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Introduction

The class structure

See the course homepage.
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Mathematical preliminaries Logic

Mathematical preliminaries
Logic

Logical operations: ∧, ¬, ∨, ⇒, ⇔. ∀, ∃.

Example
x divides y, or y is divisible by x: x|y ⇔ ∃z(x ∗ z = y).
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Mathematical preliminaries Sets

Sets

Notation: {2, 3, 5}. x ∈ A. The empty set.
Some important sets: N, Z, Q, R, C.

Example
x divides y more precisely: x|y ⇔ ∃z ∈ Z(x ∗ z = y).

Set notation using conditions:

{ x ∈ Z : 3|x } = { 3x : x ∈ Z }.

Note that x has a different role on the left-hand side and on the
right-hand side. The x in this notation is a bound variable: its meaning
is unrelated to everything outside the braces.

Example
Composite numbers: { xy : x, y ∈ Z r {−1, 1} }.
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Mathematical preliminaries Sets

A ⊆ B, A ⊂ B will mean the same! Proper subset: A ( B.
Set operations: A ∪ B, A ∩ B, A r B. Disjoint sets: A ∩ B = ∅.
The set of all subsets of a set A is denoted by 2A.
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Mathematical preliminaries Functions

Functions

The notation f : A → B.

Example

g(x) = 1/(x2 − 1). It maps from R r {−1, 1}, to R, so

g : R r {−1, 1} → R. (1)

Domain(g) = R r {−1, 1}.

In general,
Range(f ) = { f (x) : x ∈ Domain(f ) }.

In the example,

Range(g) = (−∞,−1] ∪ (0, ∞) = R r (−1, 0].

Note that (0, ∞) is an open interval.
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Mathematical preliminaries Functions

We could write g : R r {−1, 1} → R r (−1, 0), but (1) is correct, too: it
says that g is a function mapping from R r {−1, 1} into R. On the
other hand, g is mapping onto R r (−1, 0). An “onto” function is also
called surjective.
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Mathematical preliminaries Functions

Injective and surjective

A function is one-to-one (injective) if f (x) = f (y) implies x = y.

Theorem
If a set A is finite then a function f : A → A is onto if and only if it is
one-to-one.

The proof is left for exercise.
The theorem is false for infinite A.

Example
A one-to-one function that is not onto: the function f : Z → Z defined
by f (x) = 2x.
An onto function that is not one-to-one: exercise.
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Mathematical preliminaries Functions

We will also use the notation

x 7→ 2x

to denote this function. (The 7→ notation is similar to the lambda
notation used in the logic of programming languages.)
A function is called invertible if it is onto and one-to-one. For an
invertible function f : A → B, the inverse function f −1 : B → A is
always defined uniquely: f−1(b) = a if and only if f (a) = b.
An invertible function f : A → A is also called a permutation.
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Mathematical preliminaries Functions

Tuples

Ordered pair (x, y), unordered pair {x, y}. (The (x, y) notation conflicts
with the same notation for open intervals. So, sometimes 〈x, y〉 is
used.) The Cartesian product

A × B = { (x, y) : x ∈ A, y ∈ B }.

A function of two arguments: we will use the notation

f : A × B → C

when f (x, y) ∈ C for x ∈ A, y ∈ B. Indeed, f can be regarded as a
one-argument function of the ordered pair (x, y).
Ordered triple, and so on. Sequence (x1, . . . , xn).
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Mathematical preliminaries Functions

Inverse image

For a function f : A → B, and a set C ⊆ A we will write

f (C) = { f (x) : x ∈ A }.

Thus, Range(f ) = f (A).
Example: 2Z is the set of even numbers.
For D ∈ B, we will write

f−1(D) = { x : f (x) ∈ D }.

Note that this makes sense even if the function is not invertible.
However, f−1(D) is always a set, and it may be empty.

Example

If f : Z → Z is the function with f (x) = 2bx/2c then f −1(0) = {0, 1},
f−1({1}) = ∅ = {}, f −1(2) = {2, 3}, f−1({3}) = ∅, and so on.
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Mathematical preliminaries Functions

Partitions

A partition of a set A is a finite sequence (A1, . . . , An) of pairwise
disjoint subsets of A such that A1 ∪ · · · ∪ An = A. Given any function
f : A → {1, . . . , n}, it gives rise to a partition (f −1({1}), . . . , f−1({n})).
And every partition defines such a function.
We will also talk about infinite partitions. A partition in this case is a
function p : B → 2A such that

⋃

b∈B p(b) = A and for b 6= c we have
p(b) ∩ p(c) = ∅.
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Mathematical preliminaries Operations

Operations

Functions are sometimes are also called operations. Especially,
functions of the form f : A → A or g : A × A → A. For example,
(x, y) 7→ x + y for x, y ∈ R is the addition operation.
Associativity. Example: functions f : A → A, with the compositon
operation.

Commutativity. Same example,
say the permutations σ, π over
{1, 2, 3} on the right do not
commute.

σ π

1 1 1

2 2 2

3 3 3

Distributivity. Examples: ∗ through +, further ∩ though ∪ and ∪
through ∩.

Péter Gács (Boston University) CS 235 Fall 05 13 / 96



Mathematical preliminaries Relations

Relations

A binary relation is a set R ⊆ A × B. We will write (x, y) ∈ R also as
R(x, y) (with Boolean value). Thus

R(x, y) ⇔ (x, y) ∈ R.

