
In Proceedings of the Second Intl. Workshop on Services in Distributed and Networked Environments (SDNE '95)

Application-Level Document Caching in the Internet�

Azer Bestavros Robert L. Carter Mark E. Crovella

Carlos R. Cunha Abdelsalam Heddaya Sulaiman A. Mirdad

Computer Science Department

Boston University

111 Cummington St, Boston, MA 02215

fbest,carter,crovella,carro,heddaya,mirdadg@cs.bu.edu

Abstract
With the increasing demand for document transfer ser-

vices such as the World Wide Web comes a need for better
resource management to reduce the latency of documents
in these systems. To address this need, we analyze the
potential for document caching at the application level in
document transfer services. We have collected traces of
actual executions of Mosaic, reecting over half a million
user requests for WWW documents. Using those traces,
we study the tradeo�s between caching at three levels in
the system, and the potential for use of application-level
information in the caching system. Our traces show that
while a high hit rate in terms of URLs is achievable, a
much lower hit rate is possible in terms of bytes, because
most pro�tably-cached documents are small. We consider
the performance of caching when applied at the level of in-
dividual user sessions, at the level of individual hosts, and
at the level of a collection of hosts on a single LAN. We
show that the performance gain achievable by caching at
the session level (which is straightforward to implement)
is nearly all of that achievable at the LAN level (where
caching is more di�cult to implement). However, when
resource requirements are considered, LAN level caching
becomes much more desirable, since it can achieve a given
level of caching performance using a much smaller amount
of cache space. Finally, we consider the use of organiza-
tional boundary information as an example of the potential
for use of application-level information in caching. Our
results suggest that distinguishing between documents pro-
duced locally and those produced remotely can provide use-
ful leverage in designing caching policies, because of di�er-
ences in the potential for sharing these two document types
among multiple users.

1 Introduction
Some of the most popular services currently pro-

vided by the Internet are the distributed information
systems such as the World Wide Web (WWW), the
Anonymous FTP transfer system, the Wide Area In-
formation System (WAIS), and the Gopher system.
These services are characterized by a many-to-many

�This work has been partially supported by NSF (grant
CCR-9308344).

pattern of �le transfer | most hosts in the system
are potentially capable of serving �les as well as re-
questing them. We refer to these systems as document
transfer systems and to the �les involved as documents
since each �le has essentially been electronically \pub-
lished."

An increasingly large fraction of available band-
width on the Internet is being used to transfer doc-
uments [9]. Strategies for reducing the latency of doc-
ument access, the network bandwidth demand of doc-
ument transfers, and the demand on document servers
are becoming increasingly important. Techniques that
could reduce document latency, network bandwidth
demand, and server demand include data caching and
replication. However, in contrast to most distributed
�le systems, document transfer services usually incor-
porate simple caching strategies, if any, and do not
typically provide location transparency.

While techniques based on distributed �le systems
could be used to improve signi�cantly the performance
of document transfer systems, there are a number of
advantages to considering caching and replication at
the application level, rather than at the �lesystem
level. First, application-level caching does not require
all users to agree on a common �lesystem; it enables
heterogeneous systems to participate easily. Second,
and more important, application-level caching allows
cache strategies to make use of the higher semantic
content available at the application level to exploit
such information as document type, user pro�le, user
past history, document content, and organizational
boundaries.

This paper describes initial investigations into
application-level strategies for document caching and
replication on wide area networks. While we are in
general concerned with all three aspects of the prob-
lem (document latency, network demand, and server
demand) we focus in this paper on minimizing docu-
ment latency as our primary goal. As a result, we con-
centrate on caching strategies rather than document
replication, which is mainly a technique for reducing
server load.

We employed a trace-driven simulation approach
to studying the document caching problem. First, we
collected logs of users accessing the World Wide Web.
We instrumented a version of NCSA Mosaic [6] to keep

a record of all documents (named by their UniformRe-
source Locators | URLs) accessed by the user during
an execution of Mosaic. (We refer to each execution of
Mosaic as a session, and we call the log of each session
a trace.) The results in this paper are based on 4,700
traces.

Next, we used the traces as input to an event-driven
simulation that determined how various caching
strategies and cache sizes a�ected the performance of
the system. The simulation outputs a set of statistics
that describes the e�ectiveness of caching in terms of
bytes transferred and document latency.

This paper discusses cache policies that operate at
three levels: 1) the session level, in which caches for
separate sessions are managed independently; 2) the
host level, in which caches for separate hosts are man-
aged independently; and 3) the LAN level, in which
caches for separate LANs are managed independently.

