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The central limit theorem
Here is a proof of the central limit theorem, in a reasonably strong form. This
is Lindeberg’s proof, as presented by Terrence Tao in his notes (and made
more concrete by specifying G(x)). Recall that the cumulative distribution
function of the standard normal distribution is denoted by Φ(x).

Theorem 1 Let X1, . . . , Xn be independent standard random variables, where
there is also a constant c with E|Xi|3 < c, let Sn =

∑
iXi, then

lim
n→∞

P{Sn/
√
n < a} = Φ(a).

Proof. 1. Let Y1, Y2 be independent normal variables: then Y1 +Y2 is also nor-
mal. The proof of this is exercise. Let Y1, . . . , Yn are independent standard
normal variables, Tn =

∑
i Yi. It follows from the above that Tn/

√
n is

standard normal.

2. Let G(x) be any function defined on (−∞,∞) that has continuous and
bounded first, second and third derivatives: the third derivatives are bound
by some parameter B. We will show that

EG
(
Sn/
√
n
)
− EG

(
Tn/
√
n
)

= O(Bn−1/2). (1)

We can assume that all the variables Xi, Yj are over a common probability
space, and the group of Yj is also independent of the group of Xi. (One can
always construct such a probability space.) We will show that exchanging
one-by-one the Xi’s in the sum for the Yi’s changes the expected value only
little: namely

EG(Z +Xi/
√
n)− EG(Z + Yi/

√
n) = O(Bn−3/2),

where Z,Xi, Yi are independent. Let us expand G into a Taylor series, using
the fact that |G′′′(z)| ≤ B :

G(Z + δ) = G(Z) +G′(Z)δ +G′′(Z)δ2/2 +Bδ3/6.

Substituting, δ = Xi/
√
n and δ = Yi/

√
n we get

G(Z +Xi/
√
n)−G(Z + Yi/

√
n)

= G′(Z)(Xi − Yi)n−1/2 +G′′(Z)(X2
i − Y 2

i )n−1 +B ·O(|Xi|3 + |Yi|3)n−3/2.
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By definition, EXi = EYi and EX2
i = EY 2

i . Hence, using the independence
of Z from Xi, Yi:

EG′(Z)(Xi − Yi) = EG′(Z)E(Xi − Yi) = 0,

EG′′(Z)(X2
i − Y 2

i ) = EG′′(Z)E(X2
i − Y 2

i ) = 0,

EG(Z +Xi/
√
n)− EG(Z + Yi/

√
n)

= Bn−3/2O(E|Xi|3 + E|Yi|3) = O(Bn−3/2),

since the third moments of Xi and Yi are finite. This allows us to replace
X1 with Y1, X2 with Y2 and so on one-by-one until Sn is replaced with Tn.
The total price for the replacement is still O(Bn−1/2), proving (1).

3. Below we will show a function G(x) with the property that 0 ≤ G(x) ≤ 1,
G(x) = 1 for x ≤ 0, G(x) = 0 for x ≥ 1, further it has three continous
derivatives. Then Ga,ε(x) = G(x/ε − a) sinks from 1 to 0 between a and
a + ε, and G′′′a,ε(x) = O(ε−3), so ε−3 plays the role of B above. For any
random variable X we have then

P{X < a} ≤ EGa,ε(X) ≤ P{X < a+ ε},
EGa−ε,ε(X) ≤ P{X < a} ≤ EGa,ε(X). (2)

We found, since the bound B is now O(ε−3), that

|EGa,ε(Sn/
√
n)− EGa,ε(Tn/

√
n)| = O(ε−3n−1/2).

Applying (2) to both Sn/
√
n and Tn/

√
n and recalling that P{Tn/

√
n <

a} = Φ(a):

Φ(a− ε)−O(ε−3n−1/2) ≤ P{Sn/
√
n < a} ≤ Φ(a+ ε) +O(ε−3n−1/2).

Since the derivative of Φ(a) is bounded (by 1/
√

2π):

|P{Sn/
√
n < a} − Φ(a)| = O(ε+ ε−3n−1/2).

Choosing ε = n−1/8 this becomes O(n−1/8).

4. The function F (x) = cos(x2(π/2 − x)2) sinks from 1 to 0 between 0 and
π/2, its three derivatives are continuous and are zero at x = 0 and x = π/2
(as can be checked by direct computation). Define the function G(x) as
F (π

2
x) between 0 and 1, further 1 for x < 0 and 0 for x > 1. Then it has

the properties desired in point 3 above.


