The central limit theorem

Here is a proof of the central limit theorem, in a reasonably strong form. This is Lindeberg's proof, as presented by Terrence Tao in his notes (and made more concrete by specifying G(x)). Recall that the cumulative distribution function of the standard normal distribution is denoted by $\Phi(x)$.

Theorem 1 Let X_1, \ldots, X_n be independent standard random variables, where there is also a constant c with $\mathbf{E}|X_i|^3 < c$, let $S_n = \sum_i X_i$, then

$$\lim_{n \to \infty} \mathbf{P}\{S_n / \sqrt{n} < a\} = \Phi(a).$$

- *Proof.* 1. Let Y_1, Y_2 be independent normal variables: then $Y_1 + Y_2$ is also normal. The proof of this is exercise. Let Y_1, \ldots, Y_n are independent standard normal variables, $T_n = \sum_i Y_i$. It follows from the above that T_n/\sqrt{n} is standard normal.
- 2. Let G(x) be any function defined on $(-\infty, \infty)$ that has continuous and bounded first, second and third derivatives: the third derivatives are bound by some parameter B. We will show that

$$\mathbf{E}G(S_n/\sqrt{n}) - \mathbf{E}G(T_n/\sqrt{n}) = O(Bn^{-1/2}).$$
(1)

We can assume that all the variables X_i, Y_j are over a common probability space, and the group of Y_j is also independent of the group of X_i . (One can always construct such a probability space.) We will show that exchanging one-by-one the X_i 's in the sum for the Y_i 's changes the expected value only little: namely

$$\mathbf{E}G(Z+X_i/\sqrt{n}) - \mathbf{E}G(Z+Y_i/\sqrt{n}) = O(Bn^{-3/2})$$

where Z, X_i, Y_i are independent. Let us expand G into a Taylor series, using the fact that $|G'''(z)| \leq B$:

$$G(Z + \delta) = G(Z) + G'(Z)\delta + G''(Z)\delta^{2}/2 + B\delta^{3}/6.$$

Substituting, $\delta = X_i / \sqrt{n}$ and $\delta = Y_i / \sqrt{n}$ we get

$$G(Z + X_i/\sqrt{n}) - G(Z + Y_i/\sqrt{n})$$

= $G'(Z)(X_i - Y_i)n^{-1/2} + G''(Z)(X_i^2 - Y_i^2)n^{-1} + B \cdot O(|X_i|^3 + |Y_i|^3)n^{-3/2}.$

By definition, $\mathbf{E}X_i = \mathbf{E}Y_i$ and $\mathbf{E}X_i^2 = \mathbf{E}Y_i^2$. Hence, using the independence of Z from X_i, Y_i :

$$\mathbf{E}G'(Z)(X_i - Y_i) = \mathbf{E}G'(Z)\mathbf{E}(X_i - Y_i) = 0,$$

$$\mathbf{E}G''(Z)(X_i^2 - Y_i^2) = \mathbf{E}G''(Z)\mathbf{E}(X_i^2 - Y_i^2) = 0,$$

$$\mathbf{E}G(Z + X_i/\sqrt{n}) - \mathbf{E}G(Z + Y_i/\sqrt{n})$$

$$= Bn^{-3/2}O(\mathbf{E}|X_i|^3 + \mathbf{E}|Y_i|^3) = O(Bn^{-3/2}).$$

since the third moments of X_i and Y_i are finite. This allows us to replace X_1 with Y_1 , X_2 with Y_2 and so on one-by-one until S_n is replaced with T_n . The total price for the replacement is still $O(Bn^{-1/2})$, proving (1).

3. Below we will show a function G(x) with the property that $0 \leq G(x) \leq 1$, G(x) = 1 for $x \leq 0$, G(x) = 0 for $x \geq 1$, further it has three continuus derivatives. Then $G_{a,\varepsilon}(x) = G(x/\varepsilon - a)$ sinks from 1 to 0 between a and $a + \varepsilon$, and $G''_{a,\varepsilon}(x) = O(\varepsilon^{-3})$, so ε^{-3} plays the role of B above. For any random variable X we have then

$$\mathbf{P}\{X < a\} \le \mathbf{E}G_{a,\varepsilon}(X) \le \mathbf{P}\{X < a + \varepsilon\},\\ \mathbf{E}G_{a-\varepsilon,\varepsilon}(X) \le \mathbf{P}\{X < a\} \le \mathbf{E}G_{a,\varepsilon}(X).$$
(2)

We found, since the bound B is now $O(\varepsilon^{-3})$, that

$$|\mathbf{E}G_{a,\varepsilon}(S_n/\sqrt{n}) - \mathbf{E}G_{a,\varepsilon}(T_n/\sqrt{n})| = O(\varepsilon^{-3}n^{-1/2}).$$

Applying (2) to both S_n/\sqrt{n} and T_n/\sqrt{n} and recalling that $\mathbf{P}\{T_n/\sqrt{n} < a\} = \Phi(a)$:

$$\Phi(a-\varepsilon) - O(\varepsilon^{-3}n^{-1/2}) \le \mathbf{P}\{S_n/\sqrt{n} < a\} \le \Phi(a+\varepsilon) + O(\varepsilon^{-3}n^{-1/2}).$$

Since the derivative of $\Phi(a)$ is bounded (by $1/\sqrt{2\pi}$):

$$|\mathbf{P}\{S_n/\sqrt{n} < a\} - \Phi(a)| = O(\varepsilon + \varepsilon^{-3}n^{-1/2}).$$

Choosing $\varepsilon = n^{-1/8}$ this becomes $O(n^{-1/8})$.

4. The function $F(x) = \cos(x^2(\pi/2 - x)^2)$ sinks from 1 to 0 between 0 and $\pi/2$, its three derivatives are continuous and are zero at x = 0 and $x = \pi/2$ (as can be checked by direct computation). Define the function G(x) as $F(\frac{\pi}{2}x)$ between 0 and 1, further 1 for x < 0 and 0 for x > 1. Then it has the properties desired in point 3 above.