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Abstract— In a hybrid wired/wireless environment, an effective
classification technique that identifies the type of a packet loss,
i.e., a loss due to wireless link errors or a loss due to congestion, is
needed to help a TCP connection take congestion control actions
only on congestion-induced losses. Our classification technique
is developed based on theloss pairs measurement technique
and Hidden Markov Models (HMMs). The intuition is that the
delay distribution around wireless losses is different from the one
around congestion losses. An HMM can be trained to capture
the delays observed around each type of loss by different state(s)
in the derived HMM. We develop an automated way to associate
a loss type with a state based on the delay features it captures.
Thus, classification of a loss can be determined by the loss type
associated with the state in which the HMM is at that loss.
Simulations confirm the effectiveness of our technique under
most network conditions, and its superiority over the Vegas
predictor. We identify conditions under which our technique does
not perform well.

Index Terms— Wireless Communication, HMM, Loss Classifi-
cation, Queue Occupancy

I. INTRODUCTION

In recent years, as wireless links have become more com-
mon in the Internet, the question of TCP behavior over
wireless channels has become important [10], [17]. In such
a setting, unmodified TCP does not differentiate losses due to
buffer overflow from those due to signal fading on the wireless
link. In this situation, a TCP connection may over-police itself,
and not be able to achieve its fair share of the channel.

Research on improving performance of TCP over hybrid
wired/wireless paths has focused on differentiating packet
losses using information readily available to TCP: congestion
window size, inter-arrival time between ACK packets, and
changes in round-trip time (RTT) [8], [6]. However, correct
classification based on these metrics has been found to be
difficult [8]. It appears that there is lack of correlation between
nature of losses and these observable metrics (RTT, congestion
window size, and inter-arrival of ACKs).

In this paper, we propose a new end-to-end method to
classify the nature of packet losses in a hybrid wired/wireless
environment, i.e., distinguishing losses due to congestion from
losses due to wireless channel fading. (From now on, we
call packet losses due to congestion congestion losses and the
losses due to wireless channel fading wireless losses.) Specif-
ically, we monitor the most recent RTT before each loss to
determine its most likely nature. End-to-end methods like ours

have the advantage of not assuming support from the network
(e.g., split TCP connections or link layer retransmissions).

Our approach assumes that in order to differentiate con-
gestion losses from the wireless losses, it may help to infer
the network state at a packet loss event. Unmodified TCP
uses packet loss to infer the presence of network congestion.
However, when a network path includes a wireless link, packet
loss is no longer an accurate indicator of congestion, and it
becomes difficult to determine whether the network path is
congested based on packet loss alone. For this reason, we make
use of additional information: network delays at the time of the
packet loss. Intuitively, congestion losses are associated with
buffer overflows, so that packet delays when such losses occur
will reflect the full queuing time of at least one buffer along
the path. On the other hand, wireless losses are not associated
with buffer overflows in general, so delays at such losses may
be more variable compared to the delays at congestion losses.

We can formalize this intuition using Bayesian analysis. Let
T = fC;Wg (for “congestion” and “wireless”) be the set of
loss types. Let L be a random variable (L 2 T ) signifying the
type of a packet loss, and let R be a random variable (R 2 R

+)
signifying the round-trip delay associated with each packet
loss. The quality of differentiation possible at a particular delay
r can be expressed as P [L = ljR = r]. From a Bayesian
standpoint,

P [L = ljR = r] =
P [L = l] � P [R = rjL = l]P

l02T

P [R = rjL = l0] � P [L = l0]
(1)

This exposes the opportunity for making use of prior knowl-
edge in performing the classification. In particular, we can
make reasonable prior estimates P [R = rjL = l] for every l;
for congestion losses, we expect this distribution to be tightly
centered at the delay corresponding to the maximum queueing
delay at the bottleneck, and for wireless losses, we expect this
distribution to be approximately the one corresponding to an
unconditioned queue occupancy distribution. And, we note that
the distribution forming the right hand side denominator can
be directly estimated as the observed delay distribution for all
losses. This leaves only the priors P [L = l] unknown.

