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1 Complexity

Je n’ai fait celle-ci plus longue que
parce que je n’ai pas eu le loisir de
la faire plus courte.

Pascal

Ainsi, au jeu de croix ou pile,
l’arrivée de croix cent fois de suite,
nous paraît extraordinaire; parce
que le nombre presque infini des
combinaisons qui peuvent arriver
en cent coups étant partagé en
séries regulières, ou dans
lesquelles nous voyons régner un
ordre facile à saisir, et en séries
irregulières; celles-ci sont
incomparablement plus
nombreuses.

Laplace

1.1 Introduction

The present section can be read as an independent survey on the problems of
randomness. It serves as some motivation for the dryer stuff to follow.
If we toss a coin 100 times and it shows each time Head, we feel lifted

to a land of wonders, like Rosencrantz and Guildenstern in [49]. The argu-
ment that 100 heads are just as probable as any other outcome convinces us
only that the axioms of Probability Theory, as developed in [28], do not solve
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1. Complexity

all mysteries they are sometimes supposed to. We feel that the sequence con-
sisting of 100 heads is not random, though others with the same probability
are. Due to the somewhat philosophical character of this paradox, its history is
marked by an amount of controversy unusual for ordinary mathematics. Before
the reader hastes to propose a solution, let us consider a less trivial example,
due to L. A. Levin.
Suppose that in some country, the share of votes for the ruling party in 30

consecutive elections formed a sequence 0.99𝑥𝑖 where for every even 𝑖, the num-
ber 𝑥𝑖 is the 𝑖-th digit of 𝜋 = 3.1415 . . .. Though many of us would feel that the
election results weremanipulated, it turns out to be surprisingly difficult to prove
this by referring to some general principle.
In a sequence of 𝑛 fair elections, every sequence 𝜔 of 𝑛 digits has approxi-

mately the probability 𝑄𝑛(𝜔) = 10−𝑛 to appear as the actual sequence of third
digits. Let us fix 𝑛. We are given a particular sequence 𝜔 and want to test the
validity of the government’s claim that the elections were fair. We interpret the
assertion “𝜔 is random with respect to 𝑄𝑛” as a synonym for “there is no reason
to challenge the claim that 𝜔 arose from the distribution 𝑄𝑛”.
How can such a claim be challenged at all? The government, just like the

weather forecaster who announces 30% chance of rain, does not guarantee any
particular set of outcomes. However, to stand behind its claim, it must agree to
any bet based on the announced distribution. Let us call a payoff function with
respect the distribution 𝑃 any nonnegative function 𝑡(𝜔) with ∑𝜔 𝑃(𝜔)𝑡(𝜔) ≤
1. If a “nonprofit” gambling casino asks 1 dollar for a game and claims that each
outcome has probability 𝑃(𝜔) then it must agree to pay 𝑡(𝜔) dollars on outcome
𝜔. We would propose to the government the following payoff function 𝑡0 with
respect to 𝑄𝑛: let 𝑡0(𝜔) = 10𝑛/2 for all sequences 𝜔 whose even digits are given
by 𝜋, and 0 otherwise. This bet would cost the government 10𝑛/2 − 1 dollars.
Unfortunately, we must propose the bet before the elections take place and

it is unlikely that we would have come up exactly with the payoff function 𝑡0. Is
then the suspicion unjustifiable?
No. Though the function 𝑡0 is not as natural as to guess it in advance, it is

still highly “regular”. And already Laplace assumed in [15] that the number of
“regular” bets is so small we can afford to make them all in advance and still
win by a wide margin.
Kolmogorov discovered in [27] and [29] (probably without knowing

about [15] but following a four decades long controversy on von Mises’ con-
cept of randomness, see [53]) that to make this approach work we must define
“regular” or “simple” as “having a short description” (in some formal sense to
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1.1. Introduction

be specified below). There cannot be many objects having a short description
because there are not many short strings of symbols to be used as descriptions.
We thus come to the principle saying that on a random outcome, all suffi-

ciently simple payoff functions must take small values. It turns out below that
this can be replaced by the more elegant principle saying that a random out-
come itself is not too simple. If descriptions are written in a 2-letter alphabet
then a typical sequence of 𝑛 digits takes 𝑛 log 10 letters to describe (if not stated
otherwise, all logarithms in these notes are to the base 2). The digits of 𝜋 can
be generated by an algorithm whose description takes up only some constant
length. Therefore the sequence 𝑥1 . . . 𝑥𝑛 above can be described with approx-
imately (𝑛/2) log 10 letters, since every other digit comes from 𝜋. It is thus
significantly simpler than a typical sequence and can be declared nonrandom.

1.1.1 Formal results

The theory of randomness is more impressive for infinite sequences than for finite
ones, since sharp distinction can be made between random and nonrandom in-
finite sequences. For technical simplicity, first we will confine ourselves to finite
sequences, especially a discrete sample space Ω, which we identify with the set
of natural numbers. Binary strings will be identified with the natural numbers
they denote.

Definition 1.1.1 A Turing machine is an imaginary computing device consisting
of the following. A control state belonging to a finite set 𝐴 of possible control
states. A fixed number of infinite (or infinitely extendable) strings of cells called
tapes. Each cell contains a symbol belonging to a finite tape alphabet 𝐵. On each
tape, there is a read-write head observing one of the tape cells. The machine’s
configuration (global state) is determined at each instant by giving its control
state, the contents of the tapes and the positions of the read-write heads. The
“hardware program” of the machine determines its configuration in the next step
as a functon of the control state and the tape symbols observed. It can change
the control state, the content of the observed cells and the position of the read-
write heads (the latter by one step to the left or right). Turing machines can
emulate computers of any known design (see for example [60]). The tapes are
used for storing programs, input data, output and as memory. y

The Turing machines that we will use to interpret descriptions will be some-
what restricted.

Definition 1.1.2 Consider a Turing machine 𝐹 which from a binary string 𝑝
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1. Complexity

and a natural number 𝑥 computes the output 𝐹(𝑝, 𝑥) (if anything at all). We
will say that 𝐹 interprets 𝑝 as a description of 𝐹(𝑝, 𝑥) in the presence of the side
information 𝑥. We suppose that if 𝐹(𝑝, 𝑥) is defined then 𝐹(𝑞, 𝑥) is not defined
for any prefix 𝑞 of 𝑝. Such machines are called self-delimiting (s.d.).
The conditional complexity 𝐾𝐹 (𝑥 | 𝑦) of the number 𝑥 with respect to the

number 𝑦 is the length of the shortest description 𝑝 for which 𝐹(𝑝, 𝑦) = 𝑥. y

Kolmogorov and Solomonoff observed that the function 𝐾𝐹 (𝑥 | 𝑦) depends
only weakly on the machine 𝐹, because there are universal Turing machines
capable of simulating the work of any other Turing machine whose description
is supplied. More formally, the following theorem holds:

Theorem 1.1.1 (Invariance Theorem) There is a s.d. Turnig machine 𝑇 such
that for any s.d. machine 𝐹 a constant 𝑐𝐹 exists such that for all 𝑥, 𝑦 we have
𝐾𝑇 (𝑥 | 𝑦) ≤ 𝐾𝐹 (𝑥 | 𝑦) + 𝑐𝐹 .
This theorem motivates the following definition.

Definition 1.1.3 Let us fix 𝑇 and define 𝐾 (𝑥 | 𝑦) = 𝐾𝑇 (𝑥 | 𝑦) and 𝐾 (𝑥) =

𝐾 (𝑥 | 0). y

The function 𝐾 (𝑥 | 𝑦) is not computable. We can compute a nonincreas-
ing, convergent sequence of approximations to 𝐾 (𝑥) (it is semicomputable from
above), but will not know how far to go in this sequence for some prescribed
accuracy.
If 𝑥 is a binary string of length 𝑛 then 𝐾 (𝑥) ≤ 𝑛 + 2 log 𝑛 + 𝑐 for some

constant 𝑐. The description of 𝑥 with this length gives 𝑥 bit-for-bit, along with
some information of length 2 log 𝑛 which helps the s.d. machine find the end
of the description. For most binary strings of lenght 𝑛, no significantly shorter
description exists, since the number of short descriptions is small. Below, this
example is generalized and sharpened for the case when instead of counting the
number of simple sequences, we measure their probability.

Definition 1.1.4 Denote by 𝑥∗ the first one among the shortest descriptions of
𝑥. y

The correspondence 𝑥 → 𝑥∗ is a code in which no codeword is the prefix
of another one. This implies by an argument well-known in Information Theory
the inequality ∑︁

𝑥

2−𝐾 (𝑥 | 𝑦) ≤ 1, (1.1.1)

hence only a few objects 𝑥 can have small complexity. The converse of the same
argument goes as follows. Let ` be a computable probability distribution, one for
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1.1. Introduction

which there is a binary program computing `(𝜔) for each 𝜔 to any given degree
of accuracy. Let 𝐾 (`) be the length of the shortest one of these programs. Then

𝐾 (𝜔) ≤ − log `(𝜔) + 𝐾 (`) + 𝑐. (1.1.2)

Here 𝑐 is a universal constant. These two inequalities are the key to the estimates
of complexity and the characterization of randomness by complexity.
Denote

𝑑` (𝜔) = − log `(𝜔) − 𝐾 (𝜔).
Inequality (1.1.1) implies

𝑡` (𝜔) = 2𝑑` (𝜔)

can be viewed as a payoff function. Now we are in a position to solve the election
paradox. We propose the payoff function

2− log𝑄𝑛 (𝜔)−𝐾 (𝜔 | 𝑛)

to the government. (We used the conditional complexity 𝐾 (𝜔 | 𝑛) because the
uniform distribution 𝑄𝑛 depends on 𝑛.) If every other digit of the outcome 𝑥
comes from 𝜋 then 𝐾 (𝑥 | 𝑛) ≤ (𝑛/2) log 10 + 𝑐0 hence we win a sum 2𝑡 (𝑥) ≥
𝑐110𝑛/2 from the government (for some constants 𝑐0, 𝑐1 > 0), even though the
bet does not contain any reference to the number 𝜋.
The fact that 𝑡` (𝜔) is a payoff function implies by Markov’s Inequality for

any 𝑘 > 0
`{𝜔 : 𝐾 (𝜔) < − log `(𝜔) − 𝑘} < 2−𝑘. (1.1.3)

Inequalities (1.1.2) and (1.1.3) say that with large probability, the complexity
𝐾 (𝜔) of a random outcome𝜔 is close to its upper bound − log `(𝜔)+𝐾 (`). This
law occupies distinguished place among the “laws of probability”, because if the
outcome𝜔 violates any such law, the complexity falls far below the upper bound.
Indeed, a proof of some “law of probability” (like the law of large numbers, the
law of iterated logarithm, etc.) always gives rise to some simple computable
payoff function 𝑡(𝜔) taking large values on the outcomes violating the law, just
as in the election example. Let 𝑚 be some large number, suppose that 𝑡(𝜔) has
complexity < 𝑚/2, and that 𝑡(𝜔0) > 2𝑚. Then inequality (1.1.2) can be applied
to a(𝜔) = `(𝜔)𝑡(𝜔), and we get

𝐾 (𝜔) ≤ − log `(𝜔) − 𝑚 + 𝐾 (a) + 𝑐0
≤ − log `(𝜔) − 𝑚/2 + 𝐾 (`) + 𝑐1

for some constants 𝑐0, 𝑐1.
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1. Complexity

More generally, the payoff function 𝑡` (𝜔) is maximal (up to a multiplicative
constant) among all payoff functions that are semicomputable (from below).
Hence the quantity − log `(𝜔) − 𝐾 (𝜔) is a universal test of randomness. Its
value measures the deficiency of randomness in the outcome 𝜔 with respect to
the distribution `, or the extent of justified suspicion against the hypothesis `
given the outcome 𝜔.

1.1.2 Applications

Algorithmic Information Theory (AIT) justifies the intuition of random sequences
as nonstandard analysis justifies infinitely small quantities. Any statement of
classical probability theory is provable without the notion of randomness, but
some of them are easier to find using this notion. Due to the incomputability of
the universal randomness test, only its approximations can be used in practice.

Pseudorandom sequences are sequences generated by some algorithm, with
some randomness properties with respect to the coin-tossing distribution. They
have very low complexity (depending on the strength of the tests they withstand,
see for example [14]), hence are not random. Useful pseudorandom sequences
can be defined using the notion of computational complexity, for example the
number of steps needed by a Turing machine to compute a certain function.
The existence of such sequences can be proved using some difficult unproven
(but plausible) assumptions of computation theory. See [6], [59], [24], [34].