Session caches are similar to the policies used in
current versions of NCSA Mosaic. Host caches consist
of a single host's bu�ers allocated to document caching
that persist across invocations of the client. Host
caches could be implemented by a local server, or by
periodically synchronizing each application's memory-
based cache with a disk bu�er. LAN caches consist of
a cache managed by the clients on a single LAN, as in
[4]. LAN caches require cooperation among the par-
ticipating clients; host and session caches do not.

Our work is unique in a number of ways. First, we
base it on the large amount of user trace data we have
collected. Second, we consider caching policies that
can be implemented without client cooperation as well
as policies that require client cooperation. Finally,
we use application-level information in analyzing our
trace data and in formulating cache policies.

Our results show that caching strategies that are
nearly as e�ective as a cooperative strategy can be
implemented at the application level without cooper-
ation; in fact, session level strategies yield nearly all
the gains of host level and LAN level strategies. In
addition, while session level caching is nearly as ef-
fective as the others, it consumes much more system
resources. For a given level of performance, less sys-
tem resources are consumed by host level caching, and
even less are consumed by LAN level caching. Thus,
if a �xed amount of system resources is to be allo-
cated to caching, they are best allocated to LAN level
caching.

Finally, our data suggest that the use of
application-level information can signi�cantly improve
some aspects of system performance; in particular,
identifying documents that originate outside of the lo-
cal organizational boundary (in our case, the Boston
University community) is useful in understanding and
tuning cache performance. We discuss cache policies
that favor or discourage retention of local documents.
We show that documents originating outside the local
organization show markedly di�erent sharing patterns
from those that are served locally.

The remainder of the paper consists of: �rst, a de-
scription of our trace data and the collection process;
next, the results of our simulations for various caching
policies using that data; next, a comparison of our

Sessions 4,700
Users 591
Documents Requested 575,775
Unique Documents Requested 46,830
Bytes Requested 2713 MB
Unique Bytes Requested 1088 MB

Table 1: Summary Statistics of Trace Data

work with related research; and, �nally, our conclu-
sions.

2 Reference Patterns
2.1 Data Collection Methods

Prior studies of WWW tra�c have been based on
logs from proxies [7, 16], or logs from the HTTP server
daemon [13]. Our study required knowledge of indi-
vidual user's access patterns, and we did not wish our
data to be inuenced by the caching behavior built in
to the client application (Mosaic). For these reasons,
we instrumented Mosaic directly and captured logs of
all accesses performed by the user. Thus the entries in
our traces consist of each URL requested by the user,
whether it was served from Mosaic's cache or from the
network.

Each entry in a trace consists of the client host
name, the time stamp when the request was made, the
URL, the size of the document (including the overhead
of the protocol) and the round trip retrieval time.

The computing environment considered in this
study consists of 37 SparcStation 2 workstations; these
workstations comprised the set of client hosts. The
LANs used are part of a larger, subnetted domain
(bu.edu) which consists of many hundreds of worksta-
tions, many of which act as WWW servers. Five of the
workstations support graduate students in BU's Com-
puter Science Department, and the other 32 support
a general population of computer science students.

The traces used in this study were collected over a
period of 3.5 months, from middle of November 1994
to end of February 1995. In this period a total of 4,700
sessions were traced, representing 591 di�erent users.
User names were mapped to numeric IDs so that re-
searchers performing data analysis were not aware of
user identities.

2.2 Summary of Data Collected
Descriptive statistics summarizing our data are

given in Table 1. In the table, Documents Requested
means the total number of URLs whose contents were
retrieved for the user, either from the network or from
Mosaic's cache. Note that many of the URLs may
refer to small items, such as icon bitmaps. Unique
Documents Requested is the number of unique URLs
in the traces. Bytes Requested means the sum over all
document requests of the �le sizes requested; Unique
Bytes Requested represents the same sum over only the
unique URLs.

The table shows that, on average, users engaged
in multiple sessions (8 sessions per user), and that
the average number of documents requested per ses-
sion was high (122 documents per session). It also

2

shows that there is a high potential payo� for docu-
ment caching, since the di�erence between Bytes Re-
quested and Unique Bytes Requested is large. This
di�erence represents the best-case number of bytes
that could be obtained from a demand-driven cache
without prefetching.

The distribution of the documents and references
by size is shown in Figure 1.1 In the �gure, the
complete distributions are shown in the left-hand his-
tograms; the right-hand histograms show the distribu-
tions for small documents only (less than 6.4 k bytes).
The upper histograms plot the distribution of docu-
ments, while the lower histograms plot the distribu-
tion of references to documents.

