zipf 1949, discussed in [Mandelbrot 1983]]. Zipf's law was originally applied

to the relationship between a word's popularity in terms of rank and its frequency of use. It states that if

one ranks the popularity of words used in a given text (denoted by �) by their frequency of use (denoted by

P ) then

P � ���

with � typically near 1. More generally, Zipf-like laws relate frequency of symbol use to popularity rank via

a power-law relationship.

Zipf-type distributions of document popularity were �rst noted in Web data in [Glassman 1994]. Since

then the presence of Zipf-type distributions in the Web has been noted in a number of other studies, among

which are [Cunha et al. 1995; Almeida et al. 1996; Nishikawa et al. 1998]. A recent attempt to explain how

Zipf-like laws arise in the context of Web use appears in [Huberman et al. 1998].

Work on the interaction of Web workloads with caches has also been extensive. In [Glassman 1994],

Glassman presents one of the earliest attempts for caching on the Web, whereby proxy caches are organized

into a tree-structured hierarchy with cache misses in lower relays percolating up through higher relays until

the requested object is found. The performance of this caching system for a single relay with a rather small

cache size indicated that it is possible to maintain a \fairly stable" 33% hit rate. Using a Zipf-based model,

it was estimated that the maximum achievable hit rate is 40%. A similar result is described in [Abrams
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et al. 1995], where the authors found that caching proxies have a maximum possible hit rate of between 30

and 50%, and in [Maltzahn et al. 1997], which notes a caching proxy hit rate of about 30%. The results we

present in Section 5 of this paper agree with these conclusions.

The results in [Abrams et al. 1995] also focused attention on cache replacement policies other than

Least-Recently-Used (LRU); additional replacement policies have been proposed in [Williams et al. 1996],

[Bolot et al. 1997; Bolot and Hoschka 1996], [Murta et al. 1998], and [Markatos 1996]. As a result, we consider

the Largest-File-First (LFF) policy in our cache simulations as well as the LRU policy. While [Abrams et al.

1995] proposed policies that give preference to small �les over large �les, we �nd in this paper that the

relative bene�t of such policies has declined in our environment from 1995 to 1998.

Thus, while previous studies have addressed a wide and deep range of questions, none speci�cally

looked at how workloads change over time in any particular environment|which is the focus of this paper.

3 DATA COLLECTION

Our study is driven by two sets of client traces, one from 1995 and one from 1998. Traces consist

of records of Web objects (\�les" or \documents," which terms we use interchangeably) requested by users

and usually transferred over the Internet. As discussed in [Cunha et al. 1995], the 1995 trace was collected

from November 1994 through February 1995 using an instrumented version of Mosaic, the GUI web browser

of choice at the time. This approach allowed the collection of proli�c data about the particulars of user's

browsing habits, including clearly demarcated sessions (a single execution of the browser), a record of all

requests for documents (including those served out of Mosaic's document cache), the relationship of documents

to each other (which ones were requested by a user action as opposed to those requested \implicitly", e.g.

inline images), timestamps for all events, and durations of all �le transfers over the network. Traces were

recorded for a total of 591 users on 37 machines.

During the course of the 1995 study, Netscape's Navigator web browser became prominent in our

departmental computer labs, and it remains so to this day. Since Navigator's source code was not available

when we decided to undertake this new study,1) it was impractical to consider using a modi�ed browser to

collect data as we had in 1995. Instead, it was decided that lightweight non-caching HTTP proxies would

be used to track all document references made by the unmodi�ed Navigator clients run by the majority of

users in our lab. The proxies collected traces for 306 users on 29 machines.

Note that the workstations were not in use continuously during either of the measurement periods.

Our measurements show that for the 1998 study, that the average rate that HTTP requests were made while

1)The �rst Mozilla 5.0 pre-beta source code release was on March 31, 1998, just a few days prior to the beginning of our data

collection.
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a workstation was actually in use for browsing was about 2 requests per minute.

In the remainder of the paper we will refer to the dataset collected in 1995 as the W95 dataset and

the dataset collected in 1998 as the W98 dataset.

3.1 Trace Strategy

The proxy server used was an adaptation of a simple, multi-threaded web server developed as part

of a related project in our department. The HTTP proxy functionality was implemented strictly as a data-

collection tool, with no attempts at caching, connection aggregation, or other optimizations.

This proxy server was installed on each of the workstations in a laboratory used primarily by un-

dergraduates in Boston University's Computer Science Department. We then replaced the Communicator

binaries on our lab machines with a shell script which would start Communicator with its \Proxy Auto-

Con�guration" 2) feature enabled. A simple CGI script on our departmental web server provided the auto-

con�guration scripts to browsers based upon their hostname, allowing us the exibility (in case it had been

necessary) to migrate to a central proxy or disable the proxy for a subset of the workstations without

signi�cantly interfering with data collection or with the lab's working environment.