Frequently, infix notation. Example: x < y, where <⊂ R × R.
Ternary relation: R ∈ A × B × C.
Interesting properties of binary relations over a set A.
Reflexive.
Symmetric.
Transitive.
A binary relation can be represented by a graph. If the relation is
symmetric the graph can be undirected, otherwise it must be directed.
In all cases, at most one edge can be between nodes.
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Mathematical preliminaries Relations

Equivalence relation

Equivalence relation over a set A: reflexive, symmetric transitive.
Example: equality. Other example: reachability in a graph.

Theorem
A relation R ⊂ A × A is an equivalence relation if and only if there is a
function f : A → B such that R(x, y) ⇔ f (x) = f (y).

Proof: exercise.
Each set of the form Cx = { y : R(x, y) } is called an equivalence class.
An equivalence relation partitions the underlying set into the
equivalence classes.
In a partition into equivalence classes, we frequently pick a
representative in each class. Example: rays and unit vectors.
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Mathematical preliminaries Relations

Preorder, partial order

A relation 6 is antisymmetric if a 6 b and b 6 a implies a = b.
Preorder 6: reflexive, transitive.
A preorder is a partial order if it is antisymmetric. Simplest example:
6 among real numbers.

Example
The relation ⊆ among subsets of a set A is a partial order.

In a preorder, we can introduce a relation ∼: x ∼ y if x 6 y and y 6 x.
This is an equivalence relation, and the relation induced by 6 on the
equivalence classes is a partial order.

Example
The relation x|y over the set Z of integers is a preorder. For every
integer x, its equivalence class is {x,−x}.
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Running time Asymptotic analysis

Asymptotic analysis

O(), o(), Ω(), Θ(). More notation: f (n) � g(n) for f (n) = o(g(n)),
f (n)

∗
< g(n) for f (n) = O(g(n)) and ∗= for (

∗
< and

∗
>).

The relation
∗
< is a preorder. On the equivalence classes of ∗= it turns

into a partial order.
The most important function classes: log, logpower, linear, power,
exponential. These are not all equivalence classes under ∗=.
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Running time Asymptotic analysis

Some simplification rules

Addition: take the maximum. Do this always to simplify
expressions. Warning: do it only if the number of terms is
constant!
An expression f (n)g(n) is generally worth rewriting as 2g(n) log f (n).
For example, nlog n = 2(log n)·(log n) = 2log2 n.
But sometimes we make the reverse transformation:

3log n = 2(log n)·(log 3) = (2log n)log 3 = nlog 3.

The last form is easiest to understand, showing n to a constant
power log 3.
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Running time Asymptotic analysis

Examples

n/ log log n + log2 n ∗= n/ log log n.

Indeed, log log n � log n � n1/2, hence n/ log log n � n1/2 � log2 n.
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Running time Asymptotic analysis

Order the following functions by growth rate:

n2 − 3 log log n ∗= n2,
log n/n,
log log n,

n log2 n,
3 + 1/n ∗= 1,
√

(5n)/2n,

(1.2)n−1 +
√

n + log n ∗= (1.2)n.

Solution:
√

(5n)/2n � log n/n � 1 � log log n

� n/ log log n � n log2 n � n2 � (1.2)n.
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Running time Asymptotic analysis

Sums: the art of simplification

Arithmetic series.
Geometric series: its rate of growth is equal to the rate of growth of its
largest term.

Example

log n! = log 2 + log 3 + · · · + log n = Θ(n log n).

Indeed, upper bound: log n! < n log n.
Lower bound:

log n! > log(n/2) + log(n/2 + 1) + · · · + log n > (n/2) log(n/2)

= (n/2)(log n − 1) = (1/2)n log n − n/2.
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Running time Asymptotic analysis

Examples
Prove the following, via rough estimates:

1 + 23 + 33 + · · · + n3 = Θ(n4).
1/3 + 2/32 + 3/33 + 4/34 + · · · < ∞.
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Running time Asymptotic analysis

Example

1 + 1/2 + 1/3 + · · · + 1/n = Θ(log n).

Indeed, for n = 2k−1, upper bound:

1 + 1/2 + 1/2 + 1/4 + 1/4 + 1/4 + 1/4 + 1/8 + . . .
= 1 + 1 + · · · + 1 (k times).

Lower bound:

1/2 + 1/4 + 1/4 + 1/8 + 1/8 + 1/8 + 1/8 + 1/16 + . . .
= 1/2 + 1/2 + · · · + 1/2 (k times).
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Running time Machine model

Random access machine

Fixed number K of registers Rj, j = 1, . . . , K. Memory: one-way infinite
tape: cell i contains natural number T[i] of arbitrary size.
Program: a sequence of instructions, in the “program store”: a
(potentially) infinite sequence of registers containing instructions. A
program counter.
read j R0 = T[Rj] (this is random access)
write j
store j Rj = R0
load j
add j R0 += Rj
add =c R0 += c
sub j R0 = |R0 − Rj|+
sub =c
half R0 /= 2
jump s
jpos s if R0 > 0 then jump s
jzero s
halt
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Running time Machine model

In our applications, we will impose some bound k on the number of
cells.
The size of the numbers stored in each cell will be bounded by kc for
some constant c. Thus, the wordsize of the machine will be logarithmic
in the size of the memory, allowing to store the address of any position
in a cell.
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Running time Basic integer arithmetic

Basic integer arithmetic

Length of numbers

len(n) =

{

blog |n|c + 1 if n 6= 0,
1 otherwise.

