The central limit theorem

Here is a proof of the central limit theorem, in a reasonably strong form. This is Lindeberg's proof, as presented by Terrence Tao in his notes (and made more concrete by specifying $G(x)$). Recall that the cumulative distribution function of the standard normal distribution is denoted by $\Phi(x)$.
Theorem 1 Let X_{1}, \ldots, X_{n} be independent standard random variables, where there is also a constant c with $\mathbf{E}\left|X_{i}\right|^{3}<c$, let $S_{n}=\sum_{i} X_{i}$, then

$$
\lim _{n \rightarrow \infty} \mathbf{P}\left\{S_{n} / \sqrt{n}<a\right\}=\Phi(a)
$$

Proof. 1. Let Y_{1}, Y_{2} be independent normal variables: then $Y_{1}+Y_{2}$ is also normal. The proof of this is exercise. Let Y_{1}, \ldots, Y_{n} are independent standard normal variables, $T_{n}=\sum_{i} Y_{i}$. It follows from the above that T_{n} / \sqrt{n} is standard normal.
2. Let $G(x)$ be any function defined on $(-\infty, \infty)$ that has continuous and bounded first, second and third derivatives: the third derivatives are bound by some parameter B. We will show that

$$
\begin{equation*}
\mathbf{E} G\left(S_{n} / \sqrt{n}\right)-\mathbf{E} G\left(T_{n} / \sqrt{n}\right)=O\left(B n^{-1 / 2}\right) \tag{1}
\end{equation*}
$$

We can assume that all the variables X_{i}, Y_{j} are over a common probability space, and the group of Y_{j} is also independent of the group of X_{i}. (One can always construct such a probability space.) We will show that exchanging one-by-one the X_{i} 's in the sum for the Y_{i} 's changes the expected value only little: namely

$$
\mathbf{E} G\left(Z+X_{i} / \sqrt{n}\right)-\mathbf{E} G\left(Z+Y_{i} / \sqrt{n}\right)=O\left(B n^{-3 / 2}\right)
$$

where Z, X_{i}, Y_{i} are independent. Let us expand G into a Taylor series, using the fact that $\left|G^{\prime \prime \prime}(z)\right| \leq B$:

$$
G(Z+\delta)=G(Z)+G^{\prime}(Z) \delta+G^{\prime \prime}(Z) \delta^{2} / 2+B \delta^{3} / 6
$$

Substituting, $\delta=X_{i} / \sqrt{n}$ and $\delta=Y_{i} / \sqrt{n}$ we get

$$
\begin{aligned}
& G\left(Z+X_{i} / \sqrt{n}\right)-G\left(Z+Y_{i} / \sqrt{n}\right) \\
& \quad=G^{\prime}(Z)\left(X_{i}-Y_{i}\right) n^{-1 / 2}+G^{\prime \prime}(Z)\left(X_{i}^{2}-Y_{i}^{2}\right) n^{-1}+B \cdot O\left(\left|X_{i}\right|^{3}+\left|Y_{i}\right|^{3}\right) n^{-3 / 2}
\end{aligned}
$$

By definition, $\mathbf{E} X_{i}=\mathbf{E} Y_{i}$ and $\mathbf{E} X_{i}^{2}=\mathbf{E} Y_{i}^{2}$. Hence, using the independence of Z from X_{i}, Y_{i} :

$$
\begin{aligned}
\mathbf{E} G^{\prime}(Z)\left(X_{i}-Y_{i}\right) & =\mathbf{E} G^{\prime}(Z) \mathbf{E}\left(X_{i}-Y_{i}\right)=0, \\
\mathbf{E} G^{\prime \prime}(Z)\left(X_{i}^{2}-Y_{i}^{2}\right) & =\mathbf{E} G^{\prime \prime}(Z) \mathbf{E}\left(X_{i}^{2}-Y_{i}^{2}\right)=0, \\
\mathbf{E} G\left(Z+X_{i} / \sqrt{n}\right) & -\mathbf{E} G\left(Z+Y_{i} / \sqrt{n}\right) \\
& =B n^{-3 / 2} O\left(\mathbf{E}\left|X_{i}\right|^{3}+\mathbf{E}\left|Y_{i}\right|^{3}\right)=O\left(B n^{-3 / 2}\right),
\end{aligned}
$$

since the third moments of X_{i} and Y_{i} are finite. This allows us to replace X_{1} with Y_{1}, X_{2} with Y_{2} and so on one-by-one until S_{n} is replaced with T_{n}. The total price for the replacement is still $O\left(B n^{-1 / 2}\right)$, proving (1).
3. Below we will show a function $G(x)$ with the property that $0 \leq G(x) \leq 1$, $G(x)=1$ for $x \leq 0, G(x)=0$ for $x \geq 1$, further it has three continous derivatives. Then $G_{a, \varepsilon}(x)=G(x / \varepsilon-a)$ sinks from 1 to 0 between a and $a+\varepsilon$, and $G_{a, \varepsilon}^{\prime \prime \prime}(x)=O\left(\varepsilon^{-3}\right)$, so ε^{-3} plays the role of B above. For any random variable X we have then

$$
\begin{align*}
\mathbf{P}\{X<a\} & \leq \mathbf{E} G_{a, \varepsilon}(X) \leq \mathbf{P}\{X<a+\varepsilon\}, \\
\mathbf{E} G_{a-\varepsilon, \varepsilon}(X) & \leq \mathbf{P}\{X<a\} \leq \mathbf{E} G_{a, \varepsilon}(X) . \tag{2}
\end{align*}
$$

We found, since the bound B is now $O\left(\varepsilon^{-3}\right)$, that

$$
\left|\mathbf{E} G_{a, \varepsilon}\left(S_{n} / \sqrt{n}\right)-\mathbf{E} G_{a, \varepsilon}\left(T_{n} / \sqrt{n}\right)\right|=O\left(\varepsilon^{-3} n^{-1 / 2}\right)
$$

Applying (2) to both S_{n} / \sqrt{n} and T_{n} / \sqrt{n} and recalling that $\mathbf{P}\left\{T_{n} / \sqrt{n}<\right.$ $a\}=\Phi(a)$:

$$
\Phi(a-\varepsilon)-O\left(\varepsilon^{-3} n^{-1 / 2}\right) \leq \mathbf{P}\left\{S_{n} / \sqrt{n}<a\right\} \leq \Phi(a+\varepsilon)+O\left(\varepsilon^{-3} n^{-1 / 2}\right)
$$

Since the derivative of $\Phi(a)$ is bounded (by $1 / \sqrt{2 \pi}$):

$$
\left|\mathbf{P}\left\{S_{n} / \sqrt{n}<a\right\}-\Phi(a)\right|=O\left(\varepsilon+\varepsilon^{-3} n^{-1 / 2}\right)
$$

Choosing $\varepsilon=n^{-1 / 8}$ this becomes $O\left(n^{-1 / 8}\right)$.
4. The function $F(x)=\cos \left(x^{2}(\pi / 2-x)^{2}\right)$ sinks from 1 to 0 between 0 and $\pi / 2$, its three derivatives are continuous and are zero at $x=0$ and $x=\pi / 2$ (as can be checked by direct computation). Define the function $G(x)$ as $F\left(\frac{\pi}{2} x\right)$ between 0 and 1, further 1 for $x<0$ and 0 for $x>1$. Then it has the properties desired in point 3 above.