3.2 Log Format

The proxy server on each workstation maintained its own append-only text log �le on a shared NFS

�lesystem. These log �les were later combined to produce the �nal trace. The proxy server recorded the

following information about each request it processed: the method of the request (GET, POST, etc); the web

server name; the URL; the protocol used by the requesting agent (all HTTP/1.0 in this trace); the client's

IP address and port number used to connect with the proxy; the proxy's IP address and port number used

to connect with the upstream server; the server's IP address and port number used to serve the request;

the name of the client's user as reported by the RFC1413 ident service3); the status code returned by the

server (usually 200); the length of the content returned by the server (or -1 if a transport or protocol error

occurred); a series of timestamps (seconds and microseconds since 0:00:00 1/1/70 GMT); the \Referrer" �eld

as reported by the client; and the User-Agent �eld as reported by the client.

2)http://www.netscape.com/eng/mozilla/2.0/relnotes/demo/proxy-live.html
3)this worked very well in our environment, since all client machines were running identical servers. All failures were caused

by clients closing their connections prematurely, i.e. pressing their \Stop" buttons or crashing.
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3.3 Comparison of Proxy Traces with Browser Traces

A distinguishing feature of our study is that we are able to look at two client trace sets taken from the

same computing facility, separated widely in time. The computing facility is a general-purpose workstation

lab used primarily by undergraduate majors in Computer Science, both in 1995 and in 1998. The traces

were taken during approximately the same portion of the academic year.

There are also di�erences in data collection methods between 1995 and 1998. The principal di�erence

concerns having only the \network view" of web utilization visible to an HTTP proxy. In collecting the 1998

trace we did not have the ability to record the internal state (or activity) of the browser, and are missing

in particular three kinds of useful information: session start and end times in the sense used in the 1995

trace, relationships of multiple requested documents (clicked-to vs. embedded documents), and documents

viewed out of the browser's cache. The �rst two can be approximated using various time heuristics and the

\Referrer" �eld recorded by the proxy; the impact of the third upon our study is discussed in sections 4.5

and 5.

There are several less critical drawbacks as well. A proxy server, no matter how thin, introduces

some latency and processing time to request service, so any metrics derived from precise time measurements

should be taken with a grain of salt. Also, since the proxy only implemented HTTP (no FTP or Gopher

tra�c was recorded), non-HTTP documents were removed from the 1995 trace for comparison purposes.

These documents accounted for roughly 4% of the requests in the 1995 trace.

4 STATISTICAL CHARACTERIZATION

There are a wide range of statistical distributions important to Web client characterization. In this

section we focus on only two of them: the size distribution of the �les successfully transferred over the

network, and the size distribution of the set of unique �les. The set of unique �les is the subset of the

transferred �les in which each individual �le appears only once.

We studied the set of transferred �les because this set inuences the properties of network tra�c;

and we studied the set of unique �les because this set can give insight into the set of �les available on Web

servers (as discussed in [Crovella et al. 1998]). In a few cases we will also look at the set of requested �les

in the W95 dataset, to help understand other di�erences between the W95 and W98 datasets. The set of

requested �les consists of those �les requested by users, some of which were served from Mosaic's local cache,

and the rest of which constitute the set of W95 transferred �les.
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4.1 Statistical Properties

An important question is whether these two datasets continue to show the heavy-tailed property in

1998 that was �rst identi�ed in 1995. This property is important because it has been suggested as a causal

mechanism for the presence of self-similarity (burstiness at a wide range of timescales) in Web tra�c [Crovella

and Bestavros 1997].

For a random variable X with distribution function F we say that F is heavy tailed if

P [X > x] � x��; as x!1; 0 < � < 2 (1)

where f(x) � y means that limx!1f(x)=y = c for some constant c. The simplest heavy-tailed distribution

is the Pareto distribution with F = 1� (k=x)�; x � k.

Initial statistical analysis of unique �le sizes and transferred �les from the 1995 BU client data focused

on the tails of those distributions, as reported in [Crovella et al. 1998]. However, the models for the tails

of those distributions were not good �ts for the bodies. This lead to the development of hybrid models for

each distribution, as reported in [Barford and Crovella 1998]. The hybrid models for the 1995 BU client

data typically combined a Pareto distribution for the upper tail with lognormal distributions for each of

the bodies. A lognormal distribution is one in which the logarithm of the random variable follows a normal

distribution. This distribution also has a long upper tail and can be used to model highly variable data.

4.2 Methods Used

In developing models to �t �le sizes distributions we followed the same analytical steps described

in [Barford and Crovella 1998]. In this section we describe those steps in a general manner to organize

the subsequent discussion; the speci�c tests performed are described in the next sections. The steps we

performed are:

1. First, we used log-log complementary distribution (LLCD) plots to visually inspect whether or not the

data set has a heavy tail. An LLCD plot graphs log �F (x) = log(1� F (x)) versus log(x) for large x. A

random variable with a heavy-tailed distribution will exhibit a straight line on such a plot (as is clear

from Equation 1), with the line's slope an estimate of the � parameter of the distribution.

2. Next, we used standard visual techniques|simple histograms or cumulative distribution function

(CDF) plots|to narrow the set of candidate models for the body of the distribution. Logarithmic

transformation may be helpful to distinguish important characteristics when datasets show long tails.
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Statistic W95 W98

Sample Size 54,438 41,049

Minimum 3 1

Maximum 20,135,435 4,092,928

Mean 27,086 7,609

Median 2,833 2,769

Standard Deviation 240,237 33,306

Table 1: Simple statistical comparison of unique �le size data sets (�le sizes in are bytes).