This is essentially the same as log n, but is always defined. We will
generally use len(n) in expressing complexities.
Upper bounds
On the complexity of addition, multiplication, division (with
remainder), via the algorithms learned at school.
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Running time Basic integer arithmetic

Theorem
The complexity of computing (a, b) 7→ (q, r) in the division with remainder
a = qb + r is O(len(q)len(b)).

Proof.
The long division algorithm has 6 len(q) iterations, with numbers of
length 6 len(b).
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Basic properties of integers Divisibility and primality

Theorem (Fundamental theorem of arithmetic)

Unique prime decomposition ±pe1
1 . . . pek

k .

The proof is not trivial, we will lead up to it. We will see analogous
situations later in which the theorem does not hold.

Example
Irreducible family: one or two adult and some minors.
Later: the ring Z[

√
−5].

The above theorem is equivalent to the following lemma:

Lemma (Fundamental)
If p is prime and a, b ∈ Z then p|ab if and only if p|a or p|b.

In class, we have shown the equivalence.
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Basic properties of integers Ideals and greatest common divisors

Ideals

If I, J are ideals so is aI + bJ.
aZ ⊆ bZ if and only if b|a.
Careful: generally aZ + bZ 6= (a + b)Z.

Example
2Z + 3Z = Z.

Principal ideal
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Basic properties of integers Ideals and greatest common divisors

The following theorem is the crucial step in the proof of the
Fundamental Theorem.

Theorem
In Z, every ideal I is principal.

Proof.
Let d be the smallest positive integer in I. The proof shows I = dZ,
using division with remainder.

Corollary
If d > 0 and aZ + bZ = dZ then d = gcd(a, b). In particular, we found that
(a) Every other divisor of a, b divides gcd(a, b).
(b) For all a, b there are s, t ∈ Z with gcd(a, b) = sa + tb.
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Basic properties of integers Ideals and greatest common divisors

The proof of the theorem is non-algorithmic. It does not give us a
method to calculate gcd(a, b): in particular, it does not give us the s, t in
the above corollary. We will return to this.
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Basic properties of integers Ideals and greatest common divisors

Theorem
For a, b, c with gcd a, c = 1 and c|ab we have c|b.

This theorem implies the Fundamental Lemma announced above.

Proof.
Using 1 = sc + ta, hence b = scb + tab.
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Basic properties of integers Ideals and greatest common divisors

Some consequences of unique factorization

There are infinitely many primes.
The notation νp(a). gcd and minimum, lcm and maximum.

lcm(a, b) · gcd(a, b) = |ab|

Pairwise relatively prime numbers.
Representing fractions in lowest terms.
Lowest common denominator.
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Basic properties of integers Ideals and greatest common divisors

Rings

Unless stated otherwise, commutative, with a unit element. The
detailed properties of rings will be deduced later (see Section 9 of
Shoup, in particular Theorem 9.2). We use rings here only as examples.

Examples
Z, Q, R, C.
The set of (say, 2 × 2) matrices over R is also a ring, but is not
commutative.
The set 2Z is also a ring, but has no unit element.
If R is a commutative ring, then R[x, y], the set of polynomials in
x, y with coefficients in R, is also a ring.
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Basic properties of integers Ideals and greatest common divisors

Theorem
Let R be a ring. Then:

(i) the multiplicative identity is unique.
(ii) 0 · a = 0 for all a in R.

(iii) (−a)b = a(−b) = −(ab) for all a, b ∈ R.
(iv) (−a)(−b) = ab for all a, b ∈ R.
(v) (na)b = a(nb) = n(ab) for all n ∈ Z, a, b ∈ R.

Ideals.

Example
A non-principal ideal: xZ[x, y] + yZ[x, y] in Z[x, y].
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Basic properties of integers Ideals and greatest common divisors

Example

Non-unique irreducible factorization in a ring. Let the ring be Z[
√
−5].

6 = 2 · 3 = (1 +
√
−5)(1 −

√
−5).

How to show that 2, 3, (1 +
√
−5), (1 −

√
−5) are irreducible? Let

N(a + b
√
−5) = a2 + 5b2, then it is easy to see that N(xy) = N(x)N(y),

since N(z) is the square absolute value of the complex number z. It is
always integer here.
If N(z) = 1 then z = ±1.
If N(z) > 1 then N(z) > 4.
For z = 2, 3, (1 +

√
−5), (1 −

√
−5), we have N(z) = 4, 9, 6, 6. The only

nontrivial factors of these numbers are 2 and 3, but there is no z with
N(z) ∈ {2, 3}.
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Euclid’s Algorithm

The basic Euclidean algorithm

Assume a > b > 0 are integers.

a = r0, b = r1,
ri−1 = riqi + ri+1 (0 < ri+1 < ri), (1 6 i < `)

...
r`−1 = q`r`

Upper bound on the number ` of iterations:

` 6 logφ b + 1,

where φ = (1 +
√

5)/2 ≈ 1.62. We only note ` = O(log b) which is
obvious from

ri+1 6 ri−1/2.
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Euclid’s Algorithm

Theorem
Euclid’s algorithm runs in time O(len(a)len(b)).

This is stronger than the upper bound seen above.

Proof.
We have

len(b)
`

∑
i=1

len(qi) 6 len(b)
`

∑
i=1

(1 + log(qi)) 6 len(b)(` + log(
`

∏
i=1

qi)).

