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ABSTRACT. It ~S shown that, given an arbitrary GO posmon o n  an n x n board, the problem of  determining the 
winner is Pspace hard New techmques are exploited to overcome the dffficulues ansmg from the planar nature 
of board games In parucular, tt ts proved that GO ts Pspace hard by reducing a Pspace-complete set, TQBF, to 
a game called generahzed geography, then to a planar version of that game, and finally to GO. 
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1. Introduction 

A great deal of effort has been spent in the search for optimal and computationally feasible 
game strategies. In some cases (e.g., Bridge-it, Nim) such strategies have been found, while 
in others the search has been unsuccessful. Recently it has become possible to provide 
compelling evidence that such strategies may not always exist. For example, Even and 
Tarjan [4] and Schaefer [10] have shown that determining which player has a winning 
strategy m certain combinatorial games is a polynomial-space-complete problem [9] (See 
also [l, 3].) Polynomial-space-complete (Pspace-complete) problems are generally thought 
to be computationally infeasible because they are, in a certain sense, the most difficult to 
solve of all problems in Pspace (the class of problems solvable with a polynomial amount 
of memory on a reasonable model of computer), including the well-known class of NP- 
complete problems [6]. 

We show that GO, a popular Oriental game with a long history, has a similar property. 
That is, given an arbitrary GO position on an n x n board, the problem of determining the 
winner is Pspace hard. (Pspace-hard problems are at least as difficult as any problem in 
Pspace.) To our knowledge, this is the first such result for a board game. Board games are 
by their nature p lanar - -a  property which frequently complicates completeness proofs. We 
exploit new techniques developed in [7, 8] to overcome this difficulty. 

In practice GO is played on a 19 x 19 board. As such it is a finite game for which a 
large table containing a winning strategy could, in prinople, be given. Our generalization 
to an n × n board prevents such a solution while preserving the spirit of the game. We 
make no further modifications to the rules. 

We claim only that GO is Pspace hard rather than Pspace complete because GO is not 
known to be in Pspace. If there were a polynomial bound on the length of GO games, then 
the completeness would follow trivially. Whde it happens that actual games seem never to 
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approach 19 2 moves, we are unable to argue this in general. Finally, we acknowledge that 
our result has no a priori relevance to the problem of  determining an optimal strategy 
when play begins on an empty board. 

2. Quantified Boolean Formulas 

We will prove that GO is Pspace hard by reducing a Pspace-complete set, TQBF, to the 
problem of  deciding the winner in an arbitrary GO position. The reduction proceeds by a 
series of  steps, first reducing TQBF to a game called generalized geography (Section 3), 
then to a planar version of  that game (Section 4), and fmally to GO (Section 6) 

Definition 1. The set of  quantified Boolean formulas QBF ffi {Q~v~Q2v2 . . .  Qnvn. 
F(vl, v2 . . . . .  vn) l Q, ~ {v, 3}, where the v, are Boolean variables and F is  a Boolean formula 
in conjunctive normal form}. 

Definition 2. TQBF is the set o f  true formulas in QBF. 

THEOREM 1. TQBF is Pspace complete [9]. 

3. Generalized Geography 

Definition 3. Generalized geography (GG) is a game played by two players on the 
nodes of  a directed graph. Play begins when the first player puts a marker on a distinguished 
node. In subsequent turns, players alternately place a marker on any unmarked node q 
such that there is a directed arc from the last node played to q. The first player who cannot 
move loses. 

This is a generalization of  a commonly played game in which players must name a 
geographical location not yet mentioned in the game and whose first letter is the same as 
the last letter of  the last place named. The first player to be stumped loses. This instance 
of  geography would be modeled by a graph with as many nodes as there are places. 
Directed arcs would go from a node u to all those nodes whose first letters are the same as 
u's last letter. 

THEOREM 2. GG Is Pspace complete [10]. 

PROOF. We are given a formula B ~ QBF, B = QlvlQ2v2 . . .  QnvnF(vl, v2 . . . . .  vn), 
where we assume that Q~ = 3, Qn = V, and that Q, # Q,+~, for 1 _< i < n. w e  construct the 
graph GG(B): 

v i , !  

(,.) vi,2 

Each variable v, is represented by a diamond structure, and each clause ca is represented 
by a single node. In addition, we have arcs (v,.2, v,+l,0) for 1 _< i < n, arcs (v,,2, ca) for 1 _< 
j _< m, and paths of  length 2 going from ca to v,.~ for v~ in ca, and from ca to F,,~ for g in cj. 
V~.o is the distinguished node. 