Inductive inference

The incomputable “distribution” m(𝜔) = 2−𝐾 (𝜔) has the remarkable property
that, the test 𝑑(𝜔 |m), shows all outcomes 𝜔 “random” with respect to it. Rela-
tions (1.1.2) and (1.1.3) can be read as saying that if the real distribution is `
then `(𝜔) andm(𝜔) are close to each other with large probability. Therefore if
we know that 𝜔 comes from some unknown simple distribution ` then we can
use m(𝜔) as an estimate of `(𝜔). This suggests to call m the “apriori proba-
bility” (but we will not use this term much). The randomness test 𝑑` (𝜔) can
be interpreted in the framework of hypothesis testing: it is the likelihood ratio
between the hypothesis ` and the fixed alternative hypothesis m.
In ordinary statistical hypothesis testing, some properties of the unknown

distribution ` are taken for granted. The sample 𝜔 is generally a large indepen-
dent sample: ` is supposed to be a product distribution. Under these conditions,
the universal test could probably be reduced to some of the tests used in statis-
tical practice. However, these conditions do not hold in other applications: for
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1.1. Introduction

example testing for independence in a proposed random sequence, predicting
some time series of economics, or pattern recognition.
If the apriori probability m is a good estimate of the actual probability then

we can use the conditional apriori probability for prediction, without reference
to the unknown distribution `. For this purpose, one first has to define apriori
probability for the set of infinite sequences of natural numbers, as done in [61].
We denote this function by 𝑀. For any finite sequence 𝑥, the number 𝑀 (𝑥) is
the apriori probability that the outcome is some extension of 𝑥. Let 𝑥, 𝑦 be finite
sequences. The formula

𝑀 (𝑥 𝑦)
𝑀 (𝑥) (1.1.4)

is an estimate of the conditional probability that the next terms of the outcome
will be given by 𝑦 provided that the first terms are given by 𝑥. It converges
to the actual conditional probability `(𝑥 𝑦)/`(𝑥) with `-probability 1 for any
computable distribution ` (see for example [46]). To understand the surprising
generality of the formula (1.1.4), suppose that some infinite sequence 𝑧(𝑖) is
given in the following way. Its even terms are the subsequent digits of 𝜋, its odd
terms are uniformly distributed, independently drawn random digits. Let

𝑧(1 : 𝑛) = 𝑧(1) · · · 𝑧(𝑛).
Then 𝑀 (𝑧(1 : 2𝑖)𝑎/𝑀 (𝑧(1 : 2𝑖)) converges to 0.1 for 𝑎 = 0, . . . , 9, while
𝑀 (𝑧(1 : 2𝑖 + 1)𝑎)/𝑀 (𝑧(1 : 2𝑖 + 1)) converges to 1 if 𝑎 is the 𝑖-th digit of 𝜋, and
to 0 otherwise.
The inductive inference formula using conditional apriori probability can be

viewed as a mathematical form of “Occam’s Razor”: the advice to predict by the
simplest rule fitting the data. It can also viewed as a realization of Bayes’Rule,
with a universally applicable apriori distribution. Since the distribution 𝑀 is in-
computable, we view the main open problem of inductive inference to find max-
imally efficient approximations to it. Sometimes, even a simple approximation
gives nontrivial results (see [3]).

Information theory

Since with large probability, 𝐾 (𝜔) is close to − log `(𝜔), the entropy
−∑

𝜔 `(𝜔) log `(𝜔) of the distribution ` is close to the average complexity∑
𝜔 `(𝜔)𝐾 (𝜔). The complexity 𝐾 (𝑥) of an object 𝑥 can indeed be interpreted
as the distribution-free definition of information content. The correspondence
𝑥 ↦→ 𝑥∗ is a sort of universal code: its average (even individual) “rate”, or code-
word length is almost equally good for any simple computable distribution.

7



1. Complexity

It is of great conceptual help to students of statistical physics that entropy
can be defined now not only for ensembles (probability distributions), but for
individual states of a physical system. The notion of an individual incompressible
sequence, a sequence whose complexity is maximal, proved also extremely useful
in finding information-theoretic lower bounds on the computing speed of certain
Turing machines (see [39]).
The conditional complexity 𝐾 (𝑥 | 𝑦) obeys identities analogous to the

information-theoretical identities for conditional entropy, but these identities are
less trivial to prove in AIT. The information 𝐼(𝑥 : 𝑦) = 𝐾 (𝑥) +𝐾 (𝑦) −𝐾 (𝑥, 𝑦) has
several interpretations. It is known that 𝐼(𝑥 : 𝑦) is equal, to within an additive
constant, to 𝐾 (𝑦) − 𝐾 (𝑦 | 𝑥∗), the amount by which the object 𝑥∗ (as defined in
the previous section) decreases our uncertainty about 𝑦. But it can be written
as − logm2(𝑥, 𝑦) − 𝐾 (𝑥, 𝑦) = 𝑑((𝑥, 𝑦) |m2) where m2 = m ×m is the product
distribution of m with itself. It is thus the deficiency of randomness of the pair
(𝑥, 𝑦) with respect to this product distribution. Since any object is random with
respect to m, we can view the randomness of the pair (𝑥, 𝑦) with respect to the
product m2 as the independence of 𝑥 and 𝑦 from each other. Thus “information”
measures the “deficiency of independence”.

Logic

Some theorems of Mathematical Logic (in particular, Gödel’s theorem) have a
strong quantitative form in AIT, with new philosophical implications (see [8],
[9], [31], [33]). Levin based a new system of intuitionistic analysis on his Inde-
pendence Principle (see below) in [33].

1.1.3 History of the problem

P. S. Laplace thought that the number of “regular” sequences (whatever “regular”
means) is much smaller than the number of irregular ones (see [15]). In the first
attempt at formalization hundred years later, R. von Mises defined an infinite
binary sequence as random (a “Kollektiv”) if the relative frequencies converge in
any subsequence selected according to some (non-anticipating) “rule” (whatever
“rule”means, see [53]). As pointed out by A.Wald and others, Mises’s definitions
are sound only if a countable set of possible rules is fixed. The logician A. Church,
in accordance with his famous thesis, proposed to understand “rule” here as
“recursive (computable) function”.
The Mises selection rules can be considered as special randomness tests. In

the ingenious work [52], J. Ville proved that they do not capture all relevant
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1.1. Introduction

properties of random sequences. In particular, a Kollektiv can violate the law of
iterated logarithm. He proposed to consider arbitrary payoff functions (a count-
able set of them), as defined on the set of infinite sequences—these are more
commonly known as martingales.
For the solution of the problem of inductive inference, R. Solomonoff intro-

duced complexity and apriori probability in [45] and proved the Invariance The-
orem. A. N. Kolmogorov independently introduced complexity as a measure of
individual information content and randomness, and proved the Invariance The-
orem (see [27] and [29]). The incomputability properties of complexity have
noteworthy philosophical implications (see [4], [8], [9].
P. Martin-Löf defined in [38] randomness for infinite sequences. His concept

is essentially the synthesis of Ville and Church (as noticed in [41]). He rec-
ognized the existence of a universal test, and pointed out the close connection
between the randomness of an infinite sequence and the complexity of its initial
segments.
L. A. Levin defined the apriori probability 𝑀 as a maximal (to within a

multiplicative constant) semicomputable measure. With the help of a modi-
fied complexity definition, he gave a simple and general characterization of
random sequences by the behavior of the complexity of their initial segments
(see [61], [30]). In [17] and [31], the information-theoretical properties of
the self-delimiting complexity (as defined above) are exactly described. See
also [10], [42] and [58].
In [33], Levin defined a deficiency of randomness 𝑑(𝜔 | `) in a uniformman-

ner for all (computable or incomputable) measures `. He proved that all out-
comes are random with respect to the apriori probability 𝑀. In this and earlier
papers, he also proved the Law of Information Conservation, stating that the
information 𝐼(𝛼; 𝛽) in a sequence 𝛼 about a sequence 𝛽 cannot be significantly
increased by any algorithmic processing of 𝛼 (even using random number gener-
ators). He derived this law from a so-called Law of Randomness Conservation via
the definition of information 𝐼(𝛼; 𝛽) as deficiency of randomness with respect to
the product distribution 𝑀2. Levin suggested the Independence Principle saying
that any sequence 𝛼 arising in nature contains only finite information 𝐼(𝛼; 𝛽)
about any sequence 𝛽 defined by mathematical means. With this principle, he
showed that the use of more powerful notions of definability in randomness tests
(or the notion of complexity) does not lead to fewer random sequences among
those arising in nature.
The monograph [16] is very useful as background information on the vari-

ous attempts in this century at solving the paradoxes of probability theory. The
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1. Complexity

work [33] is quite comprehensive but very dense; it can be recommended only
to devoted readers. The work [61] is comprehensive and readable but not quite
up-to-date. The surveys [12], [41] and [43] can be used to complement it.
The most up-to-date and complete survey, which subsumes most of these

notes, is [36].
AIT created many interesting problems of its own. See for example [10],

[11], [17], [18], [19], [20], [35], [33], [37], [41], [44], [47], and the techni-
cally difficult results [48] and [55].

Acknowledgment

The form of exposition of the results in these notes and the general point of view
represented in them were greatly influenced by Leonid Levin. More recent com-
munication with Paul Vitányi, Mathieu Hoyrup, Cristóbal Rojas and Alexander
Shen has also been very important.

1.2 Notation

When not stated otherwise, logmeans base 2 logarithm. The cardinality of a set
𝐴 will be denoted by |𝐴|. (Occasionally there will be inconsistency, sometimes
denoting it by |𝐴|, sometimes by #𝐴.) If 𝐴 is a set then 1𝐴 (𝑥) is its indicator
function:

1𝐴 (𝑥) =
{
1 if 𝑥 ∈ 𝐴,
0 otherwise.

The empty string is denoted by Λ. The set 𝐴∗ is the set of all finite strings
of elements of 𝐴, including the empty string. Let 𝑙(𝑥) denote the length of
string 𝑥. (Occasionally there will be inconsistency, sometimes denoting it by
|𝑥 |, sometimes by 𝑙(𝑥)). For sequences 𝑥 and 𝑦, let 𝑥 v 𝑦 denote that 𝑥 is a
prefix of 𝑦. For a string 𝑥 and a (finite or infinite) sequence 𝑦, we denote their
concatenation by 𝑥 𝑦. For a sequence 𝑥 and 𝑛 ≤ 𝑙(𝑥), the 𝑛-th element of 𝑥 is
𝑥 (𝑛), and

𝑥 (𝑖 : 𝑗) = 𝑥 (𝑖) · · · 𝑥 ( 𝑗).
Sometimes we will also write

𝑥≤𝑛 = 𝑥 (1 : 𝑛).
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1.3. Kolmogorov complexity

The string 𝑥1 · · · 𝑥𝑛 will sometimes be written also as (𝑥1, . . . , 𝑥𝑛). For natural
number 𝑚 let 𝛽(𝑚) be the binary sequence denoting 𝑚 in the binary notation.
We denote by 𝑋N the set of all infinite sequences of elements of 𝑋 .
The sets of natural numbers, integers, rational numbers, real numbers and

complex numbers will be denoted respectively by N,Z,Q,R,C. The set of non-
negative real numbers will be denoted by R+. The set of real numbers with
−∞,∞ added (with the appropriate topology making it compact) will be de-
noted by R. Let

S𝑟 = {0, . . . , 𝑟 − 1}∗, S = N∗, B = {0, 1}.

We use ∧ and ∨ to denote min and max, further

|𝑥 |+ = 𝑥 ∨ 0, |𝑥 |− = | − 𝑥 |+

for real numbers 𝑥.
Let 〈·〉 be some standard one-to-one encoding of N∗ to N, with partial in-

verses [·] 𝑖 where [〈𝑥〉] 𝑖 = 𝑥 (𝑖) for 𝑖 ≤ 𝑙(𝑥). For example, we can have

〈𝑖, 𝑗〉 = 1
2
(𝑖 + 1) (𝑖 + 𝑗 + 1) + 𝑗, 〈𝑛1, . . . , 𝑛𝑘+1〉 = 〈〈𝑛1, . . . , 𝑛𝑘〉, 𝑛𝑘+1〉.