Previous studies of user �lesystem requests have
shown a strong preference for small �les [11]. Our data
shows a similar pattern; the most popular document
size is between 256 and 768 bytes.

The strong preference for small �les is somewhat
surprising due to the potential for multimedia content
of WWW documents and the large amounts of data
needed to transfer images, video, and sound. However
a number of factors may tend to increase the propor-
tion of small �le sizes. First, many of the images (small
icon bitmaps) are actually fairly small in size; Mosaic
typically caches these images so users are not often
aware of how many small images are employed in a
WWW document. Second, users may tend to inter-
rupt document transfers that take too long; our data
does not include any documents whose transfer was
interrupted. Finally, we feel that these data indicate
that despite the great potential for large, multimedia
document transfers, such transfers do not as of yet
constitute the predominant use of the WWW.

The di�erences between the upper and lower plots
in Figure 1 indicate that, while most documents are
small, the e�ect of user reference patterns is to in-
crease the preference for small documents. That is,
smaller documents are more likely to be requested
than are large documents. In fact, there is a signif-
icant correlation between the size of a document and
the number of times it is requested. Figure 2 shows
a plot of the average number of requests to a docu-
ment given its size. The solid line is the plot of a
statistically signi�cant (99.9% level) inversely propor-
tional relationship between the number of requests to
a document and its size. However the data is quite
noisy and the least squares estimator (references =
9.67 size�0:33) only explains a small part of the total
variation (R2 = 0.14).

1These histograms are clipped; the maximum observed for
the unique documents was 32,262, in the 0 to 10 K slot; the
maximum total number of accesses was 536,826, in the 0 to
10 K slot. The counts for the 128-byte scale were 2,716 in
the 256-384 slot and 2,460 in the 384-512 slots for the unique
documents, and 112,119 in the 128-256 slot, 90,461 in the 256-
384 slot, 49,372 in the 384-512 slot, and 56,051 in the 640-768
slot.

Document Size (in slots of 10 kbytes)

N
um

be
r

of
 D

oc
um

en
ts

0 50 100 150 200

0
10

00
30

00

Document Size (in slots of 128 bytes)

N
um

be
r

of
 D

oc
um

en
ts

0 10 20 30 40 50

0
50

0
15

00
25

00

Document Size (in slots of 10 kbytes)

T
ot

al
 N

um
be

r
of

 A
cc

es
se

s

0 50 100 150 200

0
10

00
30

00

Document Size (in slots of 128 bytes)

T
ot

al
 N

um
be

r
of

 A
cc

es
se

s

0 10 20 30 40 50

0
10

00
0

30
00

0

Figure 1: Distribution of User Requests by File Size;
Unique (Top) and Total (Bottom).

•
•

•
•

•

•

•

•
••

•

•

•

••
•
•••
•

•

•

•
•

•

•
•

•

•
•

•

•

•

•
•

•

•

••

•
•
••
•

•

•

•

•

•

•

•••

•

•
•
•

•
•
•
•
•
•
•
•

•

•
•

•

•
•
••

•

•

•

•

•

••
••

•

•

•

•
•
•

•

•

•

•••

•

•

•••

•
•

•
••
••••
•

•

••
•

•

•

••
•

•

•

•

•

•

•
•
•

•••
•
•

•

•

•

•

•
•

•

••
•

•
•
•
••
•

•

•

•
••••

•

••
••

•
•

•••
•
•

•

••

•

••
••

•

•

•

•

•••

•

•
•
••
•
•
•

•

•

•

•

•

•

•

•

•
•
•
•

•

•

•
•

••
•

•

•

•••
•

•

••

•

•

•

•
•
•
•
•
•
••

•

•••

•

••
••
•
•
•

••

•

•

••
•
••

•

••

•

•

•••

•

••

•
•

••

•

•

•

••

•

•
•
••
•
••
•

•
•

•

•
•

••••••••
••
••••••

••

•

••

•

••••••

•

•
••••••••

•

•••••

•

•

•
••
•••••

•

•••••

•

••

•

•••••

•

•••

•

•

•

•

•

•

•

•

•

•

••••

•

•

••••

•

•••

•

•

••

•

••••••

•

•

•

••••••
•
•

•

•

•••••••

•

•• ••••••••••

•

•

•

•••••••• ••••••••••••

•

• ••••

•

••

•

•••

•

•••••••

•

••• •

•

• ••••••••••

•

• ••

•

•

• •

•

•

Document Size (slots of 1 kbytes)

Av
er

ag
e

Nu
m

be
r o

f A
cc

es
se

s

0 200 400 600 800 1000

0
2

4
6

8
10

Figure 2: Distribution of Average Number of Requests
by File Size.