This formulation makes clear that the leverage provided by
using delay on this problem is maximized when the component
distributions P [RjL = l]; l 2 T are sufficiently distinct —
that is, when the “typical” queue occupancy is different from



the congested queue occupancy.
Using this approach, we propose a differentiation technique

for packet loss types using the delay measured on the path
immediately before the loss. Our technique is based on 1)
loss pairs [13], which measure the round-trip path delay at
the time that a loss happens, and 2) Hidden Markov Models
(HMMs) [14]. Loss pairs is a technique that conveys path
delay at the time of packet losses to an end node of the path.
HMMs are a classification tool that can make use of recent
history in classifying present observations.

Our results show that our technique is effective in most net-
work configurations. It is superior in quality of classification
of losses compared to the best method reported in [8] (the
Vegas predictor).

Our technique has the advantage that it does not disrupt
the end-to-end semantics of the IP path (and so, for example,
could co-exist with IPsec). Furthermore, we show that there is
generally a tradeoff in accuracy of identification of congestion
losses versus identification of wireless losses. Our approach
has the advantage that is can be tuned to favor accuracy of one
type of identification over another. For example, in a setting
where TCP-friendliness is important, accuracy of identification
of congestion losses can be favored.

The rest of this paper is organized as follows. We describe
related work in Section II, and in Section III we present a
basic introduction to HMMs and the loss pairs technique. The
classification technique itself is described in Section IV, and
its evaluation is described in Section V. In Section VI we
conclude.

II. RELATED WORK

Many studies have shown that TCP goodput can be im-
proved if the cause of packet loss is identified [3], [17]. By
attributing a packet loss to wireless transmission errors, the
TCP source can refrain from taking unnecessary “conges-
tion” control measures. One set of solutions (e.g., I-TCP [2],
Snoop [4], WTCP [15]) require support from the base station
located at the interface between the wired infrastructure and
the wireless access infrastructure. These solutions incur the
cost of implementation at the base station, or that of explicit
feedback messages to inform the source of the cause of loss,
and some violate the end-to-end semantics of TCP.

In this paper, we are primarily interested in end-to-end
solutions, i.e. those which do not require any support from the
network. Proposed end-to-end solutions differ mainly in the
measure(s) they use to infer the cause of loss. These measures
may be estimated at the sender without any support from
the receiver (e.g. round-trip delay), or may require support
from the receiver (e.g. one-way delay or delay variance). For
example, the Flip Flop-based loss classification in [5] and the
Vegas predictor [8] attribute a packet loss to congestion if the
measured delays exceed a certain delay threshold, otherwise
the cause of a packet loss is assumed to be wireless errors.

Our approach generalizes the two-state view of the network
(congestion vs. wireless) taken by the above schemes to
multiple states, where each state can encapsulate a different
level of wireless errors or congestion. Furthermore, we do not

make any assumptions about the location of the bottleneck
or wireless links. We use RTT measurements to infer the
state of the network at the time of a packet loss. Each state
in our model is characterized by the mean and standard
deviation of the associated RTT distribution. Our approach
is intended for loss inference, and we maintain a clean
separation between this inference process and the control
that may make use of it (unlike implicit schemes such as
TCP Westwood [11]). Our approach is based on training a
Hidden Markov Model (HMM), which presumes that the set
of observations/measurements are generated by a Markovian
process. An excellent detailed description of HMMs is given
in [14]. Salamatian and Vaton [16] used HMM to model
network channel losses and showed that making inference
about the state of the channel (lossy or not) can be reasonably
accurately predicted. In this paper, we use HMM to predict the
cause of a lost packet. Our HMM is constructed using only
RTTs of interest; those observed at about the same time the
packet in question is lost. This RTT filtering is done using the
technique of loss pairs [13]. We compare our HMM-based loss
predictor to the Vegas loss predictor. The Vegas loss predictor
was shown to outperform others [8], and it is representative
of the design philosophy of previously proposed predictors.
Besides the natural association of multiple levels of wireless
errors or congestion to our HMM states, one can consider
multiple types of observations. For example, interarrival time
between losses could be considered in addition to RTTs or
one-way delays. However we only consider in this paper RTT
measurements (of loss pairs) to train our HMM.

III. BACKGROUND AND FRAMEWORK

In this work, we use an HMM to derive a statistical model
of the signal of RTTs of loss pairs. Based on the derived
model, we propose a technique for differentiating losses into
congestion losses and wireless losses. In this section, we give
brief introductions to loss pairs and HMMs.