We will use 〈·, ·〉 in particular as a pairing function over N. Similar pairing
functions will be assumed over other domains, and they will also be denoted by
〈·, ·〉.
Another use of the notation (·, ·) may arise when the usual notation (𝑥, 𝑦)

of an ordered pair of real numbers could be confused with the same notation of
an open interval. In this case, we will use (𝑥, 𝑦) to denote the pair.
The relations

𝑓
+
< 𝑔, 𝑓

∗
< 𝑔

mean inequality to within an additive constant and multiplicative constant re-
spectively. The first is equivalent to 𝑓 ≤ 𝑔 + 𝑂(1), the second to 𝑓 = 𝑂(𝑔). The
relation 𝑓 ∗

= 𝑔 means 𝑓 ∗
< 𝑔 and 𝑓 ∗

> 𝑔.

1.3 Kolmogorov complexity

1.3.1 Invariance

It is natural to try to define the information content of some text as the size of
the smallest string (code) from which it can be reproduced by some decoder,

11



1. Complexity

interpreter. We do not want too much information “to be hidden in the decoder”
we want it to be a “simple” function. Therefore, unless stated otherwise, we
require that our interpreters be computable, that is partial recursive functions.

Definition 1.3.1 A partial recursive function 𝐴 from S2 × S to S will be called
a (binary) interpreter, or decoder. We will often refer to its first argument as the
program, or code. y

Partial recursive functions are relatively simple; on the other hand, the class
of partial recursive functions has some convenient closure properties.

Definition 1.3.2 For any binary interpreter 𝐴 and strings 𝑥, 𝑦 ∈ S, the number

𝐶𝐴 (𝑥 | 𝑦) = min{ 𝑙(𝑝) : 𝐴(𝑝, 𝑦) = 𝑥 }

is called the conditional Kolmogorov-complexity of 𝑥 given 𝑦, with respect to the
interpreter 𝐴 . (If the set after the “min” is empty, then the minimum is∞). We
write 𝐶𝐴 (𝑥) = 𝐶𝐴 (𝑥 | Λ). y

The number𝐶𝐴 (𝑥)measures the length of the shortest description for 𝑥 when
the algorithm 𝐴 is used to interpret the descriptions.
The value 𝐶𝐴 (𝑥) depends, of course, on the underlying function 𝐴. But,

as Theorem 1.3.1 shows, if we restrict ourselves to sufficiently powerful inter-
preters 𝐴, then switching between them can change the complexity function
only by amounts bounded by some additive constant. Therefore complexity can
be considered an intrinsic characteristic of finite objects.

Definition 1.3.3 A binary p.r. interpreter 𝑈 is called optimal if for any binary
p.r. interpreter 𝐴 there is a constant 𝑐 < ∞ such that for all 𝑥, 𝑦 we have

𝐶𝑈 (𝑥 | 𝑦) ≤ 𝐶𝐴 (𝑥 | 𝑦) + 𝑐. (1.3.1)

y

Theorem 1.3.1 (Invariance Theorem) There is an optimal p.r. binary interpreter.

Proof. The idea is to use interpreters that come from universal partial recursive
functions. However, not all such functions can be used for universal interpreters.
Let us introduce an appropriate pairing function. For 𝑥 ∈ B𝑛, let

𝑥𝑜 = 𝑥 (1)0𝑥 (2)0 . . . 𝑥 (𝑛 − 1)0𝑥 (𝑛)1

where 𝑥𝑜 = 𝑥1 for 𝑙(𝑥) = 1. Any binary sequence 𝑥 having at least one 1 in an
even position can be represented, uniquely, in the form 𝑥 = 𝑎𝑜𝑏.

12



1.3. Kolmogorov complexity

We know there is a p.r. function 𝑉 : S2 × S2 × S → S that is universal: for
any p.r. binary interpreter 𝐴, there is a string 𝑎 such that for all 𝑝, 𝑥, we have
𝐴(𝑝, 𝑥) = 𝑉 (𝑎, 𝑝, 𝑥). Let us define the function 𝑈 (𝑝, 𝑥) as follows. We represent
the string 𝑝 in the form 𝑝 = 𝑢𝑜𝑣 and define 𝑈 (𝑝, 𝑥) = 𝑉 (𝑢, 𝑣, 𝑥). Then 𝑈 is a
p.r. interpreter. Let us verify that it is optimal. Let 𝐴 be a p.r. binary interpreter, 𝑎
a binary string such that 𝐴(𝑝, 𝑥) = 𝑈 (𝑎, 𝑝, 𝑥) for all 𝑝, 𝑥. Let 𝑥, 𝑦 be two strings.
If 𝐶𝐴 (𝑥 | 𝑦) = ∞, then (1.3.1) holds trivially. Otherwise, let 𝑝 be a binary string
of length 𝐶𝐴 (𝑥 | 𝑦) with 𝐴(𝑝, 𝑦) = 𝑥. Then we have

𝑈 (𝑎𝑜𝑝, 𝑦) = 𝑉 (𝑎, 𝑝, 𝑦) = 𝐴(𝑝, 𝑦) = 𝑥,

and
𝐶𝑈 (𝑥 | 𝑦) ≤ 2𝑙(𝑎) + 𝐶𝐴 (𝑥 | 𝑦).

�

The constant 2𝑙(𝑎) is in the above proof a bound on the complexity of de-
scription of the interpreter 𝐴 for the optimal interpreter 𝑈. Let us note that for
any two optimal interpreters 𝑈 (1) , 𝑈 (2) , there is a constant 𝑐 such that for all
𝑥, 𝑦, we have

|𝐶𝑈 (1) (𝑥 | 𝑦) − 𝐶𝑈 (2) (𝑥 | 𝑦) | < 𝑐. (1.3.2)

Hence the complexity𝐶𝑈 (𝑥) of description of an object 𝑥 does not depend strongly
on the interpreter 𝑈. Still, for every string 𝑥, there is an optimal interpreter 𝑈
with 𝐶𝑈 (𝑥) = 0. Imposing a universal bound on the table size of the Turing
machines used to implement optimal interpreters, we can get a universal bound
on the constants in (1.3.2).
The theorem motivates the following definition.

Definition 1.3.4 We fix an optimal binary p.r. interpreter 𝑈 and write 𝐶(𝑥 | 𝑦)
for 𝐶𝑈 (𝑥 | 𝑦). y

Theorem 1.3.1 (as well as other invariance theorems) is used in AIT for much
more than just to show that 𝐶𝐴 (𝑥) is a proper concept. It is the principal tool to
find upper bounds on 𝐶(𝑥); this is why most such upper bounds are proved to
hold only to within an additive constant.
The optimal interpreter𝑈 (𝑝, 𝑥) defined in the proof of Theorem 1.3.1 is obvi-

ously a universal partial recursive function. Because of its convenient properties
we will use it from now on as our standard universal p.r. function, and we will
refer to an arbitrary p.r. function as 𝑈𝑝(𝑥) = 𝑈 (𝑝, 𝑥).
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Definition 1.3.5 We define 𝑈𝑝(𝑥1, . . . , 𝑥𝑘) = 𝑈𝑝(〈𝑥1 . . . , 𝑥𝑘〉). Similarly, we
will refer to an arbitrary computably enumerable set as the range 𝑊𝑝 of some
𝑈𝑝. We often do not need the second argument of the function 𝑈 (𝑝, 𝑥). We
therefore define

𝑈 (𝑝) = 𝑈 (𝑝, Λ).
y

It is of no consequence that we chose binary strings as as descriptions. It is
rather easy to define, (Exercise) for any two natural numbers 𝑟, 𝑠, a standard
encoding cnv𝑟𝑠 of base 𝑟 strings 𝑥 into base 𝑠 strings with the property

𝑙(cnv𝑟𝑠 (𝑥)) ≤ 𝑙(𝑥) log 𝑟
log 𝑠

+ 1.

Now, with 𝑟-ary strings as descriptions, we must define 𝐶𝐴 (𝑥) as the minimum
of 𝑙(𝑝) log 𝑟 over all programs 𝑝 in S𝑟 with 𝐴(𝑝) = 𝑥. The equivalence of the
definitions for different values of 𝑟 is left as an exercise.

1.3.2 Simple quantitative estimates

We found it meaningful to speak about the information content, complexity of
a finite object. But how to compute this quantity? It turns out that complexity
is not a computable function, but much is known about its statistical behavior.
The following notation will be useful in the future.

Definition 1.3.6 The relation 𝑓
+
< 𝑔 means inequality to within an additive

constant, that there is a constant 𝑐 such that for all 𝑥, 𝑓 (𝑥) ≤ 𝑔(𝑥). We can
write this also as 𝑓 ≤ 𝑔 + 𝑂(1). We also say that 𝑔 additively dominates 𝑓 . The
relation 𝑓

+
= 𝑔 means 𝑓 +

< 𝑔 and 𝑓
+
> 𝑔. The relation 𝑓

∗
< 𝑔 among nonnegative

functions means inequality to within a multiplicative constant. It is equivalent
to log 𝑓 +

< log 𝑔 and 𝑓 = 𝑂(𝑔). We also say that 𝑔 multiplicatively dominates 𝑓 .
The relation 𝑓 ∗

= 𝑔 means 𝑓 ∗
< 𝑔 and 𝑓 ∗

> 𝑔. y

With the above notation, here are the simple properties.

Theorem 1.3.2 The following simple upper bound holds.
a) For any natural number 𝑚, we have

𝐶(𝑚) +
< log𝑚. (1.3.3)

b) For any positive real number 𝑣 and string 𝑦, every finite set 𝐸 of size 𝑚 has at
least 𝑚(1 − 2−𝑣+1) elements 𝑥 with 𝐶(𝑥 | 𝑦) ≥ log𝑚 − 𝑣.
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1.3. Kolmogorov complexity

Corollary 1.3.7 lim𝑛→∞ 𝐶(𝑛) = ∞.

Theorem 1.3.2 suggests that if there are so few strings of low complexity,
then 𝐶(𝑛) converges fast to ∞. In fact this convergence is extremely slow, as
shown in a later section.

Proof of Theorem 1.3.2. First we prove (a). Let the interpreter 𝐴 be defined such
that if 𝛽(𝑚) = 𝑝 then 𝐴(𝑝, 𝑦) = 𝑚. Since |𝛽(𝑚) | = dlog𝑚e, we have 𝐶(𝑚) +

<

𝐶𝐴 (𝑚) < log𝑚 + 1.
Part (b) says that the trivial estimate (1.3.3) is quite sharp for most numbers

under 𝑚. The reason for this is that since there are only few short programs,
there are only few objects of low complexity. For any string 𝑦, and any positive
real natural number 𝑢, we have

|{𝑥 : 𝐶(𝑥 | 𝑦) ≤ 𝑢}| < 2𝑢+1. (1.3.4)

To see this, let 𝑛 = blog 𝑢c. The number 2𝑛+1 − 1 of different binary strings of
length ≤ 𝑛 is an upper bound on the number of different shortest programs of
length ≤ 𝑢. Now (b) follows immediately from (1.3.4). �

The three properties of complexity contained in Theorems 1.3.1 and 1.3.2
are the ones responsible for the applicabiliy of the complexity concept. Several
important later results can be considered transformations, generalizations or
analogons of these.
Let us elaborate on the upper bound (1.3.3). For any string 𝑥 ∈ S𝑟, we have

𝐶(𝑥) +
< 𝑛 log 𝑟 + 2 log 𝑟. (1.3.5)

In particular, for any binary string 𝑥, we have

𝐶(𝑥) +
< 𝑙(𝑥).

Indeed, let the interpreter 𝐴 be defined such that if 𝑝 = 𝛽(𝑟)𝑜cnv𝑟2(𝑥) then
𝐴(𝑝, 𝑦) = 𝑥. We have 𝐶𝐴 (𝑥) ≤ 2𝑙 (𝛽 (𝑟)) + 𝑛 log 𝑟 + 1 ≤ (𝑛 + 2) log 𝑟 + 3. Since
𝐶(𝑥) +

< 𝐶𝐴 (𝑥), we are done.
Wewill have manymore upper bound proofs of this form, and will not always

explicitly write out the reference to 𝐶(𝑥 | 𝑦) +
< 𝐶𝐴 (𝑥 | 𝑦), needed for the last step.