3 Caching E�ectiveness
3.1 Experimental Setup and Metrics

In this section we present results of trace-driven
simulation of various caching schemes. The traces
used consist of all references that a user makes dur-
ing a session with Mosaic and were described in Sec-
tion 2.2. The individual session traces are combined
to allow for the simulation of the 3 granularities of
caching: session, host and LAN.

We show results for both �nite and in�nite cache
sizes. The measurements obtained for an in�nite cache
provide an upper bound on the e�ectiveness of caching
at each granularity. We also use the traces to drive
simulations of �nite caching with variable size caches
and least frequently used (LFU) replacement. Since
we are dealing only with \published" documents we
do not consider invalidation of cache entries. In the
analysis of our results it is also useful to distinguish
between documents that are local and those which are
stored at remote locations. We consider a document
to be local if was served from a host within the Boston

3

University organization, which can be detected based
on the server's name.

For each caching granularity and cache size, we
measure three quantities: hit rate, byte-hit rate and
latency savings.

The �rst measure is H, the hit rate. This is de�ned
as the ratio of the number of references satis�ed by
the cache to the total number of references.

Hit rate is a good measure only if the documents
are of equal sizes. However, our traces reference doc-
uments of widely varying sizes. In order to get a bet-
ter idea of the e�ectiveness of the caching schemes we
weight each reference by the document size to calcu-
late the byte-hit rate B.

Comparisons based on B alone presume that all
bytes cost the same. Just as there is a wide variation in
document size there are varying distances from which
documents must be fetched introducing variation in
delay. A measure of the fraction of worst-case latency
saved by caching, which captures the variation in dis-
tance, can be de�ned by weighting each reference by
the round-trip delay time for the document. We de-
note this measure of latency savings by C.

3.2 Simulation Results
3.2.1 In�nite Caches

For the case of an in�nite cache we de�ne H, B, and
C in terms of the following variables. Each trace entry
represents a reference to a document i from the set of
all documents f1; 2; : : : ; ng. For each document i we
denote the size of the document by si, the round-trip
delay for document retrieval by di and the number of
references to the document by ri.

Given an in�nite cache all but the �rst reference to
any document will be cache hits:

H =

Pn

i=1
(ri � 1)

Pn

i=1
ri

:

Calculation of the byte-hit rate weights each document
reference ri by the document size si:

B =

P
n

i=1
si(ri � 1)

P
n

i=1
siri

:

By weighting each reference ri by the round-trip de-
lay di we can de�ne the fraction of worst-case latency
saved by caching as:

C =

P
n

i=1
di(ri � 1)

Pn

i=1
diri

:

The percentages H, B and C can be calculated di-
rectly for the single cache at the LAN. For host and
session granularities the values are averaged over all
caches.

In Table 2 we present the results we have obtained
by running the trace-driven simulation on data com-
piled from all 4,700 sessions. Each row gives values
of H, B and C as a percentage for one of the cache
granularities studied. Table 3 gives values when only
remote references are included in the simulation and

Cache Granularity H B C

session 79.10 37.65 63.64
host 86.21 46.06 68.36
LAN 91.97 60.18 77.17

Table 2: All references (575,775 references).

Cache Granularity H B C

session 82.50 36.83 63.44
host 84.95 41.31 66.77
LAN 90.35 52.73 75.67

Table 3: Remote references only (452,864 references).

Cache Granularity H B C

session 66.58 40.92 66.36
host 90.85 64.84 89.37
LAN 97.94 90.69 97.16

Table 4: Local references only (122,911 references).

Table 4 gives values when only local references are
considered. These tables show a steady increase in
hit rate as the granularity of the cache is increased.
This is to be expected as repeated references are in-
creasingly captured when more references are passed
through an in�nite cache.

Table 2 shows that a relatively high hit rate (H
= 91%) is possible for an in�nite cache at the LAN
level. However, the corresponding byte-hit rate is
only 60%. This is in fact the best possible byte-hit
rate since Table 1 shows that of 2713 MB requested,
1088 MB (40%) are unique. These data reect the
fact that the large documents in our traces are not
as pro�tably cached | they are referenced relatively
few times each. This agrees with the trend shown in
Figure 2.