3. If the data appears to be well modeled by a hybrid model (distribution for body di�ers from that of

tail) then we used censoring methods to determine how to divide the body from the tail of the data.

4. To estimate parameters for candidate models for the data, we used maximum likelihood estimators.

5. Next, we used a goodness of �t test (the Anderson-Darling (A2) [D'Agostino and Stephens 1986] test)

to see if there is a close �t between model and data. If this test showed no signi�cance, then we used

random subsampling to test goodness of �t for smaller sample sizes.

6. Finally, we used a goodness of �t metric (the �2 [Pederson and Johnson 1990] metric) to determine a

measure of discrepancy between data and model.

4.3 Unique Files

The unique �le size model developed for the W95 dataset for the study in [Barford and Crovella 1998]

consisted of a hybrid lognormal-Pareto. A lognormal distribution was used to model the body of the data

while a Pareto distribution was used to model the tail.

The simple statistical comparison between the unique �les in W95 and W98 is given in Table 1.

These statistics indicate that the size of unique �les is somewhat smaller in W98 than in W95. We note

however that while the medians di�er by only 2 percent, the means are radically di�erent. This is because

the empirical mean can be inuenced by a few large observations, and so the heavy-tailed distribution of �le

sizes makes the empirical mean an extremely unstable metric (see [Crovella and Lipsky 1997]). As a result,

drawing conclusions about typical �le sizes based on the mean is di�cult, and it is much more informative

to consider the entire distribution of sizes.

The LLCD for the unique �les in the W95 and W98 datasets is shown is Figure 1. This plot indicates

that both datasets seem to exhibit heavy tails, which indicates that a hybrid model consisting of distribution
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Figure 1: LLCD of unique �les from W95 vs. W98.
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Figure 2: Histograms of log-transformed unique �le sizes for W95 (left) and W98 (right).

with a heavy tail will be necessary to model the W98 dataset. It is also clear from the plot that the set of

unique �les in the W98 dataset is less heavy-tailed than in the W95 dataset, meaning that size variability is

less pronounced in the W98 dataset.

In order to determine what model might be appropriate for the body of the distribution of unique

�le sizes in W98, we analyzed the distribution using a histogram and CDF plots. The histograms for log

transforms of unique �le sizes in W95 and W98 are shown in Figure 2. The CDF of the log transformed

unique �les sizes from W95 and W98 is shown in Figure 3. In this �gure, the W98 dataset is the upper line

over the entire plot. That is, it has a heavier tail on the left, and a lighter tail on the right. Thus the W98

dataset contains slightly more small �les, and slightly less large �les, than the W95 dataset. These plots

suggest|and goodness-of-�t metrics con�rm|that the lognormal distribution is a good model for the body

of the unique �le size distribution.

Determining where to break between body and tail can be done via censoring methods. These methods
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Figure 3: CDF of Log-transformed unique �le sizes for W95 vs. W98.

Component Model W95 W98

Body Lognormal � = 9:357, � = 1:318 � = 7:796, � = 1:625

Tail Pareto k = 9300, � = 1:0 k = 3174, � = 1:47

Percent �les in tail 7% 17%

Table 2: Model parameters for unique �le size models.

indicate that the break point between the two distributions occurs when 17% of the data is assigned to the

tail. This corresponds to a value of about 10KB.

We next calculated goodness of �t for the body using the A2 method. This method showed that

the null hypothesis that the censored sample was from a lognormal distribution (as well as all other tested

distributions) must be rejected. However, applying the A2 method on random subsamples of size 100 did

return some positive results for a good �t for the lognormal distribution. The �2 test showed that the best

�t for the body of the data was the lognormal distribution.

Since we have determined that the tail of the distribution is heavy, we modeled it with a Pareto

distribution. We used standard maximum likelihood estimator (MLE) methods to determine the � value for

the Pareto distribution. The results are shown in Table 2. The table con�rms that unique �les tend to be

somewhat smaller in the W98 dataset. This is shown in both the � parameter of the lognormal distribution

and the � parameter of the Pareto.

Using the parameters listed in Table 2 we can compare the model with the original dataset. The

CDF and LLCD for the data from W98 versus the hybrid model are shown in Figure 4, which shows that

the model appears to be a close �t to the data.
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Figure 4: CDF and LLCD of log-transformed unique �le sizes for W98 and the hybrid lognormal-Pareto

model for W98.

Statistic W95 W98

Sample Size 269,811 66,988

Minimum 3 1

Maximum 20,135,435 4,092,928

Mean 14,826 7,247

Median 2,245 2,416

Standard Deviation 137,399 28,765

Table 3: Simple statistical comparison of transferred �le size data sets.

4.4 Transferred Files

The transferred �le size model developed for the data from W95 for the study in [Barford and Crovella

1998] also consisted of a hybrid lognormal-Pareto. A lognormal distribution was used to model the body of

the data while a Pareto distribution was used to model the tail.