Example. (3a)(Vb)(3c)(Vd)[(a + !~ + c)(b + d)] is shown in Figure I. Play proceeds 
rather simply. One player chooses which path to take through V-diamonds (i.e., diamonds 
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FIGURE 1 

representing universally quantified variables), and the other player chooses which path to 
take through 3-diamonds. After all diamonds have been traversed, the V-player chooses 
a clause, and the 3-player then chooses a variable from that clause. 3 then wins immediately 
if the chosen variable satisfies the clause; otherwise, V wins on the next move. It follows 
easily that 3 wins if;' B is true, and we leave the details to the reader. [ ]  

4. Planar Generalized Geography 

THEOREM 3. Generahzed geography is Pspace complete, even when played on planar 
graphs. 

PROOF. (This proof is due to T. Schaefer and an anonymous referee who simplified the 
original construction appearing in [8] ) Every GG graph constructed in the previous section 
can be transformed into an equivalent planar G G  graph as follows: Draw the graph in the 
plane, allowing arcs to cross. Pick a point in the graph where two arcs cross: 

© .© 
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Replace that section of the graph by the following subgraph. 

o 
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0 [] 

3 has a win in the new graph with the indicated replacement i f f 3  has a PROPOSITION h 
win m the original graph. 

This proposition can be proved with a simple case analysis, which we omit. 
To make the proof of Theorem 3 rigorous, the method of drawing a GG graph in the 

plane should be specified, and we refer the reader to [7, 8] for an analogous proof. 

COROLLARY. GG ts Pspace complete even when played on planar bipartite graphs with 
maximum degree 3. 

PROOF. The proof of this can~accomplished by making trivial modifications to the 
structures described above. The diamonds representing existential variables are enlarged 
to become: 

Vi, 2 Vl, 2 

I 
VI,3 

(-) Vi, 4 

The back arcs representing clauses are then attached at v,,2 or ~,,2 (instead of v,,1 or ~,1), 
allowing the graph to remain bipartite. Nodes of indegree greater than 2 are replaced by 
chains, as below: 

/ 
/ 

7 
/ 

and fan-out is handled m a similar manner. [] 
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FIG 2 An uncapturable configuration 
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5. The Rules of GO 

GO is played on a board which is a grid of  19 x 19 locations caUedpomts. There are two 
players, Black and White, for whom the rules are symmetric except that Black moves first. 
A player moves by placing a stone of  his own color on a vacant point. The moves alternate 
between players, except that any player may pass at any time. The game terminates when 
both players pass. 

As the game progresses, the stones form clusters called groups. A group is a maximal, 
uniformly colored set of  stones which occupy a connected region of  the board A group of  
stones becomes surrounded if none of  them is adjacent to a vacant point. After each black 
(white) move, all surrounded white (black) groups are removed, followed by all surrounded 
black (white) groups. 

SCORING. At the end of  the game all dead stones are removed from the board. A stone 
is dead if it ultimately can be surrounded, despite any attempts to save it. A vacant point 
is said to be white territory if it is surrounded on all sides by either white stones or the edge 
of  the board. Black territory is similarly designated. The final score for White is the count 
of  all the white territory minus the number of  white stones which have been captured 
(removed at any time). The black score is slmdarly calculated and the highest scorer wins. 

These rules are a subset of  the actual rules of  GO, though they are adequate for our 
purposes. The major omission concerns the situauon of  KO which has a special rule 
designed to prevent infinite repetitions of  the same position. A complete, concise treatment 
of  all the rules is given in [2]. 

EYES. An important consequence of  the GO rules is that certain configurations of  
stones cannot be captured. If  a configuration surrounds two separated, vacant points, it is 
said to have two eyes. It then cannot be surrounded because it is impossible for the 
opponent to fill both eyes simultaneously (see Figure 2). 

Frequently, in the course of  actual games, a player may have a nearly surrounded group 
of  stones which he is desperately trying to connect to a group having two eyes. At the same 
time his opponent is trying to cut him off. We exploit such a situation later m our proof. 

6. Construction of the GO Position 

We now encode the constructed planar generalized geography game as a GO position. We 
refer to the GO players as Black and White and the geography players as the 3-player and 
the V-player. The GO position to be constructed will have the property that Black has a 
winning strategy iff the 3-player has a winning strategy. 

The overall plan behind the construction is to have a large region of  guaranteed whtte 
territory, together with an even larger white group of  stones which is nearly surrounded 
(see F~gure 3). It is so large that the outcome of  the game hinges on its survival; that is, 
Black will wm lff he can capture it. Whlte's only hope is first to escape through the small 
breach in the surrounding black stones and then ultimately connect to a group with two 
eyes This breach, however, leads to a structure which is patterned after the given 
geography graph. White and Black are then, in effect, forced to play the geography game 
with each other. (The rows of  black stones extending from the left into the white group 
ensure that White would have no hope of recapturing any of  that territory.) 