Turning to our measure of latency savings (C), we
see a relatively small e�ect as cache granularity is in-
creased. That is, for the combined data in Table 2
it appears that the advantage of a LAN cache is that
it caches a greater percentage of the bytes referenced
but does not save that much time compared to ses-
sion or host caches. This is due to the extra sharing
being composed primarily of local (inexpensive) docu-
ments as seen from Table 4. For local documents, the
byte-hit rate increases from 41% at the session granu-
larity to 91% at the LAN. Thus, the local proportion
of the shared bytes increases as the cache granularity
is increased. In addition, the cost of retrieving remote
documents is so much higher than for local ones (the
ratio of the total cost for remote document retrieval to
the total cost for local document retrieval is approxi-
mately 18 for our traces) that the C values in Table 2
reect the diminishing returns of caching remote doc-
uments at the LAN granularity. For B values, remote
documents contribute 4 times as many bytes as lo-

4

Metric Ideal Mosaic

H 79.10 77.34
B 37.65 32.56
C 63.64 61.49

Table 5: Comparison of ideal session hit rates and
Mosaic's hit rates.

cal documents and so the combined �gures also more
closely resemble those of the remote documents.

Since the results presented in this section were ob-
tained using in�nite caches, it might be the case that
in practice actual hit rates would not approach these
ideal rates. To test this possibility we measured the hit
rates obtained by Mosaic itself, which demonstrates a
real session caching algorithm operating with limited
cache space. The results are shown in Table 5. The
table shows the session-level hit rates, byte-hit rates,
and latency reduction rates obtained in our ideal simu-
lation and obtained by Mosaic. These data show that
the hit rates obtained in our simulation are very close
to those obtainable in practice.

3.2.2 Application-Level Caching Policies

Tables 3 and 4 also imply that there is a higher degree
of sharing among local documents than remote docu-
ments. Notice that the hit rate and the byte-hit rate
both increase for local documents as the cache granu-
larity increases. This relationship also holds, though
to a much smaller degree, for remote documents. For
byte-hit rate B, an additional 16% of the requested re-
mote bytes are satis�ed by a LAN cache than a session
cache. But, an additional 50% of the requested local
bytes are satis�ed by a LAN cache versus a session
cache.

Turning to C, session caching of remote documents
saves 63% of the total time that would have been spent
retrieving documents if no caching were done. Caching
at the LAN increases the savings rate to 75%. How-
ever, for local documents, LAN caching provides a
97% savings versus no caching while session caching
provides only a 66% savings.

More detailed statistics summarizing the di�erences
between local and remote documents are given in Ta-
ble 6. The �rst four lines in the table are breakdowns
of the corresponding lines in Table 1. The lower three
lines are derived from the �rst four.

Table 6 shows that local and remote documents do
not di�er in size on average. However, these data sug-
gest that accesses to local and remote documents ex-
hibit signi�cantly di�erent sharing patterns. To ex-
plore the utility of distinguishing between local and
remote documents, we studied the performance of
caching policies that used document location informa-
tion.

We �rst characterized the di�erences in sharing pat-
terns between remote and local documents by study-
ing caching policies that cached documents of only
one of the two types. The Remote policy caches only

Local Remote

Documents Requested 122,911 452,864

Unique Documents Requested 2,579 44,251

Bytes Requested 551 MB 2163 MB

Unique Bytes Requested 51 MB 1037 MB

Average Document Size Requested 4,696 5,008

Average Requests Per Document 47.7 10.2

Average Requests Per Byte 10.6 2.1

Table 6: Summary Statistics of Local and Remote
Documents

 1-way
 5-way
30-way

Byte-hit rate

Cache Size
 (KBytes)

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

0.00 0.50 1.00 1.50 2.00

 1-way

30-way

 5-way

Local
Remote

Figure 3: Multi-way byte-hit rate vs LAN cache size

remote documents; the Local policy caches only lo-
cal documents. To study sharing patterns, we simu-
lated multiple users sharing a single cache (essentially
a LAN cache). To do this for N users, we divided
the traces into N sets; in each set, traces were con-
catenated, and the sets were then interleaved. This
strategy ensured a constant level of multi-way sharing
of the cache.2

Figure 3 shows the relationship between the cache
size and the achievable byte-hit rate, for di�erent lev-
els of multi-way sharing (namely for 1, 5, and 30
users). There are two sets of curves. The �rst il-
lustrates the behavior of the Remote policy, whereas
the second illustrates the behavior of the Local policy.
Figure 3 shows that users are more likely to share lo-
cal documents than remote ones. In order to quantify
this level of sharing, we de�ne the Sharing Index (SI)
as a function of both the number of users N and a
�xed byte-hit rate B = �.

SI(�;N) = 1�
1

N � 1
�
L(�;N)�L(�; 1)

L(�; 1)

2Due to the repeated numbers of simulations required these
results and those in the next sectionwere obtained from a subset
of our total reference data.

