Homework 7, due Nov 15

You must prove your answer to every question.

Problem 1 (Exercise 8.5 of Shoup). (10) Let G_1 and G_2 be Abelian groups, let H be a subgroup of $G_1 \times G_2$. Let

$$H_1 = \{ h \in G_1 : \exists g \in G_2 \ (h, g) \in H \}.$$

Show that H_1 is a subgroup of G_1.

Solution. We have to show that if $a, b \in H_1$ then so is $a - b$. So, assume $a, b \in H_1$, then there exist a', b' such that $(a, a') \in H$ and $(b, b') \in H$. Then $(a - b, a' - b') \in H$ and therefore $a - b \in H_1$.

Problem 2 (Exercise 8.6 of Shoup). (10) Give an example of specific Abelian groups G_1, G_2 along with a subgroup H of $G_1 \times G_2$ such that H cannot be written as $H_1 \times H_2$, where H_1 is a subgroup of G_1 and H_2 is a subgroup of G_2.

Solution. Let $G = G_1 = G_2$ be any group of order larger than 1, and let $H = \{ (g, g) : g \in G \}$. It is easy to check that H is a subgroup of $G_1 \times G_2$. Its projection into G_1 (the group H_1 defined in the previous exercise) is the whole group G_1, and its projection onto G_2 is the whole group G_2. Therefore if it was a product it would be equal to the whole group $G_1 \times G_2$. But $|G_1 \times G_2| = |G|^2$, while $|H| = |G| < |G|^2$.

Problem 3. (15) We have seen in class that $m\mathbb{Z} \cong \mathbb{Z}$, and $\mathbb{Z}/m\mathbb{Z} \cong \mathbb{Z}_m$. Show that, on the other hand, $\mathbb{Z}_m \times \mathbb{Z} \not\cong \mathbb{Z}$.

Solution. The group \mathbb{Z} has no elements different from 0 that have finite order. On the other hand, in $\mathbb{Z}_m \times \mathbb{Z}$, the element $(1, 0)$ has order m. So the two groups cannot be isomorphic.

Problem 4 (Exercise 8.16 of Shoup). (15) Show that if $G = G_1 \times G_2$ for Abelian groups G_1, G_2, and H_1 is a subgroup of G_1 and H_2 is a subgroup of G_2 then $G/H_1 \times H_2 \cong G_1/H_1 \times G_2/H_2$.

Solution. Let us define the map $\rho : G \to G_1/H_1 \times G_2/H_2$ by $(g_1, g_2) \mapsto (g_1 + H_1, g_2 + H_2)$. It is easy to check that this map is a homomorphism. It is obviously surjective, any element of the form $(g_1 + H_1, g_2 + H_2)$ occurs as the image of ρ. We must show that its kernel is $H_1 \times H_2$. The kernel consists of the pairs (g_1, g_2) such that $(g_1 + H_1, g_2 + H_2) = (H_1, H_2)$. Now $g_1 + H_1 = H_1$ if and only if $g_1 \in H_1$, and similarly for g_2. Therefore the kernel is the set of pairs (g_1, g_2) with $g_1 \in H_1, g_2 \in H_2$, which is exactly $H_1 \times H_2$.

Problem 5. (10) An isomorphism of a group G into itself is called an automorphism. Show that the group \mathbb{Z}_m has exactly $\phi(m)$ different automorphisms.

Solution. For $g \in G = \mathbb{Z}_m$ let $\langle g \rangle$ be the smallest nonnegative residue in \mathbb{Z} in the residue class of g. Then it is easy to check that for each element g of \mathbb{Z}_m we have $g = \langle g \rangle \cdot [1]$, where $[1]$ the residue class of 1.

It is easy to check that for every element $a \in \mathbb{Z}_m$, the mapping ρ_a defined by $x \mapsto \langle a \rangle \cdot x$ is a homomorphism. It is easy to check that its kernel is 0 (and therefore it is an automorphism) if and only if $a \in \mathbb{Z}_m^\ast$.

It remains to show that every automorphism is of this form. Let η be an automorphism of \mathbb{Z}_m. Recall that each element of \mathbb{Z}_m can be written in the form $n \cdot [1]$ for some integer n. Then, we have

$$\eta(n \cdot [1]) = n \cdot \eta([1]) = n \cdot \langle \eta([1]) \rangle \cdot [1] = \langle \eta([1]) \rangle \cdot (n \cdot [1]).$$

Therefore $\eta = \rho_{\eta([1])}$.