A. Loss pairs

A loss pair is a pair of packets sent back-to-back by the
sender such that exactly one of them is lost on the way. Since
these two packets travel together close enough to each other
up to the point where one of them is lost, the packet that is not
lost carries the delay status at current packet loss back to the
sender. This pair of packets can be a pair of probing packets
in the active probing scheme, or a pair of data packets sent
by a TCP agent, like TCP Reno, in a passive measurement
scheme.

The use of loss pairs to carry network delays generally relies
on three assumptions [13]. Since loss pairs was originally
proposed in the wired network environment, we restate these
three assumptions for the hybrid wired/wireless environment
as follows:

� There is only one most congested point, i.e., queue, called
bottleneck, and the number of packet losses and the
delays at the bottleneck are significant compared to the
ones at other network elements along a path. This makes



it possible to ascribe congestion losses and delays seen
at the end-point to the internal bottleneck.

� The round-trip path and the location of the bottleneck
do not change during measurement. This ensures that the
non-dropped packet in a loss pair is likely to see similar
queue occupancies along the path at packet losses.

� In order to relate delay in the queue to queue occupancy,
we assume that the packet scheduling at the queues along
the path is FCFS.

B. Hidden Markov Models

1) HMM Structure: HMMs have become a powerful mod-
eling tool for two main reasons: first, an HMM has rich
mathematical structure and thus can form the theoretical basis
for a wide range of applications; second, it works very well
when it is applied appropriately [14]. An HMM is a statistical
signal model which can provide the basis for a theoretical
description of a signal processing system. A signal is normally
expressed as a time series fot : t = 1; 2; � � �g. The generation
of this time series can be imagined as coming from a discrete
time Markov chain. At each state change, the chain generates
an observation (signal) based on a probability distribution
associated with the current state. In general, the observation
can be either in discrete or in continuous form; in this
paper, we only focus on HMMs with Gaussian (continuous)
observations.

More formally, an HMM is defined by the following ele-
ments [14]:

� N , the number of states in the model. We denote the state
space as fS1; S2; � � � ; SNg.

� For each state Sj , a probability density function bj(o)
over the set of possible observations. In our work we
take this to be a Gaussian density of the form

bj(o) = N [o;�j ; �
2
j ]

where N is a Gaussian density function with mean �j
and variance �2j .

� The state transition probability distribution A = faijg
where aij = P [st+1 = Sj jst = Si]; 1 � i; j � N .

� The initial state distribution � = f�1; �2; � � � ; �Ng where
�i = P [s1 = Si]; 1 � i � N .

2) HMM Training: Training the HMM requires finding
appropriate values for faijg and fbjg (which in our case
means f(�j ; �2j )g). This inverse problem is usually attacked
using the EM (Expectation-Maximization) approach. The EM
approach seeks to find the model parameters that make the set
of observations most likely. EM is an iterative approach; as
the EM iterations proceed, each newly derived HMM becomes
more likely than the previous one to have generated the series
of observations. Excellent explanations of how HMMs can be
trained via the EM algorithm are given in [14], [16].

3) State Sequence Inference: Once we have a trained
model, we seek to find the state sequence that corresponds
to the given sequence of observations. That is, the final goal
is to find the state sequence ŝ = fŝ1; ŝ2; � � � ; ŝT g for a
given sequence of observations o = fo1; o2; � � � ; oT g. For
this purpose we use the Viterbi algorithm [14], which uses

dynamic programming to perform efficient inference of state
sequences. If �̂ is the trained model (i.e., the model after
multiple iterations of the EM algorithm), the Viterbi algorithm
produces a state sequence ŝ such that the a posteriori log-
likelihood L(ŝjo; �̂) is maximized, meaning that ŝ is the most
likely sequence of states followed by the model �̂.

IV. LOSS DIFFERENTIATION TECHNIQUE

In this section, we describe how we apply Hidden Markov
Models and loss pairs to differentiate wireless from congestion
losses.

A. Motivation

In all the work described in this paper, we use HMMs
with 4 states, trained on 10000 observations. These parameters
are chosen based on [16], which showed that in a number
of settings, N = 4 was sufficient to characterize a network
communication channel using observations of packet loss
events, and that 10000 observations was sufficient to train such
a model.

Our measurements are collected using an ns-2 simulation
of a hybrid wired/wireless network. For each loss pair, we also
record its nature (congestion or wireless) to allow comparison
with our classifier. In this section we concentrate on explaining
the overall approach, so discussion of the specific simulation
parameters is deferred to the next section.