5

In the above de�nition, L(�;N) is the size of the
LAN cache necessary to achieve a byte-hit rate of � for
anN -way-shared cache. L(�;N) can be obtained from
Figure 3. A Sharing Index of 1 means that increasing
the number of users does not necessitate increasing the
size of the cache to keep the byte-hit rate at a constant
level. A Sharing Index of 0 means that increasing the
number of users will necessitate increasing the size of
the cache proportionally to keep the byte-hit rate at
a constant level. Tables 7 and 8 show various values
of SI(�;N) for the Local and Remote policies, respec-
tively.

� 2 5 15 30 50

0.06 1.00 1.00 0.99 0.98 0.99
0.08 0.98 1.00 1.00 1.00 0.99
0.10 0.98 0.99 1.00 0.99 0.99
0.12 0.98 1.00 1.00 n/a n/a

Table 7: Sharing Index for Local Policy

� 2 5 15 30 50

0.06 0.89 0.82 0.89 0.90 0.90
0.08 0.92 0.75 0.85 0.87 0.88
0.10 0.67 0.71 0.84 0.86 0.89
0.12 0.60 0.64 0.87 0.86 0.88

Table 8: Sharing Index for Remote Policy

The signi�cant di�erence in sharing patterns
demonstrated in Tables 7 and 8 suggests that caching
policies might pro�tably exploit the distinction be-
tween local and remote documents. To quantify the
potential bene�ts from this approach, we de�ne the
Cache Expansion Index (CEI) for a particular level of
byte-hit rate � and a particular number of users N to
be the ratio of L(�;N) to L(�; 1). This is the expected
\expansion" in cache size that is necessary to maintain
the byte-hit rate at a constant �, while the number
of users sharing the cache increases from 1 to N . A
larger CEI signi�es a smaller level of sharing, whereas
a smaller CEI signi�es a larger level of sharing. Fig-
ure 4 illustrates the value of CEI for various numbers
of users and for various byte-hit rates. Again, we no-
tice that, due to the higher level of N -way sharing
of local documents (compared to remote documents),
the Local policy exhibits a small CEI, compared to
the Remote policy. Figure 4 suggests that the CEI
for both the Local and Remote policies is linear in N .
The constant for the Local policy is very small (0.03)3,
whereas the constant for the Remote policy is much
larger (0.12). In both cases, there is no indication of
the CEI reaching a plateau (at least for the number of
users we considered in our simulations). Figure 4 also
shows no particular correlation between the CEI and
the desired hit rate level.

3This means that a 3% increase in cache size is necessary to
maintain the same hit rate with one additional user

Cache Expansion
 Index

of users
 (N)

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

5.50

6.00

6.50

0.00 10.00 20.00 30.00 40.00 50.00

 6% Hit Rate
 8% Hit Rate
10% Hit Rate
12% Hit Rate

R
e
m
o
t
e

L
o
c
a
l

Figure 4: Cache Expansion Index

3.2.3 Cache Space Utilization

In order to explore resource utilization trade-o�s we
ran simulations for all three caching granularities with
various limited cache sizes and LFU replacement.

The graphs in Figures 5 and 6 show the hit rate and
byte-hit rate respectively for the three caching gran-
ularities with cache sizes ranging from 10KB to 2GB.
For session and host granularities the total number of
cache bytes is equally divided among �ve hosts since
our traces were collected on �ve workstations. Since
the total number of unique bytes accessed by all refer-
ences is 157MB, ideal caching occurs at or above this
cache size for the LAN granularity. That is B ap-
proaches 48%, the value found for an in�nite cache of
LAN granularity.

Figure 5 shows the clear superiority of cooperative
LAN caching regardless of cache size as measured by
hit rate. Session caching gives the smallest hit rate
at all granularities while host caching equals the per-
formance of session caching at smaller cache sizes and
rises to within three percentage points of LAN caching
performance at higher cache sizes.

Once again we focus on the more informative mea-
sure of byte-hit rate. Figure 6 gives the byte-hit rates
over the range of cache sizes studied. Here again the
bene�t of LAN caching is clearly evident.

Session caching actually outperforms Host caching
at cache sizes less than 4MB (800 KB/host) due to
interference between users sharing a cache on a work-
station. Above this level the cache is big enough that
documents can remain in the cache long enough for
sharing to occur and be reected in the byte-hit rate.