The simple statistical comparison between the set of transferred �les in W95 and W98 is given in

Table 3. The table shows that there is again a relatively small di�erence in median �le size, while the other

metrics (mean and standard deviation) show less stability.

The LLCD for the set of transferred �les in W95 and W98 is shown is Figure 5. This plot indicates

that both datasets appear to exhibit heavy tails. It is also clear from the plot that|like the unique �le

size data presented earlier|the data from W98 is less heavy-tailed than from W95; however the di�erence

between the two slopes is much less pronounced than in the case of unique �les.

The histograms for the log transforms of transferred �les in W95 and W98 are shown in Figure 6. The
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Figure 6: Histograms of log-transformed transferred �le sizes in W95 (left) and W98 (right).

CDF of the log transformed transferred �les sizes from W95 and W98 is shown in Figure 7. Using censoring

methods, the break point between body and tail was found to be when 12% of the data was assigned to

the tail (corresponding to a cuto� value of about 13.5KB). As with the set of unique �les, applying the A2

method on random subsamples of size 100 did return positive results for goodness of �t for the lognormal

distribution, and the �2 test showed that it was the best �t for the body of the data.

The CDF and LLCD for the data from W98 compared to the hybrid model are shown in Figure 8.

These �gures show that the model is a good �t for the data.

These distributional results show that in the case of Web transfers, di�erences between the W95 and

W98 datasets are much less extreme. The two datasets are much closer in tail weight and in the mean of

the lognormal distribution.

In summary, we �nd that distributionally, there are not great di�erences between the W95 and

W98 datasets. The same kinds of distributional models are appropriate for both datasets, with only the
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Figure 7: CDF of Log-transformed transferred �le sizes in W95 vs. W98.

Component Model W95 Parameters W98 Parameters

Body Lognormal � = 7:881; � = 1:339 � = 7:640; � = 1:705

Tail Pareto k = 3; 558; � = 1:177 k = 2; 924; � = 1:383

Percent �les in tail 7% 12%

Table 4: Model parameters for transferred �le size models.
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distributional parameters changing betweenW95 andW98. This indicates that these aspects of the workloads

carried by networks due to the Web may not have changed radically over the three-year timespan from 1995

to 1998

4.5 Relative Document Popularity

The last statistical property we examine concerns Zipf's Law, which (as described in Section 2) can

characterize the relative popularity of documents in the Web. In this section we con�rm that Zipf laws

appear in all of our datasets. More importantly however, we also use Zipf law plots to study di�erences in

the relative popularity of documents between the 1995 and 1998 datasets.

As discussed in [Cunha et al. 1995], the set of requests in the 1995 dataset strongly exhibits Zipf's

law. This e�ect is shown in Figure 9. The upper line in the �gure shows the log-transformed plot of the

number of references to each document as a function of its rank in popularity. Along with the points is the

least-squares �t line (R2 = 0:99) showing a slope of -0.96. Thus for the set of requested documents in 1995,

� = 0:96.
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Figure 9: Zipf laws in 1995 Requests and Transfers.

Also shown in the �gure is the same plot for the set of transfers in 1995, along with its least-squares

�t line (R2 = 0:99). This plot shows a distinctly di�erent slope, con�rmed by the �tted line which yields

� = 0:83.

The di�erence between these two datasets arises because the set of transfers is the set of cache misses

resulting from the set of requests. Documents that tend to hit in the cache will be those that are requested

most often. Thus, when comparing the set of requests with the set of cache misses, one would expect that
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popular documents would be preferentially removed by the action of client caches. As a result, the Zipf law

shows a smaller � for the set of transfers as compared to the set of requests.

Surprisingly, a smaller � is also seen when comparing the set of transfers in 1995 with the set of

transfers in 1998. This comparison is shown in Figure 10. The �gure shows that for the 1995 transfers,

� = 0:83 (as before) but that for the 1998 transfers, � = 0:65 (R2 = :99).
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Figure 10: Zipf laws in 1995 Transfers and 1998 Transfers.

This di�erence shows that, relatively speaking, the most popular documents are less popular in the

1998 transfer dataset than in the 1995 transfer dataset. That is, references to documents in the 1998 dataset

are spread more evenly among the set of documents.

By analogy with the previous comparison (1995 requests vs. 1995 transfers), it is possible that this

e�ect is caused by improved caching at the client in 1998. That is, we speculate that more e�ective caches

at the client would tend to reduce the repeated requests for popular �les. A possible consequence of this

would be that the performance of caches in the network (downstream from the client) is reduced in the 1998

dataset as compared to the 1995 dataset. While the Zipf plots do not provide �nal proof for either of these

conclusions, they suggest that the e�ect of network caching may be quite di�erent between the 1995 and

1998 datasets; in the next section we explore this question in more detail.

5 NETWORK CACHING IMPLICATIONS

Web caching opportunities exist at a multitude of points between a client and a server. Caches may

exist within the client software (browser cache), within the network (network cache), or at the server (server

\accelerators" or front-ends). The e�ectiveness of a cache at any of these points depends on the temporal

locality present in the reference stream at that point. A major contributor to such referential locality is
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the well-documented Zipf laws governing popularity of Web documents|namely, that a large portion of the

requests is for a small subset of documents. Given the changes we observed in document popularity pro�les

(i.e., Zipf plots) between 1995 and 1998 (see Figure 10 in Section 4), the question arises: what are the

implications of these changes on the e�ectiveness of network caches? This section attempts to answer this

question through a set of trace-driven simulation experiments.