To motivate our approach, consider the distribution of RTTs
shown in portion (a) of Figure 1. These plots show loss
pair RTTs for all losses, wireless losses, and congestion
losses, respectively. Note that the RTTs of congestion loss
pairs are very compactly distributed around the RTT value
corresponding to buffer overflow along the network path used
in the simulation. On the contrary, the RTTs of wireless loss
pairs are much more widely spread.

Using these loss pair RTT measurements, we trained our
four-state HMM; the Gaussian models for each state of our
trained HMM are shown in order (1 through 4) below the
histograms in Figure 1. We note that the distribution corre-
sponding to state 3 looks most similar to the distribution of
RTTs of congestion loss pairs. We can conjecture that state 3
corresponds to congestion losses more strongly than any other
state. To verify this conjecture, we perform state estimation
(using the Viterbi algorithm) to determine the most likely
state the model is in for each observation. Then, using our
knowledge of the true nature of each loss, we compute the
number of times the model is in each state for losses of each
type. We plot these numbers in Figure 2. This figure confirms
that in fact, state 3 is the state most strongly corresponding to
congestion losses.

In Figure 1(a), the distribution of RTTs of congestion
loss pairs is quite different from that of wireless loss pairs.
This difference is clearly due to the different ways in which
losses occur, with congestion losses occurring due to buffer
overflow. Thus, any model state corresponding to congestion
losses should show a fairly compact distribution of RTTs,
with high average value; i.e., its Gaussian distribution should
show relatively smaller variance and relatively larger mean.



On the other hand, the RTTs of wireless losses may typically
be smaller than those of congestion losses because wireless
loss pairs are unlikely to occur during buffer overflow in
general. These considerations suggest that the mean, standard
deviation, and coefficient of variation of each state’s Gaussian
component would appear to be helpful in classifying states
into congestion or wireless.

As just described, each observation of loss pair at a par-
ticular time can be associated with a most likely state of the
HMM. Thus to use the trained HMM, we need to determing a
“labeling” for each state, i.e., an assignment of a loss type to
each state of the HMM. When N = 4, there are 24 possible
ways to perform this labeling. Of course, different labelings
are not equal in the quality of the classification they produce.

To measure the quality of a classification method (i.e., a
particular state labeling) we propose to use P [tjt0] as a set
of metrics. P [tjt0] is the probability of a loss being classified
as of loss type t given that it is in fact due to loss type t0,
for t; t0 2 T . These metrics (which previous work have not
clearly exposed) make clear the fundamental tradeoffs inherent
in developing a method of loss classification.

More specifically let the event “being classified as a wireless
loss” be denoted as W and “being classified as a congestion
loss” be denoted C; and let the event “the loss is actually
due to congestion” be denoted C and “the loss is actually
due to wireless channel fading” be denoted W . Among these
metrics, P [W jW ] is appropriate for evaluating the accuracy
of classifying wireless loss pairs, and P [CjC] is appropriate
for congestion loss pairs. To give a feeling for how these two
metrics can vary together, in Figure 3, we plot P [CjC] and
P [W jW ] under all possible labeling of states for three network
configurations. These figures show that it is hard, in general,
to simultaneously have P [CjC] = 1 and P [W jW ] = 1:

The ability to separately consider P [CjC] and P [W jW ] is
a strength of our approach. In general, different applications
may wish to emphasize accuracy in one of these metrics at
the expense of the other metric. These different emphases can
be thought of as leading to different points in the tradeoff
graphs shown in Figure 3. It is encouraging that Figure 3
does show that for high P [CjC], it is often possible to obtain
reasonably high P [W jW ] as well. Referring to Figure 2, if
we label states 2 and 3 as Congestion, and the remaining two
states as Wireless, then we achieve P [CjC] = 1 as well as a
high P [W jW ].

The state labeling we use in the rest of this paper is one
that emphasizes high P [CjC]. That is, we seek to find the state
labeling with highest P [W jW ] given that P [CjC] is near 1.
The choice reflects the importance of correctly responding to
congestion for a TCP connection to share a channel fairly.
The process of automatically selecting such a state labeling is
thus necessarily heuristic. We discuss our heuristic next and
evaluate it in the following section.