Now,
a = r0 > r1q1 > r2q2q1 > · · · > r`q` · · · q1.
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Euclid’s Algorithm

The extended Euclidean algorithm

s0 = 1, t0 = 0,
s1 = 0, t1 = 1,

si+1 = si−1 − siqi, same for ti.
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Euclid’s Algorithm

Theorem
The following relations hold.

(i) sia + tib = ri.
(ii) siti+1 − tisi+1 = (−1)i.

(iii) gcd(si, ti) = 1.
(iv) titi+1 6 0, |ti| 6 |ti+1|, same for si.
(v) ri−1|ti| 6 a, ri−1|si| 6 b.

Proof.
(i),(ii): induction. (i) follows from (ii). (iv): induction. (v):
combining (i) for i and i − 1.
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Euclid’s Algorithm

Matrix representation

(

ri
ri+1

)

=

(

0 1
1 −qi

) (

ri−1
ri

)

= Qi

(

ri−1
ri

)

.

Define Mi = Qi · · ·Q1, then

Mi =

(

si ti
si+1 ti+1

)

.

Now the relation siti+1 − tisi+1 = (−1)i above says
det Mi = ∏

i
j=1 det Qi = (−1)i.
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Congruences Definitions and basic properties

Congruences

a ≡ b (mod m) if m|b − a.
More generally, in a ring with some ideal I, we write a ≡ b (mod I) if
(b − a) ∈ I.

Theorem
The relation ≡ has the following properties, when I is fixed.
(a) It is an equivalence relation.
(b) Addition and multiplication of congruences.

Example (From Emil Kiss)

Is the equation x2 + 5y = 1002 solvable among integers?
This seems hard until we take the remainders modulo 5, then it says:
x2 ≡ 2 (mod 5). The squares modulo 5 are 0, 1, 4, 4, 1, so 2 is not a
square.
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Congruences Definitions and basic properties

The ring of congruence classes

For an integer x, let

[x]m = { y ∈ Z : y ≡ x (mod m) }

denote the residue class of x modulo m. We choose a representative for
each class [x]m: its smallest nonnegative element.

Example
The set [−3]5 is {. . . ,−8,−3, 2, 7, . . . }. Its representative is 2.

Definition of the operations +, · on these classes. This is possible due
to the additivity and multiplicativity of ≡.
The set of classes with these operations is turned into a ring which we
denote by Zm. We frequently write Zm = {0, 1, . . . , (m − 1)}, that is we
use the representative of class [i]m to denote the class.
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Congruences Solving linear congruences

Division of congruences

Does c · a ≡ c · b (mod m) imply a ≡ b (mod m) when c 6≡ 0 (mod m)?
Not always.

Example
2 · 3 = 6 ≡ 0 ≡ 2 · 0 (mod 6), but 3 6≡ 0 (mod 6).

The numbers 2,3 are called here zero divisors. In general, an element
x 6= 0 of a ring R is a zero divisor if there is an element y 6= 0 in R with
x · y = 0.
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Congruences Solving linear congruences

Theorem
In a finite ring R, if b is not a zero divisor then the equation x · b = c has a
unique solution for each c: that is, we can divide by b.

Proof.
The mapping x → x · b is one-to-one. Indeed, if it is not then there
would be different elemnts x, y with x · b = y · b, but (x − y) · b 6= 0,
since b is not a zero divisor.
At the beginning of class, we have seen that in a finite set, if a class is
one-to-one then it is also onto. Therefore for each c there is an x with
x · b = c. The one-to-one property implies that x is unique.

Observe that this proof is non-constructive: it does not help finding x
from b, c.
Actually we only need to find b−1, that is the solution of x · b = 1
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Congruences Solving linear congruences

Finding the inverse

Proposition
An element of b ∈ Zm is not a zero divisor if and only if gcd(b, m) = 1.

To find the inverse x of b, we need to solve the equation x · b + y ·m = 1.
Euclid’s algorithm gives us these x, y, and then x ≡ b−1 (mod m).

Example
Inverse of 8 modulo 15.

Characterizing the set of all solutions of the equation

a · x ≡ b (mod m).
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Congruences Solving linear congruences

Corollary (Cancellation law of congruences)
If gcd(c, m) = 1 and ac ≡ bc (mod m) then a ≡ b (mod m).

Examples
We have 5 · 2 ≡ 5 · (−4) (mod 6). This implies 2 ≡ −4 (mod 6).
We have 3 · 5 ≡ 3 · 3 (mod 6), but 5 6≡ 3 (mod 6).

What can we do in the second case? Simplify as follows.

Proposition
For all a, b, c the relation ac ≡ bc (mod mc) implies a ≡ b (mod m).

The proof is immediate.
In the above example, from 3 · 5 ≡ 3 · 3 (mod 6) we can imply 5 ≡ 1
(mod 2).
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Congruences Chinese remainder theorem

Chinese remainder theorem

Consider two diferent moduli: m1 and m2. Do all residue classes of m1
intersect with all residue classes of m2? That is, given a1, a2, we are
looking for an x with

x ≡ a1 (mod m1), x ≡ a2 (mod m2).

There is not always a solution. For example, there is no x with

x ≡ 0 (mod 2), x ≡ 1 (mod 4).