To conduct our experiments, a simple HTTP cache simulator was implemented. The simulator takes

as parameters the cache size and a replacement algorithm; and as input a stream of document URLs and

their respective sizes. The simulator checks for hits using a simple URL match,4) and performs on-demand

document eviction. The simulator calculates and reports the two metrics of interest to us, Hit rate (H) and

Byte hit rate (B). Hit rate is the proportion of requested documents that are served out of the cache; Byte

hit rate (also called \Weighted hit rate" in [Pitkow 1997]) is the proportion of requested bytes that are served

out of the cache.
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Figure 11: LRU document hit rate (H) and byte hit rate (B) as a function of network cache size.

5.1 Baseline Trace Simulations

Figure 11 shows the performance of a network cache utilizing the Least Recently Used (LRU) replace-

ment policy. The two metrics H and B are plotted as functions of the network cache size.5)

At �rst glance, Figure 11 indicates that the hit rates (H) for W98 are signi�cantly lower than the

hit rates for W95. In particular, our simulations indicate that the value of H levels at around 64% for W95

4)Neither W95 nor W98 contain adequate information to unambiguously determine when documents are unchanged, in order

to correctly simulate an HTTP/1.1 cache. Document size is a candidate for a second match heuristic, but only the W98 trace

possesses adequate data to correctly drive such a state machine. Since our focus is on using cachability to compare the two

traces rather than focusing on absolute values of the metrics, the presented approach was deemed acceptable.
5)The 1998 simulation plots throughout this paper extend only part way across the various graphs, reecting the smaller set

of unique �les in the 1998 dataset.
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versus 48% for W98. This large di�erence all but disappears when we consider the byte hit rate metric (B),

which levels at around 44% for W95 and 43% for W98. More importantly, the byte hit rate (B) for W98 is

noticeably better than that of W95 when considering smaller cache sizes.

5.1.1 A Weakening Preference for Smaller Documents

The di�erence between the hit rate and the byte hit rate for a given trace when applied to an in�nite

cache is a measure of the tendency for small �les to be requested preferentially over large �les.6) This

relationship is quanti�ed in the following Lemma.

Lemma 1. For some sequence of document requests let the number of unique documents present in the

trace be N, and let i; i = 1; 2; :::; N be an indexing of the set of unique documents present in the

sequence. Let Ri be the number of requests to document i in the sequence and let Si be the size of

document i in bytes. Also de�ne the average number of requests per document �r =
PN

i=1 Ri=N , the

average size of a document �s =
PN

i=1 Si=N , and the average number of bytes requested per document

�b =
PN

i=1 RiSi=N . Let H1 denote the hit rate of the sequence of requests when applied to an in�nite

cache, and let B1 denote the byte hit rate of the sequence when applied to an in�nite cache. Then:

H1 �B1 =
�Cov(Ri; Si)

�r�b
(2)

where Cov(ai; bi) is the sample covariance of the sequences ai and bi.

Proof:

In an in�nite cache, each unique document would miss exactly once. Therefore

H1 =

PN

i=1(Ri � 1)PN

i=1Ri

= 1�
NPN

i=1 Ri

and

B1 =

PN

i=1(Ri � 1)SiPN

i=1 RiSi
= 1�

N�sPN

i=1 RiSi

So:

H1 �B1 = 1�
NPN

i=1 Ri

�

 
1�

N�sPN

i=1 RiSi

!

=
N�s

PN

i=1 Ri �N
PN

i=1 RiSiPN

i=1Ri

PN

i=1 RiSi

=
N
PN

i=1Ri(�s � Si)PN

i=1 Ri

PN

i=1RiSi

=

PN

i=1 Ri(�s � Si)

N�r�b
: (3)

6)An in�nite cache is one that is so large that no �le in the given trace, once brought into the cache, need ever be evicted.
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Now, note that
NX
i=1

(�s � Si) = 0:

Therefore we can rewrite Equation 3 as

H1 � B1 =

PN

i=1 Ri(�s � Si)�
PN

i=1 �r(�s � Si)

N�r�b

=

PN

i=1(Ri � �r)(�s � Si)

N�r�b

=
�Cov(Ri; Si)

�r�b
(4)

2

Lemma 1 indicates that if there is no correlation between the size of a �le and its likelihood of being

accessed, then there will be no di�erence between hit rate H and byte hit rate B. Furthermore, a negative

covariance indicates a preference for smaller �les (resulting in H1 > B1), whereas a positive covariance

indicates a preference for larger �les (resulting in H1 < B1).

For the 1995 and 1998 datasets, Table 5 shows the values of the covariance between Si and Ri

(Cov(Ri; Si)), the mean number of requests per document (�r), the mean document size (�b), the di�erence

between document and byte hit rates as predicted by equation 4 (H1 � B1), and the di�erence between

document and byte hit rates as observed in our simulations for the largest cache sizes (Hmax �Bmax).