B. Labeling Losses by Type

The parameters contained in the estimated model are inputs
to the labeling algorithm. By studying the relationship between
the model parameters and the accuracy metrics, we develop
the following heuristic labeling technique:
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Mean � 0.18 0.19 0.19 0.16
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Indicator �=� 28 45 71 13
(c) Parameters of Gaussian for each state

Fig. 1. Distribution of RTTs of loss pairs by type (all, wireless,
congestion), and the Gaussian components for each state (1 through
4) of the trained HMM.
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Fig. 3. Accuracy of classification on losses by type under all possible wireless state assignments. State assignments are labeled according
to which states are assigned to wireless errors, and are presented in decreasing order of P [CjC].
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Fig. 2. Number of times a state is visited by loss pairs. For each state,
the left bar denotes losses due to congestion and right bar denotes
losses due to wireless channel fading.

� Given parameters:

– Initial state distribution �, state transition matrix A =
[aij ];

– Mean �, std. dev. �, congestion indicator �=� in each
state.

� Step 1 (Bipartite partition among states of the model)

(i) Compute the flow matrix F = [fij ] where

fij = �i � aij (1 � i; j � N)

(ii) Partition the states into two disjoint sets with the
restriction that each set should contain at least one
state, then compute the flow volume between these
two sets. There are 2N�1 � 1 such bipartite parti-
tions. Suppose that fP1; P2g is one of the bipartite
partition, then the flow between P1 and P2 can be
expressed as

f(P1; P2) =
X

Si2P1;Sj2P2

(fij + fji)

(iii) Sort the resulting 2N�1�1 flows in order, and select
the bipartite partition associated with the median
value of inter-partition flow.

� Step 2 (Label assignment to each partition)
(i) Sort [�i],[�i] and [�i=�i] and determine their ranks

as follows:
– [�i] is in increasing order, such that Rank(�i) �

Rank(�j) iff �i � �j ;
– [�i] is in decreasing order, such that Rank(�i) �

Rank(�j) iff �i � �j ;
– [�i=�i] is increasing order, such that

Rank(�i=�i) � Rank(�j=�j) iff
�i=�i � �j=�j .

(ii) Assign a weight w to each state as follows:

w(Si) = �1Rank(�i)+�2Rank(�i)+Rank(�i=�i):

Experimentation suggests the use of �1 = N2 and
�2 = N .

(iii) The states in the partition with the largest weight
are labeled as Congestion (C), and the states in the
other partition are labeled as Wireless (W).

We note that this method is certainly subject to refinement
for different application settings. The motivation for this
method is:

� The bipartite partition with the median flow appears to
maximize P [CjC] while keeping P [W jW ] high, and

� the weight assignment for each state constructs a metric
as a function of its associated mean and standard devi-
ation, with the property that the state with the largest
metric is most likely to be a congestion state; using rank
instead of actual value makes the metric more robust.

V. EVALUATION

We first examine the accuracy of our loss classification
technique under different network settings, we then discuss
the possible contributing factors to its accuracy.

We evaluate our technique by classifying losses collected in
simulations using the ns-2 network simulator [12]. The sim-
ulations are configured to have a network topology as shown



in Figure 4, where nodes n1; n2; n3; n4 represent routers on
the backbone path n1 � n4 with a bottleneck link between
routers n2 and n3.1 Furthermore, one link on the backbone
path is wireless; its location, wireless error model, and loss
rate are varied.

Bottleneck
   Link

Upstream
Bottleneck

Downstream
 Bottleneck

Observable
TCP
Sources

  Observable
    TCP
   Sinks

  Upstream
Cross Traffic
TCP Sources

  Upstream
Cross Traffic
 TCP Sinks

At Bottleneck
Cross Traffic
TCP Sources

At Bottleneck
Cross Traffic
  TCP Sinks

Downstream
Cross Traffic
TCP Sources

Downstream
Cross Traffic
TCP Sources

  n1 n2 n3 n4

Fig. 4. The network topology used in the ns-2 simulations with a
hybrid wired/wireless network setting.

To generate network traffic, several sets of TCP
sources/sinks are used to send packets through a portion of or
the whole backbone network path. Among the TCP source/sink
pairs, the ones that use the whole backbone path are treated as
observable TCP source/sink pairs in the simulations, and all
the others which only use a portion of the backbone path are
treated as unobservable TCP source/sink pairs used to create
the cross traffic. In order to better control the strength of
the cross traffic on each link, each of the unobservable TCP
source/sink pairs only goes across one network link of the
backbone.