Apart from the conversion, inequality (1.3.5) says that since the beginning of
a program can command the optimal interpreter to copy the rest, the complexity
of a binary sequence 𝑥 of length 𝑛 is not larger than 𝑛.
Inequality (1.3.5) contains the term 2 log 𝑟 instead of log 𝑟 since we have to

apply the encoding 𝑤𝑜 to the string 𝑤 = 𝛽(𝑟); otherwise the interpreter cannot
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detach it from the program 𝑝. We could use the code 𝛽( |𝑤|)𝑜𝑤, which is also a
prefix code, since the first, detachable part of the codeword tells its length.
For binary strings 𝑥, natural numbers 𝑛 and real numbers 𝑢 ≥ 1 we define

𝐽 (𝑢) = 𝑢 + 2 log 𝑢,
](𝑥) = 𝛽( |𝑥 |)𝑜𝑥,
](𝑛) = ](𝛽(𝑛)).

We have 𝑙(](𝑥)) +
< 𝐽 (𝑙(𝑥)) for binary sequences 𝑥, and 𝑙(](𝑟)) +

< 𝐽 (log 𝑟) for
numbers 𝑟. Therefore (1.3.5) is true with 𝐽 (log 𝑟) in place of 2 log 𝑟. Of course,
𝐽 (𝑥) could be replaced by still smaller functions, for example 𝑥 + 𝐽 (log 𝑥). We
return to this topic later.

1.4 Simple properties of information

If we transform a string 𝑥 by applying to it a p.r. function, then we cannot gain
information over the amount contained in 𝑥 plus the amount needed to describe
the transformation. The string 𝑥 becomes easier to describe, but it helps less in
describing other strings 𝑦.

Theorem 1.4.1 For any partial recursive function 𝑈𝑞, over strings, we have

𝐶(𝑈𝑞(𝑥) | 𝑦)
+
< 𝐶(𝑥 | 𝑦) + 𝐽 (𝑙(𝑞)),

𝐶(𝑦 |𝑈𝑞(𝑥))
+
> 𝐶(𝑦 | 𝑥) − 𝐽 (𝑙(𝑞)).

Proof. To define an interpreter 𝐴 with 𝐶𝐴 (𝑈𝑞(𝑥) | 𝑦)
+
< 𝐶(𝑥 | 𝑦) + 𝐽 (𝑙(𝑞)), we

define 𝐴(](𝑞)𝑝, 𝑦) = 𝑈𝑞(𝑈 (𝑝, 𝑦)). To define an interpreter 𝐵 with 𝐶𝐵 (𝑦 | 𝑥)
+
<

𝐶(𝑦 |𝑈𝑞(𝑥)) + 𝐽 (𝑞), we define 𝐵(](𝑞)𝑝, 𝑥) = 𝑈 (𝑝,𝑈𝑞(𝑥)). �

The following notation is natural.

Definition 1.4.1 The definition of conditional complexity is extended to pairs,
etc. by

𝐶(𝑥1, . . . , 𝑥𝑚 | 𝑦1, . . . , 𝑦𝑛) = 𝐶(〈𝑥1, . . . , 𝑥𝑚〉 | 〈𝑦1, . . . , 𝑦𝑛〉).

y

With the new notation, here are some new results.
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1.4. Simple properties of information

Corollary 1.4.2 For any one-to-one p.r. function 𝑈𝑝, we have

|𝐶(𝑥) − 𝐶(𝑈𝑝(𝑥)) |
+
< 𝐽 (𝑙(𝑝)).

Further,

𝐶(𝑥 | 𝑦, 𝑧) +
< 𝐶(𝑥 |𝑈𝑝(𝑦), 𝑧) + 𝐽 (𝑙(𝑝)),

𝐶(𝑈𝑝(𝑥))
+
< 𝐶(𝑥) + 𝐽 (𝑙(𝑝)),

𝐶(𝑥 | 𝑧) +
< 𝐶(𝑥, 𝑦 | 𝑧), (1.4.1)

𝐶(𝑥 | 𝑦, 𝑧) +
< 𝐶(𝑥 | 𝑦),

𝐶(𝑥, 𝑥) +
= 𝐶(𝑥), (1.4.2)

𝐶(𝑥, 𝑦 | 𝑧) +
= 𝐶(𝑦, 𝑥 | 𝑧),

𝐶(𝑥 | 𝑦, 𝑧) +
= 𝐶(𝑥 | 𝑧, 𝑦),

𝐶(𝑥, 𝑦 | 𝑥, 𝑧) +
= 𝐶(𝑦 | 𝑥, 𝑧),

𝐶(𝑥 | 𝑥, 𝑧) +
= 𝐶(𝑥 | 𝑥) +

= 0.

We made several times implicit use of a basic additivity property of com-
plexity which makes it possible to estimate the joint complexity of a pair by the
complexities of its constituents. As expressed in Theorem 1.4.2, it says essen-
tially that to describe the pair of strings, it is enough to know the description of
the first member and of a method to find the second member using our knowl-
edge of the first one.

Theorem 1.4.2
𝐶(𝑥, 𝑦) +

< 𝐽 (𝐶(𝑥)) + 𝐶(𝑦 | 𝑥).

Proof. We define an interpreter 𝐴 as follows. We decompose any binary string
𝑝 into the form 𝑝 = ](𝑤)𝑞, and let 𝐴(𝑝, 𝑧) = 𝑈 (𝑞, 𝑈 (𝑤)). Then 𝐶𝐴 (𝑥, 𝑦) is
bounded, to within an additive constant, by the right-hand side of the above
inequality. �

Corollary 1.4.3 For any p.r. function 𝑈𝑝 over pairs of strings, we have

𝐶(𝑈𝑝(𝑥, 𝑦))
+
< 𝐽 (𝐶(𝑥)) + 𝐶(𝑦 | 𝑥) + 𝐽 (𝑙(𝑝))
+
< 𝐽 (𝐶(𝑥)) + 𝐶(𝑦) + 𝐽 (𝑙(𝑝)),

and in particular,
𝐶(𝑥, 𝑦) +

< 𝐽 (𝐶(𝑥)) + 𝐶(𝑦).
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1. Complexity

This corollary implies the following continuity property of the function 𝐶(𝑛):
for any natural numbers 𝑛, ℎ, we have

|𝐶(𝑛 + ℎ) − 𝐶(𝑛) | +
< 𝐽 (log ℎ). (1.4.3)

Indeed, 𝑛 + ℎ is a recursive function of 𝑛 and ℎ. The term 2 log𝐶(𝑥) making
up the difference between 𝐶(𝑥) and 𝐽 (𝐶(𝑥)) in Theorem 1.4.2 is attributable to
the fact that minimal descriptions cannot be concatenated without loosing an
“endmarker”. It cannot be eliminated, since there is a constant 𝑐 such that for
all 𝑛, there are binary strings 𝑥, 𝑦 of length ≤ 𝑛 with

𝐶(𝑥) + 𝐶(𝑦) + log 𝑛 < 𝐶(𝑥, 𝑦) + 𝑐.

Indeed, there are 𝑛2𝑛 pairs of binary strings whose sum of lengths is 𝑛. Hence
by Theorem 1.3.2 b, there will be a pair (𝑥, 𝑦) of binary strings whose sum of
lengths is 𝑛, with 𝐶(𝑥, 𝑦) > 𝑛 + log 𝑛 − 1. For these strings, inequality (1.3.5)
implies 𝐶(𝑥) + 𝐶(𝑦) +

< 𝑙(𝑥) + 𝑙(𝑦). Hence 𝐶(𝑥) + 𝐶(𝑦) + log 𝑛 +
< 𝑛 + log 𝑛 <

𝐶(𝑥, 𝑦) + 1.
Regularities in a string will, in general, decrease its complexity radically. If

the whole string 𝑥 of length 𝑛 is given by some rule, that is we have 𝑥 (𝑘) = 𝑈𝑝(𝑘),
for some recursive function 𝑈𝑝, then

𝐶(𝑥) +
< 𝐶(𝑛) + 𝐽 (𝑙(𝑝)).

Indeed, let us define the p.r. function 𝑉 (𝑞, 𝑘) = 𝑈𝑞(1) . . . 𝑈𝑞(𝑘). Then 𝑥 =

𝑉 (𝑝, 𝑛) and the above estimate follows from Corollary 1.4.2.
For another example, let 𝑥 = 𝑦1𝑦1𝑦2𝑦2 · · · 𝑦𝑛𝑦𝑛, and 𝑦 = 𝑦1𝑦2 · · · 𝑦𝑛. Then

𝐶(𝑥) +
= 𝐶(𝑦) even though the string 𝑥 is twice longer. This follows from Corol-

lary 1.4.2 since 𝑥 and 𝑦 can be obtained from each other by a simple recursive
operation.
Not all “regularities” decrease the complexity of a string, only those which

distinguish it from the mass of all strings, putting it into some class which is both
small and algorithmically definable. For a binary string of length 𝑛, it is nothing
unusual to have its number of 0-s between 𝑛/2 −

√
𝑛 and 𝑛/2. Therefore such

strings can have maximal or almost maximal complexity. If 𝑥 has 𝑘 zeroes then
the inequality

𝐶(𝑥) +
< log

(
𝑛

𝑘

)
+ 𝐽 (log 𝑛) + 𝐽 (log 𝑘)

follows from Theorems 1.3.2 and 1.4.3.

18



1.5. Algorithmic properties of complexity

Theorem 1.4.3 Let 𝐸 = 𝑊𝑝 be an enumerable set of pairs of strings defined enu-
merated with the help of the program 𝑝 for example as

𝑊𝑝 = {𝑈 (𝑝, 𝑥) : 𝑥 ∈ N}. (1.4.4)

We define the section
𝐸𝑎 = {𝑥 : 〈𝑎, 𝑥〉 ∈ 𝐸}. (1.4.5)

Then for all 𝑎 and 𝑥 ∈ 𝐸𝑎, we have

𝐶(𝑥 | 𝑎) +
< log |𝐸𝑎 | + 𝐽 (𝑙(𝑝)).

Proof. We define an interpreter 𝐴(𝑞, 𝑏) as follows. We decompose 𝑞 into 𝑞 =

](𝑝)𝛽(𝑡). From a standard enumeration (𝑎(𝑘), 𝑥 (𝑘)) (𝑘 = 1, 2, . . .) of the set
𝑊𝑝, we produce an enumeration 𝑥 (𝑘, 𝑏) (𝑘 = 1, 2, . . .), without repetition, of
the set 𝑊𝑏

𝑝 for each 𝑏, and define 𝐴(𝑞, 𝑏) = 𝑥 (𝑡, 𝑏). For this interpreter 𝐴, we
get 𝑘𝐴 (𝑥 | 𝑎)

+
< 𝐽 (𝑙(𝑝)) + log |𝐸𝑎 |. �

It follows from Theorem 1.3.2 that whenever the set 𝐸𝑎 is finite, the estimate
of Theorem 1.4.3 is sharp for most of its elements 𝑥.
The shortest descriptions of a string 𝑥 seem to carry some extra information

in them, above the description of 𝑥. This is suggested by the following strange
identities.

Theorem 1.4.4 We have 𝐶(𝑥, 𝐶(𝑥)) +
= 𝐶(𝑥).

Proof. The inequality +
> follows from (1.4.1). To prove +

<, let 𝐴(𝑝) = 〈𝑈 (𝑝, 𝑙(𝑝))〉.
Then 𝐶𝐴 (𝑥, 𝐶(𝑥)) ≤ 𝐶(𝑥). �

More generally, we have the following inequality.

Theorem 1.4.5
𝐶(𝑦 | 𝑥, 𝑖 − 𝐶(𝑦 | 𝑥, 𝑖)) +

< 𝐶(𝑦 | 𝑥, 𝑖).
The proof is exercise.
The above inequalities are in some sense “pathological”, and do not neces-

sarily hold for all “reasonable” definitions of descriptional complexity.

1.5 Algorithmic properties of complexity

The function 𝐶(𝑥) is not computable, as it will be shown in this section. However,
it has a property closely related to computability. Let Q be the set of rational
numbers.
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Definition 1.5.1 (Computability) Let 𝑓 : S→ R be a function. It is computable
if there is a recursive function 𝑔(𝑥, 𝑛) with rational values, and | 𝑓 (𝑥)−𝑔(𝑥, 𝑛) | <
1/𝑛. y

Definition 1.5.2 (Semicomputability) A function 𝑓 : S → (−∞,∞] is (lower)
semicomputable if the set

{ (𝑥, 𝑟) : 𝑥 ∈ S, 𝑟 ∈ Q, 𝑟 < 𝑓 (𝑥) }

is recursively enumerable. A function 𝑓 is called upper semicomputable if − 𝑓 is
lower semicomputable. y

It is easy to show the following:
• A function 𝑓 : S → R is lower semicomputable iff there exists a recursive
function with rational values, (or, equivalently, a computable real function)
𝑔(𝑥, 𝑛) nondecreasing in 𝑛, with 𝑓 (𝑥) = lim𝑛→∞ 𝑔(𝑥, 𝑛).