For both datasets the negative covariance indicates a preference for smaller �les. However, this

preference is stronger in W95 than in W98.7) Figure 12 visualizes this observation by showing the popularity

of documents as a function of document sizes for W95 and W98. As one would expect from the covariance

results obtained above, small documents were more popular in W95 than in W98 as indicated by the higher

\request mass" for smaller document sizes in Figure 12, particularly in the 1KB-4KB range.

Thus, to summarize, the noticeable discrepancy between the values of H and B in Figure 11 is

indicative of a preference for small �les in the request stream. Furthermore, this preference has weakened in

1998 compared to 1995.

5.1.2 Implications for Cache Replacement Policies

What implications does this change in preference for smaller �les have on the performance of the

various cache replacement policies|especially those that incorporate the \size" of the requested document

into the replacement decision?

7)Note that in equation 4, the denominator for the 1998 data set is much smaller than that of 1995, so the di�erence in H�B

is due solely to the increase in covariance for the old dataset over the new dataset; the denominators di�er by factor of 3.6, but

numerators di�er by factor of 20.
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W95 W98

Cov(Ri; Si) -11175.9 -608.8

�r 2.0548 1.6763

�b 18,885 7,209

H1 �B1 0.2880 0.0503

Hmax �Bmax 0.2038 0.0544

Table 5: H �B as an indication of preference for smaller �les.
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To answer this question, we performed a series of trace-driven simulations to contrast the performance

of three network cache replacement strategies for the W95 and W98 datasets. The three strategies we

considered are Least-Recently-Used (LRU), Largest-File-First (LFF), and First-In-First-Out (FIFO). LRU

and LFF are chosen as representatives of strategies that either do or do not incorporate the \size" of the

requested document into the replacement decision. FIFO is chosen as a representative of strategies that do

not exploit any particular access pattern characteristics, and hence its performance can be used to gauge

the bene�ts of exploiting any such characteristics.

For each of the three strategies we measured two metrics: the document hit rate H and the byte hit

rate B, for a range of network cache sizes. Figures 13(a) and 13(b) show the values of H and B, respectively,

for the three strategies as a function of the network cache size.
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Figure 13: Performance of LRU, FIFO, LFF as a function of cache size: (a) H metric (b) B metric.

For both the W95 and W98 datasets, Figure 13 shows that LFF outperforms LRU with respect to

the document hit rate metric (H), but performs signi�cantly worse than LRU with respect to the byte hit

rate metric (B). The di�erences are more pronounced for smaller cache sizes (i.e. when the replacement

strategy plays a more critical role).

The superiority of LFF with respect to the H metric can be understood by noting that the goal of

LFF is to pack as many documents as possible into a given �xed-size cache. It does so by giving preference

to smaller documents over larger documents, without regard for the popularity of individual documents.

This policy results in a higher \document density" and thus higher hit count, especially if requests are made

preferentially for smaller �les. This preference for smaller �les is indeed present in both datasets (as shown

earlier in this section), albeit weaker in W98 than in W95. In particular, the declining covariance between

Ri and Si (in W98 vs. W95) means that the di�erences in hit rates (H) between LRU and LFF will tend to



Barford, Bestavros, Bradley and Crovella, Changes in Web Client Access Patterns 21

decline as well.

The superiority of LRU with respect to the B metric can be understood by noting that the goal

of LRU is to exploit the recurrence of requests in the reference stream (temporal locality of reference). It

does so by giving preference to more popular documents over less popular ones (independent of size). This

policy results in a higher \byte utility" in the cache, especially if locality of reference is strong. The similar

performance of LRU and FIFO can be attributed to the fact that the FIFO algorithm could be said to

approximate LRU assuming extremely poor locality of reference, and their relative performance could be

used to gauge the potential bene�ts of capitalizing on such locality of reference.

Finally, comparing the performance of LRU and LFF under the two metrics yields insight into the

e�ects of decreased jCov(Ri; Si)j in the W98 trace. The performance improvement of LFF over LRU under

the H metric is less for the W98 trace than it is for the W95 trace; furthermore the penalty paid under

the B metric by using LFF rather than LRU is greater in the W98 trace than it is in the W95 trace. This

experimental observation is consistent with intuition provided by the Lemma. It reects the fact that as the

absolute correlation between requests and sizes declines, as happened between 1995 and 1998 in our traces,

the bene�ts of using LFF decline as well.

5.2 Synthetic Trace Simulations

The results of the previous subsection indicate that the W98 traces showed generally poorer payo�s

from caching (both in terms of H and B) than the W95 traces. We examined a number of possible cause(s)

of this apparent decline in the utility of caching in the network. To do so, we used the original W95 and

W98 traces to generate synthetic traces that are used in the various experiments presented in this section.

To understand the basis for the possible causes we discuss below, one needs to consider the sources

of temporal locality. The temporal locality of reference in the request stream presented to a network cache

can be due to recurrent requests originating within the same session (intra-session temporal locality) or

to recurrent requests originating from di�erent sessions (inter-session temporal locality). It follows that

di�erences in temporal locality between 1998 and 1995 (and hence cache performance) could be attributed

to a decline in (1) intra-session temporal locality, and/or (2) inter-session temporal locality.