We list the parameters of two network configurations in
Table I. Unless specified otherwise, 500 and 200 observable
TCP source/sink pairs are used in configurations I and II,
respectively. 30 unobservable TCP source/sink pairs go across
each link of the backbone path to create cross traffic in both
network scenarios. Furthermore, in order to better mimic the
traffic behavior in the Internet, each TCP source follows an
ON/OFF activity pattern where the OFF duration is heavy-tail
distributed drawn from a Pareto distribution.

In the rest of this section, we first examine the accuracy
of our loss classification technique and how it is affected
by various network parameters, we then compare our loss
classification technique to the Vegas predictor [8]. Finally, we
present results with IEEE 802.11 wireless interfaces.

A. Contributing Factors to the Classification Accuracy

Various factors may affect the accuracy of loss classification
by affecting the distinctiveness of delay distributions around
different types of losses. These factors include: utilization of
the bottleneck link, the capacity of the backbone path (i.e.,
the bandwidth-delay product), the location and the link error
model of the wireless link, and the strength of the observable
traffic and the cross traffic. In our evaluation, the wireless

1A significant number of packet losses due to congestion happen at the
bottleneck link.

Setting Upstream
Bottle-
neck

At Bottle-
neck

Downstream
Bottle-
neck

Access
link

Network Configuration I
Bandwidth 1:5Mbps 1:3Mbps 1:5Mbps 10Mbps

Buffer
Size

10KB 8KB 10KB 1

Latency 4ms 4ms 4ms 2ms
Network Configuration II

Bandwidth 1Mbps 0:5Mbps 1Mbps 10Mbps

Buffer
Size

10KB 10KB 10KB 1

Latency 4ms 4ms 4ms 2ms

TABLE I

NETWORK SETTINGS USED IN THE ns-2 SIMULATIONS.

error models over the wireless link include both the simple
memoryless uniform error model used to mimic random packet
losses [8], [6] and the two-state Markovian-Gilbert model used
to mimic bursty packet losses [1], [18], [19].

1) Network Configuration Related Factors: The basic idea
behind our classification technique is that the distinct delay
distributions (or equivalently, the convolved queue occupancies
on the backbone path) around different types of losses can be
used to classify losses. Therefore, we examine the impact of
network parameters on queue occupancy fluctuations, which
in turn affect classification accuracy. In that context, the
utilization of the bottleneck link is a critical factor; a heavily
loaded bottleneck may result in high packet loss rate and
steady queue occupancy (close to a full queue), while a lightly
loaded bottleneck may result in low packet loss rate and highly
oscillatory queue occupancy.

In order to create different levels of utilization of the
bottleneck link, using the network configuration I shown in
Table I, we vary the number of observable TCP connections
from 50 to 250 in increments of 50. We set the (n3,n4) link
as wireless with a uniform error model of 2% error rate. The
classification accuracies under different levels of utilization are
listed in Table II. We note that the classification accuracies
deteriorate with increasing utilization of the bottleneck link.
This fact shows that wireless losses and congestion losses
become difficult to differentiate by delays around losses since
the bottleneck queue occupancy is less oscillatory under very
high link utilizations (> 90%).

Utilization
�

Overall
Loss
Rate

P [C] P [CjC] P [W jW]

0.514 4% 0.5 1 0.536
0.921 4% 0.5 1 0.33
0.995 8:7% 0.23 0.706 0.171

TABLE II

THE CLASSIFICATION ACCURACY UNDER DIFFERENT LEVELS OF

UTILIZATION AT THE BOTTLENECK LINK. THE OVERALL LOSS

RATE IS DEFINED AS THE RATIO OF THE TOTAL NUMBER OF LOSS

EVENTS TO THE TOTAL NUMBER OF PACKETS SENT BY ALL TCP
SOURCES.