But if m1, m2 are coprime, there is always a solution. More generally:

Theorem
If m1, . . . , mk are relatively prime with M = m1 · · ·mk then for all
a1, . . . , ak ∈ Z there is a unique 0 6 x < M with x ≡ ai (mod mi) for all
i = 1, . . . , k.
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Congruences Chinese remainder theorem

Proof.
Let I(n) = {0, . . . , n − 1}. The sets U = I(M) and
V = I(m1) × · · · × I(mk) both have size M. We define a mapping
f : U → V as follows:

f (x) = (x mod m1, . . . , x mod mk).

Let us show that this mapping is one-to-one. Indeed, if f (x) = f (y) for
some x 6 y then x ≡ y (mod mi) and hence mi|(y − x) for each i. Since
mi are relatively prime this implies M|(y − x), hence y − x = 0.
Since the sets are finite and have the same size, it follows that the
mapping f is also invertible, which is exactly the statement of the
theorem.

Note that the theorem is not constructive (just like the theorem about
the modular inverse).
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Congruences Chinese remainder theorem

Chinese remainder algorithm

How to find the x in the Chinese remainder theorem?
Let Mi = M/mi, for example M1 = m2 · · ·mk. Let m′

i be (Mi)
−1 modulo

mi (it exists). Let

x = a1M1m′
1 + · · · + akMkm′

k mod M.

Let us show for example x ≡ a1 (mod m1). We have aiMim′
i ≡ 0

(mod m1) for each i > 1, since m1|Mi.
On the other hand, a1M1m′

1 ≡ a1 · 1 (mod m1).
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Congruences Rational reconstruction

Fractions in Zm

Look at the equation r ≡ yt (mod m), where m, y is given. Typically
there is no unique solution for r, t; however, the quotient r/t (as a
rational number) is uniquely determined if r, t are required to be small
compared to m.

Theorem (Rational reconstruction)
Let r∗, t∗ > 0 and y be integers with 2r∗t∗ < m. Let us call the pair (r, t) of
integers admissible if |r| 6 r∗, 0 < t 6 t∗, and r ≡ yt (mod m). Then, there
is a rational number qy such that r/t = qy for all admissible pairs (r, t).
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Congruences Rational reconstruction

Proof.
Suppose that both (r1, t1) and (r2, t2) are admissible pairs: we want to
prove r1/t1 = r2/t2. We have, modulo m:

r1 ≡ t1y,
r2 ≡ t2y.

Linear combination gives r1t2 − r2t1 ≡ 0, hence m|(r1t2 − r2t1). Since
m > 2r∗t∗ this implies r1t2 = r2t1. Dividing by t1t2 gives the result.

Finding an admissible pair (if it exists) under the condition

n > 4r∗t∗,

by the Euclidean algorithm: see the book.
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Congruences Error correction

Error correction

Let m1, . . . , mk be mutually coprime moduli, M = m1 · · ·mk. Let
0 < Z < M and 0 < P be integers. A set B ⊂ {1, . . . , k} is called
P-admissible if ∏i∈B mi 6 P.

Example
If (m1, m2, m3, m4) = (2, 3, 5, 7) and P = 8 then the admissible sets are
{1}, {2}, {1, 2}, {3}, {4}.

Let y be an arbitrary integer. An integer 0 6 z 6 Z is called
(Z, P)-admissible for y if the set of indices

B = { i : z 6≡ y (mod mi) }

is P-admissible. We can say y has errors compared to z in the residues
y mod mi for i ∈ B.
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Congruences Error correction

An admissible z can be recovered from y, provided Z, P are small:

Theorem
If M > 2PZ2 then for every y and there is at most one z that is
(Z, P)-admissible for it.

Proof.
Let t = ∏i∈B mi. Then it is easy to see that

tz ≡ ty (mod M)

holds. Let r = tz, r∗ = PZ, t∗ = P, then |tz| 6 r∗ and t 6 t∗ while
M > 2r∗t∗. The Rational Reconstruction Theorem implies therefore
that z = r/t is uniquely determined by y.

If the stronger condition M > 4P2Z is required then following the
book, the value z can also be found efficiently using the Euclidean
algorithm.
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Congruences Euler’s phi function

Euler’s phi function

See the definition in the book. Computing it for p, pα, pq.
The multiplicative order of a residue.

Theorem (Euler)

For a ∈ Z∗
m we have aφ(m) ≡ 1 (mod m).

Proof.

Corollary
Fermat’s little theorem.
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Congruences Euler’s phi function

Some properties of phi

Theorem
For positive integers m, n with gcd(m, n) = 1 we have φ(mn) = φ(m)φ(n).

Proof.
One-to-one map between Z∗

mn and Z∗
m × Z∗

n.

Application: formula for φ(n).
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Congruences Euler’s phi function

Theorem
We have ∑d|n φ(d) = n.

Proof.
To each 0 6 k < n let us assign the pair (d, k′) where d = gcd(k, n) and
k′ = k/d. Then for each divisor d of n, the numbers k′ occurring in
some (d, k′) will run through each element of Z∗

n/d once, hence
∑d|n φ(n/d) = n.
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Congruences Modular exponentiation

Modular exponentiation

In the exponents, we compute modulo φ(m).

Examples

For prime p > 2 and gcd(a, p) = 1, we have a
p−1

2 ≡ ±1.
For composite m, this is no more the case. If m = pq with primes
p, q > 2 then x2 ≡ 1 has 4 solutions, since x mod p = ±1 and
x mod q = ±1 can be independently of each other. See
p = 3, q = 5.