5.2.1 The E�ect of Client Caches

The �rst possible cause for the di�erence in network caching performance is the inuence of caching

in the browser. In particular, as suggested earlier, declining hit rates in the W98 trace may be due to better

browser caching in that environment. Since the request stream presented to a network cache consists of

exactly those requests that missed in the browser cache, a more e�ective browser cache would result in fewer



22 Barford, Bestavros, Bradley and Crovella, Changes in Web Client Access Patterns

misses for the same document. As a result, the request stream presented to the network cache would have

less recurrent requests and hence would be less \cacheable". This hypothesis is also advanced in [Muntz and

Honeyman 1992] to explain low hit rates in secondary �le caches.

While the e�ectiveness of the browser cache for 1995 could be evaluated (and indeed was evaluated

in [Bestavros et al. 1995]), the same could not be done for 1998 (as explained in section 3). Thus, comparing

the performance of the browser caches was not possible. Therefore, the only alternative to test this hypothesis

was to \equalize" the browser caches and then evaluate the e�ectiveness of a network cache on the resulting

streams. To do so, we assumed the existence of a \perfect client cache" for each of the datasets. A perfect

client cache is one that misses each document exactly once for each user in the data set.
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Figure 14: Performance of LRU, FIFO, LFF as a function of cache size under a perfect browser caching

assumption: (a) H metric (b) B metric.

Figure 14 shows the hit rates and byte hit rates for the various replacement strategies under a perfect

client cache assumption. With perfect client caches, the W95 data set continues to show signi�cantly better

network hit rates than the W98 data. In particular, in the presence of a perfect browser cache, the upper

bound on H (B) for the W95 data set was measured at about 61% (39%), compared to 22% (18%) for the

W98 data set.

Furthermore, comparing Figure 14 with Figure 13 shows that the performance improvements that

can be obtained by a perfect client cache are greater for the W98 trace than for the W95 trace. That is, the

network cache hit rates for W98 decreased much more than for W95 when a perfect client cache is used.

These two observations suggest that although some di�erences between the cache hit rates of the W95

and W98 traces may be due to improved caching in the W98 browsers: 1) the di�erence are not solely due to

better browser caching, because even if browser caches were perfect, signi�cant di�erences in network cache



Barford, Bestavros, Bradley and Crovella, Changes in Web Client Access Patterns 23

hit rates still exist;8) and 2) it seems there are more opportunities still remaining for improved client caching

in the W98 traces than in the W95 traces.

Thus it seems that there is less inter-session locality of reference in the W98 trace. This is suggested

by the fact that if all intra-session locality of reference is removed (as in the perfect client cache traces) the

resulting W95 trace shows much higher network hit rates than does the W98 trace.

5.2.2 The E�ect of Multiprogramming Level

If inter-session locality of reference is an important component of network cache hit rates, then it is

important to consider whether the degree to which sessions were concurrent in each trace has a�ected our

results. If there is a signi�cantly higher interleaving of sessions in the W95 trace this may cause higher hit

rates for �les that are requested in multiple sessions.

To see whether this is the case, we pro�led the distribution of concurrent sessions|a.k.a. the multi-

programming level (MPL)|in the W95 and W98 datasets. Since explicit session start and end times were

not available for the W98 trace, a per-user timeout of 30 minutes was used to separate traces into sessions.

Figure 15 shows that, indeed, the W95 data set exhibited a larger MPL than that exhibited in the W98 data

set. In particular, the minimum, average, and maximum MPLs were 1, 2.27, and 21, respectively for W95,

versus 1, 1.73, and 11, respectively for W98.
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Figure 15: Characteristics of the MPL for the W95 and W98 data sets.

Figure 15 indicates that there is a di�erence in MPLs between W95 and W98, but it doesn't indicate

whether this di�erence is translated into a di�erence in the level of inter-session temporal locality|and

8)It is important to note that this conclusion does not imply that di�erences in browser caching e�ectiveness between W95

and W98 are insigni�cant. It is also worth noting that the use of HTTP features like conditional GETs, as well as the browser's

validation and reload behavior, have changed the amount and kinds of tra�c seen by a network cache signi�cantly.
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hence cacheability. To do so, we need to perform simulation experiments in which the MPLs for W95 and

W98 are equalized.

To study the e�ect of varying levels of inter-session temporal locality, a tool was developed to arti-

�cially superimpose and concatenate individual user sessions to achieve a known and consistent MPL. The

individual sessions are all normalized to have a zero start time. The synthesizer then randomly permutes

the sequence of individual sessions and selects from it until the desired MPL is achieved; as each session

completes, a new session is selected and its timestamps adjusted to begin one second after the previous

session completes. The synthesizer continues doing this until the synthetic workload contains the desired

total number of requests. Sessions are not replayed unless the desired number of requests exceeds the number

of requests in the source trace; permutation was chosen over simple random selection because a recurring

session would represent a recurring request pattern not present in our actual traces, possibly arti�cially

inating Hit rate and Byte hit rate.
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Figure 16: Performance of LRU as a function of cache size under MPL of 1, 2, 4, 8, and 16: (a) H metric

(b) B metric.