At a cache size of 9MB, LAN caching achieves a
37% byte-hit rate. To get the same bene�t from
host caching would require approximately 90MB or 10
times as muchmemory. Session caching never achieves
this rate, even with in�nite caches for each client ses-
sion. Viewed another way, given a total cache size
of 250KB, deployment of �ve 50KB host caches gives

6

50.00

55.00

60.00

65.00

70.00

75.00

80.00

85.00

Cache size
(Log scale)

1GB10K 100K 1MB 10MB 100MB

Hit Rate

LAN

Host

Session

Figure 5: Hit Rate Vs. Cache Size

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

10K 100K 1MB 10MB 100MB 1GB
Cache SIze
(Log scale)

LAN

Host

Session

Byte-hit Rate

Figure 6: Byte-hit Rate Vs. Cache Size

a byte-hit rate of 10% while cooperative sharing of a
250KB LAN cache achieves a rate of 19%. And this
relative di�erence remains consistently robust: for a
size of 75MB, session caching reaches its peak byte-
hit rate of 31% while the same size cache shared by
session on each host improves the byte-hit rate to 36%
and a cooperatively shared cache at the LAN provides
further improvement to 48%, the performance of an
in�nite cache.

4 Related Work
A great deal of research on caching and replication

in distributed �le systems has been conducted previ-
ously (e.g., [14, 15]). In such research the main goal
has been to improve the overall performance of the
system. In contrast to these studies, the material pre-
sented in this paper focuses mainly on reducing re-

sponse time through caching at the application level,
rather than caching at the �le system level.

Danzig et al. [5] propose a hierarchical caching sys-
tem that caches �les at Core Nodal Switching Sub-
systems within the NSFNET. The main goal of their
research is to reduce the bandwidth used by the sys-
tem; their study shows that the NSFNET backbone
tra�c can be reduced by as much as 21%. Such
schemes do not make use of application-level informa-
tion. In our study signi�cant di�erences were observed
between documents identi�ed at the application to be
local from those identi�ed as remote. Although we
did not report on network bandwidth reduction, we
have performed preliminary studies that show a sig-
ni�cant potential for network bandwidth reduction by
application-level caching.

The reduction of network tra�c due to intelli-
gent data placement and replication is also studied
in [1]. They present a distributed dynamic replica-
tion scheme, which uses a �nite state automaton-based
technique to learn �le access patterns. In contrast, our
focus is on data caching rather than replication and
placement techniques.

In [12] the authors approximate an optimal caching
schedule based on �xed network and storage costs.
This schedule indicates where and when a �le should
be cached. In the worst-case the algorithm produces a
schedule that is no worse than twice the optimal one.
Their theoretical work is an o�-line algorithm in com-
parison to the work presented here in which trace data
from user accesses is used to study on-line algorithms.

Muntz and Honeyman [10] performed simulations
on a two level caching system, intermediate servers
and clients. Although the intermediate cache reduces
both the peak load at upstream servers and network
load, the average hit rate at the intermediate cache is
not signi�cant. We further extend their work show-
ing the improvements in latency due to application
caching.

In [3] Blaze presents a dynamic hierarchical �le sys-
tem. Each client can service requests issued by other
clients from the local disk cache. The focus of that
work was to reduce server load. Here we focus on
reducing latency through the use of application-level
caching; we plan future work to explore the potential
for reduction in server load possible via application-
level caching.

Performance bene�ts of cooperative caching have
been studied in [4]. Through the use of trace driven
simulations a range of caching algorithms were stud-
ied. Their results show that an improvement of 73%
in �le read performance can be achieved. Our work
extends this study by comparing cooperative caching
with caching at the session and host level, by consider-
ing the the resource demands of all three approaches,
and by attempting to de�ne the types of documents
that should be cached at the di�erent levels.

A di�erent approach to reducing server load and
latency for distributed information systems, such at
the WWW, is based on the popularity-based dissem-
ination of information from servers to proxies, which
are closer to clients. There are three problems to be
tackled for such an approach, namely what, how far,

7

and in which direction(s) to disseminate. The work in
[2] addresses the �rst two aspects, whereas the work
in [8] investigates the third. Supply-based dissemi-
nation of information is complementary to demand-
driven caching; the former aims primarily at reduc-
ing tra�c and balancing load (through replication),
whereas the latter aims primarily at reducing the ser-
vice time (through caching).

5 Conclusion
In this paper we have presented results of a study

tracing user accesses to the World Wide Web, and the
results of simulations employing those traces to study
caching algorithms for document transfer systems.

Our trace data shows that a high hit rate is possible
in terms of document accesses; however, the fraction
of bytes that could be found even in an in�nite cache
is much lower. This occurs because a large fraction of
documents requested are small, despite the large �le
sizes needed for multimedia. Thus, e�ectively elim-
inating latency to large, infrequently accessed docu-
ments is not well addressed in this work.