We next examine the impact of the capacity (end-to-end



BW�D
factor

Overall
Loss
Rate

P [C] P [CjC] P [W jW]

1 10:5% 0.762 0.653 0.22
2 7% 0.714 1 0.331
3 7% 0.714 0.989 0.704
4 4% 0.5 1 0.456
5 4% 0.5 1 0.679

TABLE III

THE CLASSIFICATION ACCURACY UNDER DIFFERENT VALUES OF

THE BANDWIDTH-DELAY PRODUCT OF THE BACKBONE PATH FOR

CONFIGURATION II SHOWN IN TABLE I. THE ACTUAL VALUE OF

THE BANDWIDTH-DELAY PRODUCT IN EACH ROW IS THE

PRODUCT OF THE BW�D FACTOR AND A BASE VALUE OF 16Kb.

bandwidth-delay product) of the backbone path. The classifi-
cation accuracies for different values of the bandwidth-delay
product are shown in Table III by varying the bottleneck
bandwidth from 0:5 Mbps to 2:5 Mbps at increments of
0:5 Mbps. We observe that the classification accuracy is
generally improved for increasing values of the bandwidth-
delay product. This is because a higher capacity of the network
path generally results in more highly oscillatory (variable)
queue occupancies on the backbone path (especially at the
bottleneck link). Therefore, the convolved queue occupancy
on the backbone path spreads over a wider range, whereas the
queue occupancy distribution around congestion is still com-
pactly localized around the full queue size of the bottleneck
link.

The cross traffic can also affect the queue occupancies on
the backbone path and thus affect the classification accuracy.
Table IV shows that a static cross traffic has a negative impact
on the classification accuracy, whereas a bursty cross traffic has
a positive impact on the classification accuracy. This is because
a bursty cross traffic helps make the queue occupancies more
oscillatory such that the delay distribution around the two
types of losses are more distinctive.

Traffic Type Overall Loss Rate P [C] P [W jW ] P [CjC]
Static 2:6% 0.5 0.0966 1
Bursty 2:1% 0.524 0.978 1

TABLE IV

THE CLASSIFICATION ACCURACY UNDER DIFFERENT TYPES OF

CROSS TRAFFIC.

We next vary the location of the wireless link on the
backbone path in both network configurations I and II shown
in Table I. We assume a uniform error model of a fixed
5% error rate over the wireless link. Table V shows no
noticeable impact of the location of the wireless medium on
the classification accuracy.2

2) The Effect of the Wireless Link Error Model: We first
examine the classification accuracy for the uniform error
model under different link error rates. We can clearly observe

2The same is true for a higher 10% wireless link error rate (not shown
here).

Location Overall
Loss
Rate

P [C] P [CjC] P [W jW]

Heavy Traffic under Network Configuration I
Upstream
Bottleneck

15% 0.655 0.726 0.327

At Bottle-
neck

14:6% 0.77 0.36 0.713

Downstream
Bottleneck

10:2% 0.539 0.796 0.26

Moderate Traffic under Network Configuration II
Upstream
Bottleneck

9:5% 0.626 0.928 0.673

At Bottle-
neck

7:8% 0.771 0.943 0.396

Downstream
Bottleneck

6% 0.453 1 0.207

TABLE V

THE CLASSIFICATION ACCURACY UNDER VARIOUS WIRELESS

MEDIUM LOCATIONS IN BOTH NETWORK CONFIGURATIONS

SHOWN IN TABLE I. THE WIRELESS LINK ERROR RATE IS SET TO

5%.

from Table VI that the classification accuracy is generally
increased under higher wireless link error rate. A possible
reason is that under a higher link error rate, TCP connections
tend to synchronize their backoffs and probing of bandwidth,
resuling in more oscillatory convolved queue occupancy on
the backbone path.

Wireless
Loss
Rate

Overall
Loss
Rate

P [W] P [CjC] P [W jW]

1% 7:3% 0.059 0.76 0.513
2% 8% 0.111 0.513 0.666
5% 7:8% 0.414 0.943 0.396
10% 8:4% 0.383 0.952 0.218
15% 8:3% 0.475 1 0.673
20% 7% 0.5 1 0.556

TABLE VI

THE CLASSIFICATION ACCURACY UNDER DIFFERENT LINK ERROR RATES

WHEN A UNIFORM WIRELESS LINK ERROR MODEL IS USED BETWEEN

NODES n2 AND n3 FOR CONFIGURATION II.

We next consider a more realistic wireless link error
model—the two-state Markovian-Gilbert error model. In this
model, the wireless link is either in a GOOD state in which no
wireless error happens, or in a BAD state in which wireless er-
rors happen at a predefined loss rate [1]. The wireless medium
transits between these two states according to predefined state
transition probabilities. Table VII shows that bursty wireless
link errors (longer duration in the BAD state) generally lead
to accurate loss classification.