Since this simulation requires permuting subsets of the original traces, several \batches" of workloads

were synthesized, where each batch contained �ve traces with MPL's of 1, 2, 4, 8, and 16, each trace

accessing the same set of documents. Figure 16 shows the document hit rates (H) and byte hit rates (B)

for a representative batch, and illustrates that MPL did not signi�cantly e�ect these metrics.9) Thus we

conclude that our results are not signi�cantly due to di�erences in MPL between the two traces.

9)The study in [Bestavros and Cunha 1996] showed that inter-session temporal locality (termed \geographical locality") is

key to e�ective server caching|as opposed to the network caching discussed in this paper.
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5.2.3 E�ect of Shared Working Sets

The results we have shown in this section indicate that di�erences in browser caching alone do not

explain the decrease in hit rates in the W98 trace compared to the W95 trace. In addition our results suggest

that declines in inter-session locality of reference play a signi�cant role in this decrease in cacheability. This

suggests that the working sets of di�erent users have less in common in 1998 than they did in 1995.

This change may be due to: (1) changes in the Web itself (e.g., the number, type, and structure

of documents available in 1995 versus 1998), and/or (2) changes in the user population (e.g., more diverse

interests, more sophisticated usage, etc.) In both cases, the result is the same: the potential for inter-session

sharing of working sets has declined from 1995 to 1998.

As evidence of the decline in inter-session sharing (i.e., recurrent requests by di�erent users), we note

the following: W95 included 46720 unique document names and our perfect browser cache simulation still

required 120236 requests, meaning that on average, a document was requested by 2.57 di�erent users. On the

other hand, W98 included 37747 unique document names and our perfect browser cache simulation required

only 48111 requests, so in W98 the average document was requested by only 1.27 users|less than half as

many.

6 CONCLUSION

In this study we've compared two samples of Web client behavior that are separated in time by three

years. Our study is unique because the samples were taken at very di�erent times, but the computing facility

and nature of the user population remained the same for both measurements (this also means that our more

recent workload measurements should not be assumed to be representative of typical current Web users).

Our goal was to discover whether important characteristics of our Web client workloads have changed over

the three year time span, and to understand reasons for the changes that have occurred.

The �rst set of characteristics we examined are the distributional properties of Web �les. We studied

the set of transferred �les because this set inuences the properties of network tra�c; and we studied the

set of unique �les because this set can give insight into the set of �les that may be present in large network

caches.

Both sets continue to show the heavy-tailed property in 1998 that was �rst identi�ed in 1995. This

property is important because it has been suggested as a causal mechanism for the presence of self-similarity

in Web tra�c [Crovella and Bestavros 1997]. In addition, both sets are well modeled as a hybrid distribution

with a lognormal body and a Pareto tail, which was also true in 1995. However, we �nd that distributionally,

the 1998 datasets show a shift toward smaller sizes overall, and lighter tails, than the 1995 datasets. This

trend is quite pronounced in the case of the set of unique �les, but is only slightly present in the case of the
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set of transferred �les.

We also �nd that the nature of �le popularity, as demonstrated by Zipf-like laws, is di�erent between

the two datasets. For the 1995 dataset, the degree of popularity imbalance among transferred �les is much

greater than for the 1998 dataset. That is, �le requests are more evenly spread over the set of unique �les

in the 1998 dataset than was the case in the 1995 dataset. This result suggests that network caching may

be less e�ective when applied to the 1998 dataset; and in fact we found this to be true in simulation.

Our caching simulations resulted in two main conclusions: �rst, that cache replacement policies for the

1998 dataset bene�t from the use of size less than for the 1995 dataset; and second, that overall e�ectiveness

of network caching is lower in 1998 than in 1995.

Our conclusion regarding cache replacement policies can be understood in terms of �le size preferences.

When small �les are preferred (that is, the covariance of requests per �le and �le size takes on a large negative

value), LFF will tend to outperform LRU under the H metric. This was generally true for the 1995 traces.

However, the decrease in the negative covariance of Ri and Si from 1995 to 1998 means that the advantage

of LFF over LRU under the H metric tends to diminish as well. Furthermore, regardless of the nature of

the covariance of Ri and Si, LRU yields better results than LFF under the B metric. Thus, the use of size

in cache replacement algorithms used in a network cache needs to be examined carefully, and may be less

desirable for our 1998 traces than it was for the 1995 traces.

Our simulations also demonstrate that the 1998 traces show signi�cantly lower hit rates than the 1995

traces. This is a di�erence that has implications for many current e�orts in network caching for the Web.

Since this conclusion is important, we explored a number of possible explanations for this e�ect. First, we

showed that the lower hit rates in 1998 were not solely due to improved caching at the clients because even

in the presence of perfect caching, hit rates would be much lower for the 1998 traces. Next, we showed that

the lower hit rates were not due to lower levels of session interleaving (MPL), because synthetically created

variations in session interleaving did not a�ect hit rates. As a result, we conclude that the inherent potential

for caching of requests across sessions is lower in 1998 than it was for 1995.
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