Given the relatively low upper bound for byte-hit
rate, we show that session level strategies (the easiest
to implement) can achieve much of the performance
bene�t of LAN level strategies (which require inter-
client cooperation). This is shown by the fact that
the maximumpossible byte-hit rate results in a docu-
ment latency reduction of 77% for the LAN level strat-
egy, compared to 64% achievable using a session level
strategy.

When the resource requirements of the three
caching levels are considered, the LAN level becomes
much more desirable. LAN level caching consistently
requires less cache space to achieve a given byte-hit
rate when compared to host and session level caching.
In a wide range (up to 30% byte hit rate) LAN level
caching can perform as well as session or host level
caching in approximately one-fourth the space.

Finally, we consider the recognition of organi-
zational boundaries as an example of the use of
application-level information in the caching process.
We show that local documents experience a higher
degree of sharing among clients on our LAN than do
remote documents. It is important to note that while
organizational boundaries might be deduced or known
at the level of the �lesystem, the proper response of
the caching algorithm might vary depending on the
application.

While this study yields a number of insights into
application-level document caching, it also suggests a
number of areas of future work. We are beginning a
longer term project to study many of these issues.

References
[1] Swarup Acharya and Stanley B. Zdonik. An e�cient

scheme for dynamic data replication. Technical Report CS-
93-43, Brown University, Providence, Rhode Island 02912,
September 1993.

[2] Azer Bestavros. Demand-based document dissemination
for the World Wide Web. Technical Report TR-95-003,
Boston U., CS Dept, Boston, MA 02215, Feb. 1995.

[3] Matthew Addison Blaze. Caching in Large Scale Dis-

tributed File Systems. PhD thesis, Princeton University,
1993.

[4] Michael D. Dahlin, Randolph Y. Wang, Thomas E. Ander-
son, and David A. Patterson. Cooperative caching: Using
remote client memory to improve �le system performance.
In Proc. of the 1st Symposium on Operating Systems De-

sign and Implementation, pages 267{280, Nov. 1994.

[5] Peter Danzig, Richard Hall, and Michael Schwartz. A case
for caching �le objects inside internetworks. Technical Re-
port CU-CS-642-93, University of Colorado at Boulder,
Boulder, Colorado 80309-430, March 1993.

[6] National Center for Supercomputing Applications. Mosaic
software and documentation.

[7] Steven Glassman. A Caching Relay for the World Wide
Web. In First International Conference on the World-

Wide Web, CERN, Geneva (Switzerland), May 1994. El-
sevier Science.

[8] James Gwertzman and Margo Seltzer. The case for ge-
ographical push-caching. Technical Report HU TR-34-94
(excerpt), Harvard U., DAS, Cambridge, MA 02138, 1994.

[9] Merit Network Incorporated. NSFNet performance statis-
tics.

[10] D. Muntz and P. Honeyman. Multi-level caching in dis-
tributed �le systems or your cache ain't nuthing but trash.
In Proceedings of the Winter 1992 USENIX, pages 305{
313, January 1992.

[11] John K. Ousterhout, Herve Da Costa, David Harrison,
John A. Kunze, Michael Kupfer, and James G. Thompson.
A trace-driven analysis of the UNIX 4.2BSD �le system.
Technical Report CSD-85-230, Dept. of Computer Science,
University of California at Berkeley, 1985.

[12] Christos H. Papadimitriou, Srinivas
Ramanathan, and P. Venkat Rangan. Information caching
for delivery of personalized video programs on home en-
tertainment channels. In Proceedings of the International

Confrence on Multimedia Computing and Systems, pages
214{223, May 1994.

[13] James E. Pitkow and Margaret M. Recker. A Simple Yet
Robust Caching AlgorithmBased on Dynamic Access Pat-
terns. In Electronic Proc. of the 2nd WWW Conference,
1994.

[14] R. Sandber, D. Goldberg, S. Kleiman, D. Walsh, and
B. Lyon. Design and implementation of the Sun network
�le system. In Proc. USENIX Summer Conference, 1985.

[15] M. Satyanarayanan, J. Kistler, P. Kumar, M. Okasaki,
E. Siegel, and D. Streere. Coda: A highly available �le
system for distributed workstation environments. IEEE

Transactions on Computers, 39(4), April 1990.

[16] Je� Sedayao. \Mosaic Will Kill My Network!" { Study-
ing Network Tra�c Patterns of Mosaic Use. In Electronic

Proc. of the 2nd WWW Conference, Chicago, Illinois, Oc-
tober 1994.

8