• A function 𝑓 : S → R is computable if it is both lower and upper semicom-
putable.
The notion of semicomputibility is naturally extendable over other discrete

domains, like S × S. It is also useful to extend it to functions R → R. Let I
denote the set of open rational intervals of R, that is

𝛽 = { (𝑝, 𝑞) : 𝑝, 𝑞 ∈ Q, 𝑝 < 𝑞}.

Definition 1.5.3 (Computability for real functions) Let 𝑓 : R → R be a funct-
ion. It is computable if there is a recursively enumerable set F ⊆ 𝛽2 such that
denoting F𝐽 = { 𝐼 : (𝐼, 𝐽) ∈ F} we have

𝑓−1(𝐽) =
⋃
𝐼∈F𝐽

𝐼.

y

This says that if 𝑓 (𝑥) ∈ 𝐼 then sooner or later we will find an interval 𝐼 ∈ F𝐽

with the property that 𝑓 (𝑧) ∈ 𝐽 for all 𝑧 ∈ 𝐼. Note that computability implies
continuity.

Definition 1.5.4 We say that 𝑓 : R → R is lower semicomputable if there is a
recursively enumerable set G ⊆ Q × 𝛽 such that denoting G𝑞 = { 𝐼 : (𝐼, 𝑞) ∈ G}
we have

𝑓−1((𝑞,∞)) =
⋃
𝐼∈F𝐽

𝐼.

y
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1.5. Algorithmic properties of complexity

This says that if 𝑓 (𝑥) > 𝑟 then sooner or later we will find an interval 𝐼 ∈ F𝐽

with the property that 𝑓 (𝑧) > 𝑞 for all 𝑧 ∈ 𝐼.
The following facts are useful and simple to verify:

Proposition 1.5.5
a) The function d·e : R→ R is lower semicomputable.
b) If 𝑓 , 𝑔 : R→ R are computable then their composition 𝑓 (𝑔(·)) is, too.
c) If 𝑓 : R → R is lower semicomputable and 𝑔 : R → R (or S → R) is

computable then 𝑓 (𝑔(·)) is lower semicomputable.
d) If 𝑓 : R → R is lower semicomputable and monotonic, and 𝑔 : R → R (or

S→ R) is lower semicomputable then 𝑓 (𝑔(·)) is lower semicomputable.

Definition 1.5.6 We introduce a universal lower semicomputable function. For
every binary string 𝑝, and 𝑥 ∈ S, let

𝑆𝑝(𝑥) = sup{ 𝑦/𝑧 : 𝑦, 𝑧 ∈ 𝑍, 𝑧 ≠ 0, 〈〈𝑥〉, 𝑦, 𝑧〉 ∈ 𝑊𝑝}

where𝑊𝑝 was defined in (1.4.4). y

The function 𝑆𝑝(𝑥) is lower semicomputable as a function of the pair (𝑝, 𝑥),
and for different values of 𝑝, it enumerates all semicomputable functions of 𝑥.

Definition 1.5.7 Let 𝑆𝑝(𝑥1, . . . , 𝑥𝑘) = 𝑆𝑝(〈𝑥1, . . . , 𝑥𝑘〉). For any lower semi-
computable function 𝑓 , we call any binary string 𝑝 with 𝑆𝑝 = 𝑓 a Gödel number
of 𝑓 . There is no universal computable function, but for any computable function
𝑔, we call any number 〈〈𝑝〉, 〈𝑞〉〉 a Gödel number of 𝑔 if 𝑔 = 𝑆𝑝 = −𝑆𝑞. y

With this notion, we claim the following.

Theorem 1.5.1 The function 𝐶(𝑥 | 𝑦) is upper semicomputable.

Proof. By Theorem 1.3.2 there is a constant 𝑐 such that for any strings 𝑥, 𝑦, we
have 𝐶(𝑥 | 𝑦) < log〈𝑥〉+𝑐. Let some Turing machine compute our optimal binary
p.r. interpreter. Let 𝑈𝑡 (𝑝, 𝑦) be defined as 𝑈 (𝑝, 𝑦) if this machine, when started
on input (𝑝, 𝑦), gives an output in 𝑡 steps, undefined otherwise. Let 𝐾𝑡 (𝑥 | 𝑦) be
the smaller of log〈𝑥〉 + 𝑐 and

min{ 𝑙(𝑝) ≤ 𝑡 : 𝑈𝑡 (𝑝, 𝑦) = 𝑥 }.

Then the function 𝐾𝑡 (𝑥 | 𝑦) is computable, monotonic in 𝑡 and lim𝑡→∞ 𝐾𝑡 (𝑥 | 𝑦) =
𝐶(𝑥 | 𝑦). �

The function 𝐶(𝑛) is not computable. Moreover, it has no nontrivial partial
recursive lower bound.
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Theorem 1.5.2 Let𝑈𝑝(𝑛) be a partial recursive function whose values are numbers
smaller than 𝐶(𝑛) whenever defined. Then

𝑈𝑝(𝑛)
+
< 𝐽 (𝑙(𝑝)).

Proof. The proof of this theorem resembles “Berry’s paradox ”, which says: “The
least number that cannot be defined in less than 100 words” is a definition of
that number in 12 words. The paradox can be used to prove, whenever we agree
on a formal notion of “definition”, that the sentence in quotes is not a definition.
Let 𝑥 (𝑝, 𝑘) for 𝑘 = 1, 2, . . . be an enumeration of the domain of 𝑈𝑝. For any

natural number 𝑚 in the range of 𝑈𝑝, let 𝑓 (𝑝, 𝑚) be equal to the first 𝑥 (𝑝, 𝑘)
with 𝑈𝑝(𝑥 (𝑝, 𝑘)) = 𝑚. Then by definition, 𝑚 < 𝐶( 𝑓 (𝑝, 𝑚)). On the other hand,
𝑓 (𝑝, 𝑚) is a p.r. function, hence applying Corollary 1.4.3 and (1.3.5) we get

𝑚 < 𝐶( 𝑓 (𝑝, 𝑚)) +
< 𝐶(𝑝) + 𝐽 (𝐶(𝑚))

+
< 𝑙(𝑝) + 1.5 log𝑚.

�

Church’s first example of an undecidable recursively enumerable set used
universal partial recursive functions and the diagonal technique of Gödel and
Cantor, which is in close connection to Russel’s paradox. The set he constructed
is complete in the sense of “many-one reducibility”.
The first example of sets not complete in this sense were Post’s simple sets.

Definition 1.5.8 A computably enumerable set is simple if its complement is
infinite but does not contain any infinite computably enumerable subsets. y

The paradox used in the above proof is not equivalent in any trivial way
to Russell’s paradox, since the undecidable computably enumerable sets we get
from Theorem 1.5.2 are simple. Let 𝑓 (𝑛) ≤ log 𝑛 be any recursive function
with lim𝑛→∞ 𝑓 (𝑛) = ∞. We show that the set 𝐸 = {𝑛 : 𝐶(𝑛) ≤ 𝑓 (𝑛) } is
simple. It follows from Theorem 1.5.1 that 𝐸 is recursively enumerable, and
from Theorem 1.3.2 that its complement is infinite. Let 𝐴 be any computably
enumerable set disjoint from 𝐸. The restriction 𝑓𝐴 (𝑛) of the function 𝑓 (𝑛) to 𝐴 is
a p.r. lower bound for 𝐶(𝑛). It follows from Theorem 1.5.2 that 𝑓 (𝐴) is bounded.
Since 𝑓 (𝑛) → ∞, this is possible only if 𝐴 is finite.
Gödel used the diagonal technique to prove the incompleteness of any suffi-

ciently rich logical theory with a recursively enumerable axiom system. His tech-
nique provides for any sufficiently rich computably enumerable theory a concrete
example of an undecidable sentence. Theorem 1.5.2 leads to a new proof of this
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1.5. Algorithmic properties of complexity

result, with essentially different examples of undecidable propositions. Let us
consider any first-order language 𝐿 containing the language of standard first-
order arithmetic. Let 〈·〉 be a standard encoding of the formulas of this theory
into natural numbers. Let the computably enumerable theory 𝑇𝑝 be the theory
for which the set of codes 〈Φ〉 of its axioms Φ is the computably enumerable set
𝑊𝑝 of natural numbers.

Corollary 1.5.9 There is a constant 𝑐 < ∞ such that for any 𝑝, if any sentences
with the meaning “𝑚 < 𝐶(𝑛)” for 𝑚 > 𝐽 (𝑙(𝑝)) + 𝑐 are provable in theory 𝑇𝑝 then
some of these sentences are false.

Proof. For some 𝑝, suppose that all sentences “𝑚 < 𝐶(𝑛)” provable in 𝑇𝑝 are
true. For a sentence Φ, let 𝑇𝑝 ` Φ denote that Φ is a theorem of the theory 𝑇𝑝.
Let us define the function

𝐴(𝑝, 𝑛) = max{𝑚 : 𝑇𝑝 ` “𝑚 < 𝐶(𝑛)”}.

This function is semicomputable since the set { (𝑝, 〈Φ〉) : 𝑇𝑝 ` Φ} is recursively
enumerable. Therefore there is a binary string 𝑎 such that 𝐴(𝑝, 𝑛) = 𝑆(𝑎, 〈𝑝, 𝑛〉).
It is easy to see that we have a constant string 𝑏 such that

𝑆(𝑎, 〈𝑝, 𝑛〉) = 𝑆(𝑞, 𝑛)

where 𝑞 = 𝑏𝑎𝑝. (Formally, this statement follows for example from the so-called
𝑆𝑛𝑚-theorem.) The function 𝑆𝑞(𝑛) is a lower bound on the complexity function
𝐶(𝑛). By an immediate generalization of Theorem 1.5.2 for semicomputable
functions), we have 𝑆(𝑞, 𝑛) +

< 𝐽 (𝑙(𝑞)) +
< 𝐽 (𝑙(𝑝)). �

We have seen that the complexity function 𝐶(𝑥 | 𝑦) is not computable, and
does not have any nontrivial recursive lower bounds. It has many interesting
upper bounds, however, for example the ones in Theorems 1.3.2 and 1.4.3. The
following theorem characterizes all upper semicomputable upper bounds (ma-
jorants) of 𝐶(𝑥 | 𝑦).
Theorem 1.5.3 (Levin) Let 𝐹(𝑥, 𝑦) be a function of strings semicomputable from
above. The relation 𝐶(𝑥 | 𝑦) +

< 𝐹(𝑥, 𝑦) holds for all 𝑥, 𝑦 if and only if we have

log |{𝑥 : 𝐹(𝑥, 𝑦) < 𝑚}| +
< 𝑚 (1.5.1)

for all strings 𝑦 and natural numbers 𝑚.

Proof. Suppose that 𝐶(𝑥 | 𝑦) +
< 𝐹(𝑥, 𝑦) holds. Then (1.5.1) follows from b of

Theorem 1.3.2.
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Now suppose that (1.5.1) holds for all 𝑦, 𝑚. Then let 𝐸 be the computably
enumerable set of triples (𝑥, 𝑦, 𝑚) with 𝐹(𝑥, 𝑦) < 𝑚. It follows from (1.5.1)
and Theorem 1.4.3 that for all (𝑥, 𝑦, 𝑚) ∈ 𝐸 we have 𝐶(𝑥 | 𝑦, 𝑚) +

< 𝑚. By
Theorem 1.4.5 then 𝐶(𝑥 | 𝑦) +

< 𝑚. �

The minimum of any finite number of majorants is again a majorant. Thus,
we can combine different heuristics for recognizing patterns of sequences.

1.6 The coding theorem

1.6.1 Self-delimiting complexity

Some theorems on the addition of complexity do not have as simple a form as
desirable. For example, Theorem 1.4.2 implies

𝐶(𝑥, 𝑦) +
< 𝐽 (𝐶(𝑥)) + 𝐶(𝑦).