Fast modular exponentiation: the repeated squaring trick.
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Congruences Modular exponentiation

Primitive root (generator).

Example

If g is a primitive root modulo a prime p > 2 then a
p−1

2 ≡ −1.

Theorem
Primitive root exists for m if and only if m = 2, 4, pα, 2pα for odd prime p.

Proof later.
When there is a primitive root, the multiplicative structure (group) Z∗

m
is the same as (isomorphic to) the additive group Z+

φ(m).
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The distribution of primes Chebyshev’s theorem

Chebyshev’s theorem

Binomial coefficients. The definition of π(n), ϑ(n).

Proposition

4n/(n + 1) <

(

2n
n

)

<

(

2n + 1
n + 1

)

< 4n.

Lemma (Upper bound on ϑ(n))
We have ϑ(n) 6 2n.

Proof.

We have ϑ(2m + 1) − ϑ(m + 1) 6 log
(2m+1

m+1

)

6 2m. From here,
induction using ϑ(2m − 1) = ϑ(2m).
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The distribution of primes Chebyshev’s theorem

Proposition

νp(n!) = ∑
k>1

bn/pkc.

Lemma (Lower bound in π(n))

π(n) > (1/2)n/ log n.
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The distribution of primes Chebyshev’s theorem

Proof.
For N =

(2m
m

)

we have

νp(N) = ∑
k>1

(b2m/pkc − 2bm/pkc).

Recall the exercise showing 0 6 b2xc − 2bxc 6 1, hence this is sum is
between 0 and 6 logp(2m). So,

m 6 log N 6 ∑
p62m

νp(N) log p 6 ∑
p62m

logp(2m) log p

= ∑
p62m

log(2m) = π(2m) log(2m),

(1/2)(2m)/ log(2m) 6 π(2m).

For odd n, note π(2m − 1) = π(2m) and that x log x is monotone.
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The distribution of primes Chebyshev’s theorem

Theorem

We have ϑ(n) ≈ π(n) log n, that is ϑ(n)
π(n) log n → 1.

Proof.
ϑ(n) 6 π(n) log n is immediate. For the lower bound, cut the sum at
p > nλ for some constant 0 < λ < 1.

From all the above, we found

Theorem (Chebyshev)

We have π(n) ∗= n
log n .
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Abelian groups Basic properties and examples

Abelian groups

Proposition
Identity and inverse are unique.

Examples

Z+, Q+, R+, C+, nZ+, Z+
n , Z∗

n.
Q∗ r {0} and [0, ∞) ∩ Q∗ for multiplication.

Examples
Non-abelian groups:

2 × 2 integer matrices with determinant ±1
2 × 2 integer matrices with determinant 1
All permutations of {1, . . . , n}.
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Abelian groups Basic properties and examples

To create new groups

Cyclic groups, examples. Generators of a cyclic group.
Direct product G1 × G2.

Example
The set of all ±1 strings of length n with respect to termwise
multiplication: this is “essentially the same” as Zn

2 .

When is a direct product of two cyclic groups cyclic? Examples.
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Abelian groups Subgroups

Subgroups

A subset closed with respect to addition and inverse. Then it is also a
group.

Examples
mG (or Gm in multiplicative notation).
G{m} = { g ∈ G : mg = 0 }.

Theorem
Every subgroup of Z is of the form mZ.

We proved this already since subgroups of (Z, +) are just the ideals of
(Z, +, ∗)

Theorem
If H is finite then it is a subgroup already if it is closed under addition.
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Abelian groups Subgroups

Creating new subgroups

H1 + H2, H1 ∩ H2.

Example

Let G = G1 × G2, G1 = G1 × {0G2}, G2 = {0G1} × G2. Then Gi are
subgroups of G, and

G1 ∩ G2 = {0G}, G1 + G2 = G.

So in a way, the direct product can, with the sum notation, be also
called the direct sum.
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Abelian groups Cosets and quotient groups

Congruences

a ≡ b (mod H) if b − a ∈ H.
We have seen for rings earlier already that if H is an ideal, this is an
equvalence relation and you can add congruences. The same proof
shows that if H is a subgroup you can do this.
The equivalence classes a + H are called cosets.

Theorem
All cosets have the same size as H.

Proof.
If C = a + H then x 7→ a + x is a bijection between H and C.

Corollary (Lagrange theorem, for commutative groups)
If G is finite and H is its subgroup then |H| divides |G|.
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Abelian groups Cosets and quotient groups

Corollary
For any element a, its order ordG(a) is the order of the cyclic group generated
by a, hence it divides |G| if |G| is finite.
Thus, we always have |G| · a = 0.
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Abelian groups Cosets and quotient groups

The quotient group

Group operation among congruence classes, just as modulo m. This is
the group G/H.

Examples

If G = G1 × G2 then recall G1, G2. Each element of G/G1 can be
written as (0, g2) + G1 for some g2. So, elements of G2 form a set of
representatives for the cosets, and these representatives form a
subgroup.
Z/mZ = Zm. The class representatives do not form a subgroup.
Z4/2Z4 consists of the classes [0] = {0, 2}, [1] = {1, 3}. The class
representatives do not form a subgroup.

Two-dimensional picture.
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Abelian groups Homomorphism and isomorphism

Isomorphism, homomorphism

Isomorphism.

Example
Z2 × Z3 ∼= Z6. But 2Z4 ∼= Z2, Z4/2Z4 ∼= Z2 and Z2 × Z2 6∼= Z4.