B. Accuracy Comparison to the Vegas Predictor

We compare the classification accuracy of our loss classi-
fication technique to the Vegas predictor [7], [9]. The Vegas
predictor works as follows: When an ACK packet is received



Loss
Burstiness

Overall
Loss
Rate

P [C] P [CjC] P [W jW]

Smooth 4:1% 0.756 0.568 1
Bursty 6:2% 0.512 0.76 0.755

TABLE VII

THE CLASSIFICATION ACCURACY UNDER WIRELESS LINK LOSSES

MODELED BY A TWO-STATE MARKOVIAN-GILBERT ERROR

MODEL. IN THE “SMOOTH” ERROR MODE, THE RESIDENCE

DURATION IN THE GOOD STATE AND THE BAD STATE IS 99

PACKETS AND 1 PACKET, RESPECTIVELY. IN THE “BURSTY”
ERROR MODE, THE DURATION IN THE GOOD STATE AND THE BAD

STATE IS 90 PACKETS AND 10 PACKETS, RESPECTIVELY.
NETWORK CONFIGURATION II IS USED.

by the TCP source, a new predictor value is computed as:

Vegas predictor = W �
�
1�

BaseRTT

RTT

�
(2)

where W is the current unacknowledged congestion window
size, BaseRTT is the minimum round-trip time observed so
far, and RTT is the current round-trip time.

The TCP source then categorizes the current state of the
path using two predefined thresholds, � and � (� < �). When
the newly computed value of the Vegas predictor is smaller
than �, the path is categorized as underutilized. If the value
of the predictor is between � and �, the path is categorized
as normal. If the value of the predictor is higher than �,
the path is categorized as congested. Since the state of the
path (congested or not) is only determined by the value of
the predictor relative to �, we let � = � in the comparison.
Table VIII shows that our classification technique exhibits
great flexibility and superiority over the Vegas predictor. In
some sense, no matter how the parameter � is set, the Vegas
predictor always favors one type of losses over the other
type of losses. On the contrary, our technique shows high
accuracy in classifying congestion losses, while maintaining
a reasonably high accuracy in classifying wireless losses.

Vegas Predictor Our Technique
� P [CjC] P [W jW] P [CjC] P [W jW]
1 0.994 0.00332
2 0.225 0.819 0.932 0.753
3 0.103 0.896
4 0.0382 0.95

TABLE VIII

ACCURACY COMPARISON OF OUR TECHNIQUE TO THE VEGAS

PREDICTOR UNDER DIFFERENT VALUES OF � . NETWORK

CONFIGURATION II IS USED.

C. Evaluations with 802.11 Wireless Connectivities

Finally, we examine our classification technique in simula-
tions with IEEE 802.11 wireless interfaces configured. The
topology used in this simulation is the same as the one
shown in Figure 4 except that n4 acts as a base station that
communicates with the set of observable TCP sinks to its

Overall
Loss
Rate

P [C] P [CjC] P [W jW]

8:7% 0.756 0.867 0.71

TABLE IX

THE CLASSIFICATION ACCURACY IN A NETWORK ENVIRONMENT

WITH IEEE 802.11 WIRELESS INTERFACES CONFIGURED.

right via a common wireless medium. The parameters used
are those of configuration I in Table I. Table IX confirms the
effectiveness of our classification accuracy for 300 observable
TCP sources/sinks.

VI. CONCLUSION

In this paper, we have described a heuristic technique
for classifying losses into different types, i.e., losses due to
congestion and losses due to wireless channel fading. This
technique is developed based on the observation that the
distributions of round-trip delays around different types of loss
have different features which can be used to classify losses.
These different features can be captured by the Gaussian
component(s) in a derived HMM model. More specifically,
based on Bayesian analysis, we associate a loss type with
each state in an HMM trained by delay observations around
losses. The type of an observed loss is identified by the
loss type associated with the state in which the HMM stays
at that loss. We evaluated our classification technique un-
der various network conditions, including different network
configurations, workload, locations and error rates of the
wireless medium, and different wireless error models. We
found that our classification technique is effective in most
network environments, and that it is superior to the Vegas
predictor.

We are currently investigating tradeoffs between classifi-
cation accuracy and time/computation complexity, and the
interaction between loss classification and recovery control.
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