Wewould like to see just𝐶(𝑥) on the right-hand side, but the inequality𝐶(𝑥, 𝑦) +
<

𝐶(𝑥) + 𝐶(𝑦) does not always hold (see Exercise 5). The problem is that if we
compose a program for (𝑥, 𝑦) from those of 𝑥 and 𝑦 then we have to separate
them from each other somehow. In this section, we introduce a variant of Kol-
mogorov’s complexity discovered by Levin and independently by Chaitin and
Schnorr, which has the property that “programs” are self-delimiting: this will
free us of the necessity to separate them from each other.

Definition 1.6.1 A set of strings is called prefix-free if for any pair 𝑥, 𝑦 of ele-
ments in it, 𝑥 is not a prefix of 𝑦.
A one-to-one function into a set of strings is a prefix code, or instantaneous

code if its domain of definition is prefix free.
An interpreter 𝑓 (𝑝, 𝑥) is self-delimiting (s.d.) if for each 𝑥, the set 𝐷𝑥 of strings

𝑝 for which 𝑓 (𝑝, 𝑥) is defined is a prefix-free set. y

Example 1.6.2 The mapping 𝑝 → 𝑝𝑜 is a prefix code. y

A self-delimiting p.r. function 𝑓 (𝑝) can be imagined as a function computable
on a special self-delimiting Turing machine.

Definition 1.6.3 A Turing machine T is self-delimiting if it has no input tape,
but can ask any time for a new input symbol. After some computation and a few
such requests (if ever) the machine decides to write the output and stop. y

The essential difference between a self-delimitingmachine T and an ordinary
Turing machine is that T does not know in advance how many input symbols
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1.6. The coding theorem

suffice; she must compute this information from the input symbols themselves,
without the help of an “endmarker”.
Requiring an interpreter 𝐴(𝑝, 𝑥) to be self-delimiting in 𝑝 has many advan-

tages. First of all, when we concatenate descriptions, the interpreter will be able
to separate them without endmarkers. Lost endmarkers were responsible for the
additional logarithmic terms and the use of the function 𝐽 (𝑛) in Theorem 1.4.2
and several other formulas for 𝐾.

Definition 1.6.4 A self-delimiting partial recursive interpreter 𝑇 is called opti-
mal if for any other s.d. p.r. interpreter 𝐹, we have

𝐶𝑇
+
< 𝐶𝐹 . (1.6.1)

y

Theorem 1.6.1 There is an optimal s.d. interpreter.

Proof. The proof of this theorem is similar to the proof of Theorem 1.3.1. We take
the universal partial recursive function 𝑉 (𝑎, 𝑝, 𝑥). We transform each function
𝑉𝑎(𝑝, 𝑥) = 𝑉 (𝑎, 𝑝, 𝑥) into a self-delimiting function 𝑊𝑎(𝑝, 𝑥) = 𝑊 (𝑎, 𝑝, 𝑥), but
so as not to change the functions 𝑉𝑎 which are already self-delimiting. Then we
form 𝑇 from𝑊 just as we formed 𝑈 from 𝑉. It is easy to check that the function
𝑇 thus defined has the desired properties. Therefore we are done if we construct
𝑊.
Let some Turing machine M compute 𝑦 = 𝑉𝑎(𝑝, 𝑥) in 𝑡 steps. We define

𝑊𝑎(𝑝, 𝑥) = 𝑦 if 𝑙(𝑝) ≤ 𝑡 and if M does not compute in 𝑡 or fewer steps any
output 𝑉𝑎(𝑞, 𝑥) from any extension or prefix 𝑞 of length ≤ 𝑡 of 𝑝. If 𝑉𝑎 is self-
delimiting then𝑊𝑎 = 𝑉𝑎. But𝑊𝑎 is always self-delimiting. Indeed, suppose that
𝑝0 v 𝑝1 and that M computes 𝑉𝑎(𝑝𝑖, 𝑥) in 𝑡𝑖 steps. The value𝑊𝑎(𝑝𝑖, 𝑥) can be
defined only if 𝑙(𝑝𝑖) ≤ 𝑡𝑖. The definition of 𝑊𝑎 guarantees that if 𝑡0 ≤ 𝑡1 then
𝑊𝑎(𝑝1, 𝑥) is undefined, otherwise𝑊𝑎(𝑝0, 𝑥) is undefined. �

Definition 1.6.5 We fix an optimal self-delimiting p.r. interpreter 𝑇 (𝑝, 𝑥) and
write

𝐾 (𝑥 | 𝑦) = 𝐶𝑇 (𝑥 | 𝑦).
We call 𝐾 (𝑦 | 𝑥) the (self-delimiting) conditional complexity of 𝑥 with respect to
𝑦. y

We will use the expression “self-delimiting” only if confusion may arise. Oth-
erwise, under complexity, we generally understand the self-delimiting complex-
ity. Let 𝑇 (𝑝) = 𝑇 (𝑝, Λ). All definitions for unconditional complexity, joint com-
plexity etc. are automatically in force for 𝐻 = 𝐶𝑇 .
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1. Complexity

Let us remark that the s.d. interpreter defined in Theorem 1.6.1 has the
following stronger property. For any other s.d. interpreter 𝐺 there is a string 𝑔
such that we have

𝐺(𝑥) = 𝑇 (𝑔𝑥) (1.6.2)

for all 𝑥. We could say that the interpreter 𝑇 is universal.
Let us show that the functions 𝐾 and 𝐻 are asymptotically equal.

Theorem 1.6.2
𝐾

+
< 𝐻

+
< 𝐽 (𝐾). (1.6.3)

Proof. Obviously, 𝐾 +
< 𝐻. We define a self-delimiting p.r. function 𝐹(𝑝, 𝑥). The

machine computing 𝐹 tries to decompose 𝑝 into the form 𝑝 = 𝑢𝑜𝑣 such that 𝑢 is
the number 𝑙(𝑣) in binary notation. If it succeeds, it outputs 𝑈 (𝑣, 𝑥). We have

𝐾 (𝑦 | 𝑥) +
< 𝐶𝐹 (𝑦 | 𝑥)

+
< 𝐶(𝑦 | 𝑥) + 2 log𝐶(𝑦 | 𝑥).

�

Let us review some of the relations proved in Sections 1.3 and 1.4. Instead of
the simple estimate 𝐶(𝑥) +

< 𝑛 for a binary string 𝑥, of length 𝑛, only the obvious
consequence of Theorem 1.6.2 holds that is

𝐾 (𝑥) +
< 𝐽 (𝑛).

We must similarly change Theorem 1.4.3. We will use the universal p.r. function
𝑇𝑝(𝑥) = 𝑇 (𝑝, 𝑥). The r.e. set 𝑉𝑝 is the range of the function 𝑇𝑝. Let 𝐸 = 𝑉𝑝 be an
enumerable set of pairs of strings. The section 𝐸𝑎 is defined as in (1.4.5). Then
for all 𝑥 ∈ 𝐸𝑎, we have

𝐾 (𝑥 | 𝑎) +
< 𝐽 (log |𝐸𝑎 |) + 𝑙(𝑝). (1.6.4)

We do not need 𝐽 (𝑙(𝑝)) since the function 𝑇 is self-delimiting. However, the real
analogon of Theorem 1.4.3 is the Coding Theorem, to be proved later in this
section.
Part b of Theorem 1.3.2 holds for 𝐻, but is not the strongest what can be said.

The counterpart of this theorem is the inequality (1.6.10) below. Theorem 1.4.1
and its corollary hold without change for 𝐻. The additivity relations will be
proved in a sharper form for 𝐻 in the next section.

26



1.6. The coding theorem

1.6.2 Universal semimeasure

Self-delimiting complexity has an interesting characterization that is very useful
in applications.

Definition 1.6.6 A function 𝑤 : 𝑆 → [0, 1] is called a semimeasure over the
space 𝑆 if ∑︁

𝑥

𝑤(𝑥) ≤ 1. (1.6.5)

It is called a measure (a probability distribution) if equality holds here.
A semimeasure is called constructive if it is lower semicomputable. A con-

structive semimeasure whichmultiplicatively dominates every other constructive
semimeasure is called universal. y

Remark 1.6.7 Just as in an earlier remark, we warn that semimeasures will
later be defined over the space NN. They will be characterized by a nonnegative
function 𝑤 over S = N∗ but with a condition different from (1.6.5). y

The following remark is useful.

Proposition 1.6.8 If a constructive semimeasure 𝑤 is also a measure then it is
computable.

Proof. If we compute an approximation 𝑤𝑡 of the function 𝑤 from below for
which 1 − Y <

∑
𝑥 𝑤𝑡 (𝑥) then we have |𝑤(𝑥) − 𝑤𝑡 (𝑥) | < Y for all 𝑥. �

Theorem 1.6.3 There is a universal constructive semimeasure.

Proof. Every computable family 𝑤𝑖 (𝑖 = 1, 2, . . . ) of semimeasures is dominated
by the semimeasure

∑
𝑖 2−𝑖𝑤𝑖. Since there are only countably many constructive

semimeasures there exists a semimeasure dominating them all. The only point
to prove is that the dominating semimeasure can be made constructive.
Below, we construct a function `𝑝(𝑥) lower semicomputable in 𝑝, 𝑥 such that

`𝑝 as a function of 𝑥 is a constructive semimeasure for all 𝑝 and all constructive
semimeasures occur among the 𝑤𝑝. Once we have `𝑝 we are done because
for any positive computable function 𝛿(𝑝) with ∑𝑝 𝛿(𝑝) ≤ 1 the semimeasure∑

𝑝 𝛿(𝑝)`𝑝 is obviously lower semicomputable and dominates all the `𝑝.
Let 𝑆𝑝(𝑥) be the lower semicomputable function with Gödel number 𝑝 and

let 𝑆𝑡𝑝(𝑥) be a function recursive in 𝑝, 𝑡, 𝑥 with rational values, dondecreasing in
𝑡, such that lim𝑡 𝑆

𝑡
𝑝(𝑥) = max{0, 𝑆𝑝(𝑥)} and for each 𝑡, 𝑝, the function 𝑆𝑡𝑝(𝑥) is

different from 0 only for 𝑥 ≤ 𝑡. Let us define `𝑡𝑝 recursively in 𝑡 as follows. Let
`0𝑝(𝑥) = 0. Suppose that `𝑡𝑝 is already defined. If 𝑆𝑡+1𝑝 is a semimeasure then we
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1. Complexity

define `𝑡+1𝑝 = 𝑆𝑡+1𝑝 , otherwise `𝑡+1𝑝 = `𝑡𝑝. Let `𝑝 = lim𝑡 `
𝑡
𝑝. The function `𝑝(𝑥)

is, by its definition, lower semicomputable in 𝑝, 𝑥 and a semimeasure for each
fixed 𝑝. It is equal to 𝑆𝑝 whenever 𝑆𝑝 is a semimeasure, hence it enumerates all
constructive semimeasures. �

The above theorem justifies the following notation.

Definition 1.6.9 We choose a fixed universal constructive semimeasure and call
it m(𝑥). y

With this notation, we can make it a little more precise in which sense this
measure dominates all other constructive semimeasures.

Definition 1.6.10 For an arbitrary constructive semimeasure a let us define

m(a) =
∑︁

{m(𝑝) : the (self-delimiting) program 𝑝 computes a}. (1.6.6)

Similar notation will be used for other objects: for example now m( 𝑓 ) make
sense for a recursive function 𝑓 . y

Let us apply the above concept to some interesting cases.

Theorem 1.6.4 For all constructive semimeasures a and for all strings 𝑥, we have

m(a)a(𝑥) ∗
< m(𝑥). (1.6.7)

Proof. Let us repeat the proof of Theorem 1.6.3, usingm(𝑝) in place of 𝛿(𝑝). We
obtain a new constructive semimeasure m′(𝑥) with the property m(a)a(𝑥) ≤
m′(𝑥) for all 𝑥. Noting m′(𝑥) ∗

= m(𝑥) finishes the proof. �

1.6.3 Prefix codes

The main theorem of this section says 𝐾 (𝑥) +
= − logm(𝑥). Before proving it, we

relate descriptional complexity to the classical coding problem of information
theory.