Homomorphism, image, kernel.

Examples
The multiplication map, Z → mZ. Its kernel is Z{m}.
For a = (a1, a2) ∈ Z2, let φa : G × G → G be defined as
(g1, g2) 7→ a1g1 + a2g2.
This also defines a homomorphism ψg : Z2 → G, if we fix
g = (g1, g2) ∈ G2 and view a1, a2 as variable.
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Abelian groups Homomorphism and isomorphism

Properties of a homomorphism

Proposition
Let ρ : G → G′ be a homomorphism.

(i) ρ(0G) = 0G′ , ρ(−g) = −ρ(g), ρ(ng) = nρ(g).
(ii) For any subgroup H of G, ρ(H) is a subgroup of G′.

(iii) ker(ρ) is a subgroup of G.
(iv) ρ is injective if and only if ker(ρ) = {0G}.
(v) ρ(a) = ρ(b) if and only if a ≡ b (mod ker(ρ)).

(vi) For every subgroup H′ of G′, ρ−1(H′) is a subgroup of G containing
ker(ρ).
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Abelian groups Homomorphism and isomorphism

Composition of homomorphisms.
Homomorphisms into and from G1 × G2.

Theorem
For any subgroup H of an Abelian group G, the map ρ : G → G/H, where
ρ(a) = a + H is a surjective homomorphism, with kernel H, called the
natural map from G to G/H.
Conversely, for any homomorphism ρ, the factorgroup G/ ker(ρ) is
isomorphic to ρ(G).

Examples
The image of the multiplication map Z8 → Z8, a 7→ 2a is the
subgroup 2Z8 of Z8. The kernel is Z8{2}, and we have
Z8/Z8{2} ∼= 2Z8 ∼= Z4.
(Chinese Remainder Theorem) For m1, . . . , mk, the map
Z → Zm1 × · · · × Zmk given by taking the remainders modulo mi.
Surjective iff the mi are pairvise relatively prime.
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Abelian groups Homomorphism and isomorphism

Theorem
Let H1, H2 be subgroups of G. The the map ρ : H1 × H2 → H1 + H2 with
ρ(h1, h2) = h1 + h2 is a surjective group homomorphism that is an
isomorphism iff H1 ∩ H2 = {0}.
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Abelian groups Cyclic groups

Cyclic groups, classification

For a generator a of cyclic G, look at homomorphism ρa : Z → G,
defined by z 7→ za. Then ker(ρa) is either {0} or mZ for some m.
In the first case, G ∼= Z, else G ∼= Zm

Examples
An element n of Zm generates a subgroup of order m/ gcd(m, n).
Zm1 × Zm2 is cyclic iff gcd(m1, m2) = 1.
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Abelian groups Cyclic groups

Subgroups

All subgroups of Z are of the form mZ.

Theorem
On subgroups of a finite cyclic group G = Zm:

(i) All subgroups are of the form dG = G{m/d} where d|m, and dG ⊆ d′G
iff d′|d.

(ii) For any divisor d of m, the number of elements of order d is φ(d).
(iii) For any integer n we have nG = dG and G{n} = G{d} where

d = gcd(m, n).

Theorem
(i) If G is of prime order then it is cyclic.

(ii) Subgroups of a cyclic group are cyclic.
(iii) Homomorphic images of a cyclic group are cyclic.
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Abelian groups Cyclic groups

The exponent of an Abelian group G: the smallest m > 0 with
mG = {0}, or 0 if there is no such m > 0.

Theorem
Let m be the exponent of G.

(i) m divides |G|.
(ii) If m 6= 0 is then the order of every element divides it.

(iii) G has an element of order m.

Theorem
(i) If prime p divides |G| then G contains an element of order p.

(ii) The primes dividing the exponent are the same as the primes dividing
the order.
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Rings

Rings

We have introduced rings earlier, now we will learn more about them.

Example
Complex numbers: pairs (a, b) with a, b ∈ R, and the known
operations.
Conjugation: a ring isomorphism. Norm: zz = a2 + b2, and its
properties.

Characteristic: the exponent of the additive group.
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Rings Units and fields

Units and fields

An element is a unit if it has a multiplicative inverse. The set of units
of ring R is denoted by R∗. This is a group.

Examples

For z ∈ C, we have z−1 = z/N(z).
Units in Z, Zm.
The Gaussian integers, and units among them.
Units in R1 + R2.
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Rings Zero divisors and integral domains

Zero divisors and integral domains

R is an integral domain if it has no zero divisors.

Examples
When is Zm an integral domain?
When is an element of R1 × R2 a zero divisor?

Theorem
(i) a|b implies unique quotient.

(ii) a|b and b|a implies they differ by a unit.
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Rings Zero divisors and integral domains

Theorem
(i) The characteristic of an integral domain is a prime.

(ii) Any finite integral domain is a field.
(iii) Any finite field has prime power cardinality.
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Rings Subrings

Subrings

Examples
Gaussian integers
Qm.
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Rings Polynomial rings

Polynomial rings

The ring R[X].
The formal polynomial versus the polynomial function. In algebra, X is
frequently called an indeterminate to make the distinction clear.
For each a ∈ R, the substitution ρa : R[X] → R defined by
ρa(f (X)) = f (a) is a ring homomorphism.

Example
Z2[X] is our first example of a ring with finite characteristic that is not a
field.