Each arc and vertex m the geography graph is represented by a corresponding pipe and 
junctton in the GO position (see Figure 4). There are essenUally five types of  vertices which 
anse in our geography graphs (see Figure 5). We gwe the corresponding GO junctions for 
these vertices. Note that in the generalized geography graphs which we construct, the 
position of  a choice vertex 0.e., a vertex with outdegree >1) determines which player 
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(a) (b) 

FIG 4 Ptpes 

(c) (d) 

(e) 
FIG. 5 (a) V-player choice, (b) 3-player choice, (c) join, (d) test, (e) trivial 

makes the choice. This necessitates the occasional use of trivial vertices to switch the 
initiative. In the GO construction the nature of the junction determines which player 
makes the choice. Thus the trivial vertices become unnecessary and are treated as arcs. 
The test vertices are distinguished from the join vertices in that they occur only along the 
sides of the subgraphs representing variables and in the crossover boxes (see Figure 6). 
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0 0 0 0 0  
(a) 

(b) 

(c) (d) 

F1G 6 (a) V-player choice, (b) 3-player choice, (c) joint, (d) test. 

The desired GO position is obtained by joining the appropriate pipes and junctions in 
a way which embeds the geography graph. The pipe entering the first choice junction (the 
first diamond) is connected to the breach m Black's wall around the large white group. 
White moves first. 
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We now argue that if the players play "correctly," then the ensuing game will mimic a 
geography game in that the course of  play will travel through a sequence of pipes 
corresponding to a valid sequence of geography arcs. Furthermore, if any player does not 
play correctly, his opponent will be able to win within a few moves. 

Upon entering or leaving any junction it will be White's turn. Inductively, we assume 
that the large white group is completely surrounded except for the tip of the pipe enter- 
ing the current juncuon. Let us consider the case where the play is about to enter an 
(a) junction, corresponding to a choice by the V-player. We assume wlog that he wishes to 
go left. 

PROPOSITION 2. I f  White" s first move is not at either point 1 or point 2, then Black can 
win in two moves. 

PROOF. Assume that White does not play at either 1 or 2. Further assume that White 
does not play at 3. In that case Black plays at 2, forcing White to respond at 1, whereby 
Black wins at 3. I f  White had played at 3 initially, then by symmetry Black again has a 
win. [] 

PROPOSITION 3. I f  Black does not respond at point 2, then White can win in two moves. 

PROOF. Suppose White played at 1 and Black failed to play at 2. Then White plays at 
2, capturing three black stones. Black cannot now prevent White from connecting to the 
White group with two eyes, and thus White wins. [] 

PROPOSITION 4. White must now continue at point 3 or else lose immediately. 

PROOF. Clear. [] 

PROPOSITION 5. Black must respond at point 4 or lose immediately. 

PROOF. Clear, using the white group which has two eyes and which is directly 
above 4. [] 

Thus if White chooses the left-hand pipe and both players play correctly, the sequence 
of moves would be: White-- l ;  Black--2; White--3; Black--4. The play now continues as 
before, down the left-hand pipe. The large white group is again completely surrounded, 
except for the tip of the left-hand pipe, and it is Whlte's turn to move, fulfilling the 
induction assumptions. Both the (b) and the (c) junctions can be argued similarly. The 
(d) junction, corresponding to a selection of a variable to test by Black, is somewhat 
different and we analyze it here. We show that if the play enters through the right-hand 
pipe, then Black wins lff the play had previously passed down through the verucal pipe. 

PROPOSITION 6. l f  playJfirst enters thts junctton at the top, then it will leave at the bottom 
and there will be a whzte stone placed at point 1 and a black stone at point 2. 

PROOF. Clear, using the white group with two eyes to force Black's move. [] 

PROPOSITION 7. l f  play subsequently enters through the right-hand ptpe, then Black wms. 

PROOF. White is forced to move at 3, followed by the winning black move at 4. [] 

PROPOSITION 8. l f  play enters through the right-hand pipe prior to entering through the 
top pipe, then White wins. 

PROOF. White moves at 3 and then has a win at either 2 or 4. [] 

7. Conclusion 

Both the main result of this paper and an analogous result for checkers [5] are proved 
using planar generalized geography, and this, m turn, was initially proved using planar 
quantified formulas [7, 8]. It would be interesting to know if similar techniques could be 
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used to obtain Pspace hardness proofs for games like Othello, Hex, and chess (given some 
"natural" n × n generalization of  the last). It would also be interesting to show that GO or 
chess is in Pspace or that either is complete for exponential time. 
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