Definition 1.6.11 A (binary) code is any mapping from a set 𝐸 of binary sequen-
ces to a set of objects. This mapping is the decoding function of the code. If the
mapping is one-to-one, then sometimes the set 𝐸 itself is also called a code.
A code is a prefix code if 𝐸 is a prefix-free set. y

The interpreter 𝑈 (𝑝) is a decoding function.
Definition 1.6.12 We call string 𝑝 the first shortest description of 𝑥 if it is the
lexicographically first binary word 𝑞 with |𝑞| = 𝐶(𝑥) and 𝑈 (𝑞) = 𝑥. y
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1.6. The coding theorem

The set of first shortest descriptions is a code. This imposes the implicit lower
bound stated in (1.5.1) on 𝐶(𝑥):

|{𝑥 : 𝐶(𝑥) = 𝑛}| ≤ 2𝑛. (1.6.8)

The least shortest descriptions in the definition of 𝐾 (𝑥) form moreover a
prefix code. We recall a classical result of information theory.

Lemma 1.6.13 (Kraft’s Inequality, see [13]) For any sequence 𝑙1, 𝑙2, . . . of na-
tural numbers, there is a prefix code with exactly these numbers as codeword lengths,
if and only if ∑︁

𝑖

2−𝑙𝑖 ≤ 1. (1.6.9)

Proof. Recall the standard correspondence 𝑥 ↔ [𝑥] between binary strings and
binary subintervals of the interval [0, 1]. A prefix code corresponds to a set
of disjoint intervals, and the length of the interval [𝑥] is 2−𝑙 (𝑥) . This proves
that (1.6.9) holds for the lengths of codewords of a prefix code.
Suppose that 𝑙𝑖 is given and (1.6.9) holds. We can assume that the se-

quence 𝑙𝑖 is nondecreasing. Chop disjoint, adjacent intervals 𝐼1, 𝐼2, . . . of length
2−𝑙1 , 2−𝑙2 , . . . from the left end of the interval [0, 1]. The right end of 𝐼𝑘 is∑𝑘

𝑗=1 2
−𝑙 𝑗 . Since the sequence 𝑙 𝑗 is nondecreasing, all intervals 𝐼 𝑗 are binary in-

tervals. Take the binary string corresponding to 𝐼 𝑗 as the 𝑗-th codeword. �

Corollary 1.6.14 We have − logm(𝑥) +
< 𝐾 (𝑥).

Proof. The lemma implies ∑︁
𝑦

2−𝐾 (𝑦 | 𝑥) ≤ 1. (1.6.10)

Since 𝐾 (𝑥) is an upper semicomputable function, the function 2−𝐾 (𝑥) is lower
semicomputable. Hence it is a constructive semimeasure, andwe have− logm(𝑥) +

<

𝐾 (𝑥). �

The construction in the second part of the proof of Lemma 1.6.13 has some
disadvantages. We do not always want to rearrange the numbers 𝑙 𝑗, for example
because we want that the order of the codewords reflect the order of our original
objects. Without rearrangement, we can still achieve a code with only slightly
longer codewords.
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Lemma 1.6.15 (Shannon-Fano code) (see [13]) Let 𝑤1, 𝑤2, . . . be positive num-
bers with

∑
𝑗 𝑤 𝑗 ≤ 1. There is a binary prefix code 𝑝1, 𝑝2, . . . where the codewords

are in lexicographical order, such that

|𝑝 𝑗 | ≤ − log𝑤 𝑗 + 2. (1.6.11)

Proof. We follow the construction above and cut off disjoint, adjacent (not nec-
essarily binary) intervals 𝐼 𝑗 of length 𝑤 𝑗 from the left end of [0, 1]. Let 𝑣 𝑗 be the
length of the longest binary intervals contained in 𝐼 𝑗. Let 𝑝 𝑗 be the binary word
corresponding to the first one of these. Four or fewer intervals of length 𝑣 𝑗 cover
𝐼 𝑗. Therefore (1.6.11) holds. �

1.6.4 The coding theorem for 𝐾 (𝑥)
The above results suggest 𝐾 (𝑥) ≤ − logm(𝑥). But in the proof, we have to deal
with the problem that m is not computable.

Theorem 1.6.5 (Coding Theorem, see [31, 17, 10])

𝐾 (𝑥) +
= − logm(𝑥) (1.6.12)

Proof. We construct a self-delimiting p.r. function 𝐹(𝑝) with the property that
𝐶𝐹 (𝑥) ≤ − logm(𝑥) +4. The function 𝐹 to be constructed is the decoding funct-
ion of a prefix code hence the code-construction of Lemma 1.6.13 proposes itself.
But since the function m(𝑥) is only lower semicomputable, it is given only by a
sequence converging to it from below.
Let { (𝑧𝑡, 𝑘𝑡) : 𝑡 = 1, 2, . . .} be a recursive enumeration of the set { (𝑥, 𝑘) :

𝑘 < m(𝑥) } without repetition. Then∑︁
𝑡

2−𝑘𝑡 =
∑︁
𝑥

∑︁
𝑧𝑡=𝑥

2−𝑘𝑡 ≤
∑︁
𝑥

2m(𝑥) < 2.

Let us cut off consecutive adjacent, disjoint intervals 𝐼𝑡 of length 2−𝑘𝑡−1 from the
left side of the interval [0, 1]. We define 𝐹 as follows. If [𝑝] is a largest binary
subinterval of some 𝐼𝑡 then 𝐹(𝑝) = 𝑧𝑡. Otherwise 𝐹(𝑝) is undefined.
The function 𝐹 is obviously self-delimiting and partial recursive. It follows

from the construction that for every 𝑥 there is a 𝑡 with 𝑧𝑡 = 𝑥 and 0.5m(𝑥) <
2−𝑘𝑡 . Therefore, for every 𝑥 there is a 𝑝 such that 𝐹(𝑝) = 𝑥 and |𝑝| ≤ − logm(𝑥)+
4. �
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The Coding Theorem can be straightforwardly generalized as follows. Let
𝑓 (𝑥, 𝑦) be a lower semicomputable nonnegative function. Then we have

𝐾 (𝑦 | 𝑥) +
< − log 𝑓 (𝑥, 𝑦) (1.6.13)

for all 𝑥 with
∑

𝑦 𝑓 (𝑥, 𝑦) ≤ 1. The proof is the same.

1.6.5 Algorithmic probability

We can interpret the Coding Theorem as follows. It is known in classical infor-
mation theory that for any probability distribution 𝑤(𝑥) (𝑥 ∈ 𝑆) a binary prefix
code 𝑓𝑤(𝑥) can be constructed such that 𝑙( 𝑓𝑤(𝑥)) ≤ − log𝑤(𝑥) + 1. We learned
that for computable, moreover, even for contstructive distributions 𝑤 there is a
universal code with a self-delimiting partial-recursive decoding function 𝑇 inde-
pendent of 𝑤 such that for the codeword length 𝐾 (𝑥) we have

𝐾 (𝑥) ≤ − log𝑤(𝑥) + 𝑐𝑤.
Here, only the additive constant 𝑐𝑤 depends on the distribution 𝑤.
Let us imagine the self-delimiting Turing machine T computing our inter-

preter 𝑇 (𝑝). Every time the machine asks for a new bit of the description, we
could toss a coin to decide whether to give 0 or 1.

Definition 1.6.16 Let 𝑃𝑇 (𝑥) be the probability that the self-delimiting machine
T gives out result 𝑥 after receiving random bits as inputs. y

We can write 𝑃𝑇 (𝑥) =
∑
𝑊𝑇 (𝑥) where𝑊𝑇 (𝑥) is the set {2−𝑙 (𝑝) : 𝑇 (𝑝) = 𝑥 }.

Since 2−𝐾 (𝑥) = max𝑊𝑇 (𝑥), we have − log 𝑃𝑇 (𝑥) ≤ 𝐾 (𝑥). The semimeasure 𝑃𝑇
is constructive, hence 𝑃 ∗

< m, hence

𝐻
+
< − logm +

< − log 𝑃𝑇 ≤ 𝐻,

hence
− log 𝑃𝑇 +

= − logm +
= 𝐻.

Hence the sum 𝑃𝑇 (𝑥) of the set 𝑊𝑇 (𝑥) is at most a constant times larger than
its maximal element 2−𝐾 (𝑥) . This relation was not obvious in advance. The
outcome 𝑥 might have high probability because it has many long descriptions.
But we found that then it must have a short description too. In what follows it
will be convenient to fix the definition of m(𝑥) as follows.
Definition 1.6.17 From now on let us define

m(𝑥) = 𝑃𝑇 (𝑥). (1.6.14)

y
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1.7 The statistics of description length

We can informally summarize the relation 𝐻 +
= − log 𝑃𝑇 saying that if an object

has many long descriptions then it has a short one. But how many descriptions
does an object really have? With the Coding Theorem, we can answer several
questions of this kind. The reader can view this section as a series of exercises
in the technique acquired up to now.

Theorem 1.7.1 Let 𝑓 (𝑥, 𝑛) be the number of binary strings 𝑝 of length 𝑛 with
𝑇 (𝑝) = 𝑥 for the universal s.d. interpreter 𝑇 defined in Theorem 1.6.1. Then for
every 𝑛 ≥ 𝐾 (𝑥), we have

log 𝑓 (𝑥, 𝑛) +
= 𝑛 − 𝐾 (𝑥, 𝑛). (1.7.1)

Using 𝐾 (𝑥) +
< 𝐾 (𝑥, 𝑛), which holds just as (1.4.1), and substituting 𝑛 = 𝐾 (𝑥)

we obtain log 𝑓 (𝑥, 𝐾 (𝑥)) +
= 𝐾 (𝑥) − 𝐾 (𝑥, 𝐾 (𝑥)) +

< 0, implying the following.

Corollary 1.7.1 The number of shortest descriptions of any object is bounded by a
universal constant.

Since the number log 𝑓 (𝑥, 𝐾 (𝑥)) is nonnegative, we also derived the identity

𝐾 (𝑥, 𝐾 (𝑥)) +
= 𝐾 (𝑥) (1.7.2)

which could have been proven also in the same way as Theorem 1.4.4.

Proof of Theorem 1.7.1. It is more convenient to prove equation (1.7.1) in the
form

2−𝑛 𝑓 (𝑥, 𝑛) ∗
= m(𝑥, 𝑛) (1.7.3)

wherem(𝑥, 𝑦) = m(〈𝑥, 𝑦〉). First we prove ∗
<. Let us define a p.r. self-delimiting

function 𝐹 by 𝐹(𝑝) = 〈𝑇 (𝑝), 𝑙(𝑝)〉. Applying 𝐹 to a coin-tossing argument,
2−𝑛 𝑓 (𝑥, 𝑛) is the probability that the pair 〈𝑥, 𝑛〉 is obtained. Therefore the left-
hand side of (1.7.3), as a function of 〈𝑥, 𝑛〉, is a constructive semimeasure, dom-
inated by m(𝑥, 𝑛).
Now we prove ∗

>. We define a self-delimiting p.r. function 𝐺 as follows. The
machine computing 𝐺(𝑝) tries to decompose 𝑝 into three segments 𝑝 = 𝛽(𝑐)𝑜𝑣𝑤
in such a way that 𝑇 (𝑣) is a pair 〈𝑥, 𝑙(𝑝) + 𝑐〉. If it succeeds then it outputs 𝑥.
By the universality of 𝑇 , there is a binary string 𝑔 such that 𝑇 (𝑔𝑝) = 𝐺(𝑝) for all
𝑝. Let 𝑟 = 𝑙(𝑔). For an arbitrary pair 𝑥, 𝑛, let 𝑞 be a shortest binary string with
𝑇 (𝑞) = 〈𝑥, 𝑛〉, and 𝑤 an arbitrary string of length

𝑙 = 𝑛 − 𝑙(𝑞) − 𝑟 − 𝑙(𝛽(𝑟)𝑜).
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1.7. The statistics of description length

Then 𝐺(𝛽(𝑟)𝑜𝑞𝑤) = 𝑇 (𝑔𝛽(𝑟)𝑜𝑞𝑤) = 𝑥. Since 𝑤 is arbitrary here, there are 2𝑙

binary strings 𝑝 of length 𝑛 with 𝑇 (𝑝) = 𝑥. �

How many objects are there with a given complexity 𝑛? We can answer this
question with a good approximation.

Definition 1.7.2 Let 𝑔𝑇 (𝑛) be the number of objects 𝑥 ∈ S with 𝐾 (𝑥) = 𝑛, and
𝐷𝑛 the set of binary strings 𝑝 of length 𝑛 for which 𝑇 (𝑝) is defined. Let us define
the moving average

ℎ𝑇 (𝑛, 𝑐) =
1

2𝑐 + 1

𝑐∑︁
𝑖=−𝑐

𝑔𝑇 (𝑛 + 𝑖).

y

Here is an estimation of these numbers.