Degree deg(f ). Leading coefficient lc(f ). Monic polynomial: when the
leading coefficient is 1. Constant term.
Degree Convention: deg(0) = −∞.
deg(fg) 6 deg(f ) + deg(g), equality if the leading coefficients are not
zero divisors.
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Rings Polynomial rings

Proposition
If D is an integral domain then (D[X])∗ = D∗.

Warning: different polynomials can give rise to the same polynomial
function. Example: Xp − X over Zp defines the 0 function.

Theorem (Division with remainder)
Let f , g ∈ R[X] with g 6= 0R and lc(g) ∈ R∗. Then there is a q with

f = q · g + r, deg(r) < deg(g).

Notice the resemblance to and difference from number division.

The long division algorithm.
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Rings Polynomial rings

Theorem
Dividing by X− α:

f (X) = q · (X− α) + f (α).

Roots of a polynomial.

Corollary
(i) α is a root of f (X) iff f (X) is divisible by X− α.

(ii) In an integral domain, a polynomial of degree n has at most n roots.
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Rings Polynomial rings

Theorem
If D is an integral domain then every finite subgroup G of D∗ is cyclic.

Proof.
The exponent of m of G is equal to G, since Xm − 1 has at most m roots.
By an earlier theorem, G has an element whose order is the
exponent.

Corollary
Modulo any prime p, there is a primitive root.
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Rings Ideals and homomorphisms

Ideals and homomorphisms

We defined ideals earlier, this is partly a review.
Generated ideal (a), (a, b, c). Principal ideal.
Congruence modulo an ideal. Quotient ring.

Example
Let f be a monic polynomial, consider E = R[X]/(f · R[X]) = R[X]/(f ).

R[X]/(X2 + 1) ∼= C.
Z2[X]/(X2 + X+ 1). Elements are [0], [1], [X], [X+ 1]. Multiplication
using the rule X2 ≡ X+ 1. Since X(X+ 1) ≡ 1 every element has an
inverse, and E is a field of size 4.
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Rings Ideals and homomorphisms

Prime ideal: If ab ∈ I implies a ∈ I or b ∈ I.
Maximal ideal.

Examples
In the ring Z, the ideal mZ is a prime ideal if and only if m is
prime. In this case it is also maximal.
In the ring R[X, Y], the ideal (X) is prime, but not maximal. Indeed,
(X) ( (X, Y) 6= R[X, Y]

Proposition

(i) I is prime iff R/I is an integral domain.
(ii) I is maximal iff R/I is a field.
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Rings Ideals and homomorphisms

Proposition
Let ρ : R → R′ be a homomorphism.

(i) Images of subrings are subrings. Images of ideals are ideals of ρ(R).
(ii) The kernel is an ideal. ρ is injective (an embedding) iff it is {0}.

(iii) The inverse image of an ideal is an ideal containing the kernel.

Proposition
The natural map ρ : R → R/I is a homomorphism.
Isomorphism between R/ ker(ρ) and ρ(R).

Examples
Z → Z/mZ is not only a group homomorphism but also a ring
homomorphism.
The mapping for the Chinese Remainder Theorem.
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Rings Polynomial factorization, congruences

Polynomial factorization and congruences

(See 17.3-4 of Shoup)
We will consider elements of F[X] over a field F.
The associate relation between elements of F[X].

Theorem
Unique factorization in F[X]. The monic irreducible factors are unique.
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Rings Polynomial factorization, congruences

The proof parallels the proof of unique factorization for integers, using
division with remainder.

Every ideal is principal.
If f , g are relatively prime then there are s, t with

f · s + g · t = 1. (2)

Polynomial p is irreducible iff p · F[X] is a prime ideal, and iff it is a
maximal ideal, so iff F[X]/(p) is a field.
Warning: here we cannot use counting argument (as for integers)
to show the existence of the inverse. We rely on (2) directly.
Congruences modulo a polynomial. Inverse.
Chinese remainder theorem. Interpolation.
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Rings Polynomial factorization, congruences

The following theorem is also true, but its proof is longer (see 17.8 of
Shoup).

Theorem
There is unique factorization over the following rings as well:

Z[X1, . . . , Xn], F[X1, . . . , Xn],

where F is an arbitrary field.
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Rings Complex and real numbers

Complex and real numbers

Theorem
Every polynomial in C[X] has a root.

We will not prove this. It implies that all irreducible polynomials in C

have degree 1.

Theorem
Every irreducible polynomial over R has degree 1 or 2.
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Rings Complex and real numbers

Proof.
Let f (X) be a monic polynomial with no real roots, and let

f (X) = (X− α1) · · · (X− αn)

over the complex numbers. Then

f (X) = f (X) = (X− α1) · · · (X− αn).

Since the factorization is unique, the conjugation just permuted the
roots. All the roots are in pairs: β1, β1, β2, β2, and so on. We have

(X− β)(X− β) = X2 − (β + β)X+ ββ.

Since these coefficients are their own conjugates, they are real. Thus f
is the product of real polynomials of degree 2.
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Rings Roots of unity

Roots of unity

Complex multiplication: addition of angles.
Roots of unity form a cyclic group (as a finite subgroup of the
multiplicative group of a field).
Primitive nth root of unity: a generator of this group. One such
generator is the root with the smallest angle.

Proposition

If ε is a root of unity different from 1 then ∑
n
i=1 εi = 0.
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Rings Fourier transform

Fourier transform

Interpolation is particularly simple if the polynomial is evaluated at
roots of unity.
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