Theorem 1.7.2 ([47]) There is a natural number 𝑐 such that

log |𝐷𝑛 | +
= 𝑛 − 𝐾 (𝑛), (1.7.4)

log ℎ𝑇 (𝑛, 𝑐) +
= 𝑛 − 𝐾 (𝑛). (1.7.5)

Since we are interested in general only in accuracy up to additive constants,
we could omit the normalizing factor 1/(2𝑐 + 1) from the moving average ℎ𝑇 .
We do not know whether this average can be replaced by 𝑔𝑇 (𝑛). This might
depend on the special universal partial recursive function we use to construct
the optimal s.d. interpreter 𝑇 (𝑝). But equation (1.7.5) is true for any optimal
s.d. interpreter 𝑇 (such that the inequality (1.6.1) holds for all 𝐹) while there
is an optimal s.d. interpreter 𝐹 for which 𝑔𝐹 (𝑛) = 0 for every odd 𝑛. Indeed,
let 𝐹(00𝑝) = 𝑇 (𝑝) if 𝑙(𝑝) is even, 𝐹(1𝑝) = 𝑇 (𝑝) if 𝑙(𝑝) is odd and let 𝐹 be
undefined in all other cases. Then 𝐹 is defined only for inputs of even length,
while 𝐶𝐹 ≤ 𝐶𝑇 + 2.
Lemma 1.7.3 ∑︁

𝑦

m(𝑥, 𝑦) ∗
= m(𝑥).

Proof. The left-hand side is a constructive semimeasure therefore it is dominated
by the right side. To show ∗

>, note that by equation (1.4.2) as applied to 𝐻, we
have 𝐾 (𝑥, 𝑥) +

= 𝐾 (𝑥). Therefore m(𝑥) ∗
= m(𝑥, 𝑥) < ∑

𝑦 m(𝑥, 𝑦). �

Proof of Theorem 1.7.2: Let 𝑑𝑛 = |𝐷𝑛 |. Using Lemma 1.7.3 and Theorem 1.7.1
we have

𝑔𝑇 (𝑛) ≤ 𝑑𝑛 =
∑︁
𝑥

𝑓 (𝑥, 𝑛) ∗
= 2𝑛

∑︁
𝑥

m(𝑥, 𝑛) ∗
= 2𝑛m(𝑛).
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1. Complexity

Since the complexity 𝐻 has the same continuity property (1.4.3) as 𝐾, we can
derive from here ℎ𝑇 (𝑛, 𝑐) ≤ 2𝑛m(𝑛)𝑂(2𝑐𝑐2). To prove ℎ𝑇 (𝑛, 𝑐)

∗
> 𝑑𝑛 for an

appropriate 𝑐, we will prove that the complexity of at least half of the elements
of 𝐷𝑛 is near 𝑛.
For some constant 𝑐0, we have 𝐾 (𝑝) ≤ 𝑛 + 𝑐0 for all 𝑝 ∈ 𝐷𝑛. Indeed, if the

s.d. p.r. interpreter 𝐹(𝑝) is equal to 𝑝 where 𝑇 (𝑝) is defined and is undefined
otherwise then 𝐶𝐹 (𝑝) ≤ 𝑛 for 𝑝 ∈ 𝐷𝑛. By 𝐾 (𝑝, 𝑙(𝑝)) +

= 𝐾 (𝑝), and a variant of
Lemma 1.7.3, we have∑︁

𝑝∈𝐷𝑛
m(𝑝) ∗

=
∑︁
𝑝∈𝐷𝑛

m(𝑝, 𝑛) ∗
= m(𝑛).

Using the expression (1.7.4) for 𝑑𝑛, we see that there is a constant 𝑐1 such that

𝑑−1𝑛
∑︁
𝑝∈𝐷𝑛

2−𝐾 (𝑝) ≤ 2−𝑛+𝑐1 .

Using Markov’s Inequality, hence the number of elements 𝑝 of 𝐷𝑛 with 𝐾 (𝑝) ≥
𝑛 − 𝑐1 − 1 is at least 𝑑𝑛/2. We finish the proof making 𝑐 to be the maximium of
𝑐0 and 𝑐1 + 1. �

What can be said about the complexity of a binary string of length 𝑛? We
mentioned earlier the estimate 𝐾 (𝑥) +

< 𝑛+2 log 𝑛. The same argument gives the
stronger estimate

𝐾 (𝑥) +
< 𝑙(𝑥) + 𝐾 (𝑙(𝑥)). (1.7.6)

By a calculation similar to the proof of Theorem 1.7.2, we can show that the
estimate (1.7.6) is exact for most binary strings. First, it follows just as in
Lemma 1.7.3 that there is a constant 𝑐 such that

2−𝑛
∑︁
𝑙 (𝑝)=𝑛

2−𝐾 (𝑝) ≤ 𝑐2−𝑛m(𝑛).

From this, Markov’s Inequality gives that the number of strings 𝑝 ∈ B𝑛 with
𝐾 (𝑝) < 𝑛 − 𝑘 is at most 𝑐2𝑛−𝑘.
There is a more polished way to express this result.

Definition 1.7.4 Let us introduce the following function of natural numbers:

𝐾+(𝑛) = max
𝑘≤𝑛

𝐾 (𝑘).

y
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1.7. The statistics of description length

This is the smallest monotonic function above 𝐾 (𝑛). It is upper semicom-
putable just as 𝐻 is, hence 2−𝐾

+
is universal among the monotonically decreasing

constructive semimeasures. The following theorem expresses 𝐾+ more directly
in terms of 𝐾.

Theorem 1.7.3 We have 𝐾+(𝑛) +
= log 𝑛 + 𝐾 (blog 𝑛c).

Proof. To prove +
<, we construct a s.d. interpreter as follows. The machine com-

puting 𝐹(𝑝) finds a decomposition 𝑢𝑣 of 𝑝 such that 𝑇 (𝑢) = 𝑙(𝑣), then outputs
the number whose binary representation (with possible leading zeros) is the
binary string 𝑣. With this 𝐹, we have

𝐾 (𝑘) +
< 𝐶𝐹 (𝑘) ≤ log 𝑛 + 𝐻 (blog 𝑛c) (1.7.7)

for all 𝑘 ≤ 𝑛. The numbers between 𝑛/2 and 𝑛 are the ones whose binary
representation has length blog 𝑛c +1. Therefore if the bound (1.7.6) is sharp for
most 𝑥 then the bound (1.7.7) is sharp for most 𝑘. �

The sharp monotonic estimate log 𝑛+ 𝐾 (blog 𝑛c) for 𝐾 (𝑛) is less satisfactory
than the sharp estimate log 𝑛 for Kolmogorov’s complexity 𝐶(𝑛), because it is not
a computable function. We can derive several computable upper bounds from
it, for example log 𝑛 + 2 log log 𝑛, log 𝑛 + log log 𝑛 + 2 log log log 𝑛, etc. but none
of these is sharp for large 𝑛. We can still hope to find computable upper bounds
of 𝐻 which are sharp infinitely often. The next theorem provides one.

Theorem 1.7.4 (see [47]) There is a computable upper bound 𝐺(𝑛) of the funct-
ion 𝐾 (𝑛) with the property that 𝐺(𝑛) = 𝐾 (𝑛) holds for infinitely many 𝑛.

For the proof, we make use of a s.d. Turing machine T computing the funct-
ion 𝑇 . Similarly to the proof of Theorem 1.5.1, we introduce a time-restricted
complexity.

Definition 1.7.5 We know that for some constant 𝑐, the function 𝐾 (𝑛) is bounded
by 2 log 𝑛 + 𝑐. Let us fix such a 𝑐.
For any number 𝑛 and s.d. Turing machineM, let 𝐾M(𝑛; 𝑡) be the minimum

of 2 log 𝑛 + 𝑐 and the lengths of descriptions from which M computes 𝑛 in 𝑡 or
fewer steps. y

At the time we proved the Invariance Theorem we were not interested in
exactly how the universal p.r. function 𝑉 was to be computed. Now we need to
be more specific.

Definition 1.7.6 Let us agree now that the universal p.r. function is computed
by a universal Turing machine V with the property that for any Turing machine
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M there is a constant𝑚 such that the number of steps needed to simulate 𝑡 steps
ofM takes no more than𝑚𝑡 steps on V. Let T be the Turing machine constructed
from V computing the optimal s.d. interpreter 𝑇 , and let us write

𝐾 (𝑛, 𝑡) = 𝐾T (𝑛, 𝑡).

y

With these definitions, for each s.d. Turing machineM there are constants
𝑚0, 𝑚1 with

𝐾 (𝑛, 𝑚0𝑡) ≤ 𝐾M(𝑛, 𝑡) + 𝑚1. (1.7.8)

The function 𝐾 (𝑛; 𝑡) is nonincreasing in 𝑡.

Proof of Theorem 1.7.4. First we prove that there are constants 𝑐0, 𝑐1 such that
𝐾 (𝑛; 𝑡) < 𝐾 (𝑛; 𝑡 − 1) implies

𝐾 (〈𝑛, 𝑡〉; 𝑐0𝑡) ≤ 𝐾 (𝑛; 𝑡) + 𝑐1. (1.7.9)

Indeed, we can construct a Turing machine M simulating the work of T such
that if T outputs a number 𝑛 in 𝑡 steps thenM outputs the pair 〈𝑛, 𝑡〉 in 2𝑡 steps:

𝐾M(〈𝑛, 𝑡〉; 2𝑡) ≤ 𝐾 (𝑛, 𝑡).

Combining this with the inequality (1.7.8) gives the inequality (1.7.9). We de-
fine now a recursive function 𝐹 as follows. To compute 𝐹(𝑥), the s.d. Turing
machine first tries to find 𝑛, 𝑡 such that 𝑥 = 〈𝑛, 𝑡〉. (It stops even if it did not find
them.) Then it outputs 𝐾 (𝑥; 𝑐0𝑡). Since 𝐹(𝑥) is the length of some description
of 𝑥, it is an upper bound for 𝐾 (𝑥). On the other hand, suppose that 𝑥 is one of
the infinitely many integers of the form 〈𝑛, 𝑡〉 with

𝐾 (𝑛) = 𝐾 (𝑛; 𝑡) < 𝐾 (𝑛; 𝑡 − 1).

Then the inequality (1.7.9) implies 𝐹(𝑥) ≤ 𝐾 (𝑛) + 𝑐1 while 𝐾 (𝑛)
+
< 𝐾 (𝑥) is

known (it is the equivalent of 1.4.4 for 𝐻), so 𝐹(𝑥) ≤ 𝐾 (𝑛) + 𝑐 for some constant
𝑐. Now if 𝐹 would not be equal to 𝐻 at infinitely many places, only close to it
(closer than 𝑐) then we can decrease it by some additive constant less than 𝑐 and
modify it at finitely many places to obtain the desired function 𝐺. �
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2 Randomness

2.1 Uniform distribution

Speaking of a “random binary string”, one generally understands randomness
with respect to the coin-toss distribution (when the probability 𝑃(𝑥) of a binary
sequence 𝑥 of length 𝑛 is 2−𝑛). This is the only distribution considered in the
present section.
One can hope to distinguish sharply between random and nonrandom infi-

nite sequences. Indeed, an infinite binary sequence whose elements are 0 with
only finitely many exceptions, can be considered nonrandom without qualifi-
cation. This section defines randomness for finite strings. For a sequence 𝑥 of
length 𝑛, it would be unnatural to fix some number 𝑘, declare 𝑥 nonrandom
when its first 𝑘 elements are 0, but permit it to be random if only the first 𝑘 − 1
elements are 0. So, we will just declare some finite strings less random than
others. For this, we introduce a certain real-valued function 𝑑(𝑥) ≥ 0 measur-
ing the deficiency of randomness in the string 𝑥. The occurrence of a nonrandom
sequence is considered an exceptional event, therefore the function 𝑑(𝑥) can
assume large values only with small probability. What is “large” and “small”
depends only on our “unit of measurement”. We require for all 𝑛, 𝑘∑︁

{𝑃(𝑥) : 𝑥 ∈ B𝑛, 𝑑(𝑥) > 𝑘} < 2−𝑘, (2.1.1)

saying that there be at most 2𝑛−𝑘 binary sequences 𝑥 of length 𝑛 with 𝑑(𝑥) > 𝑘.
Under this condition, we even allow 𝑑(𝑥) to take the value∞.
To avoid arbitrariness in the distinction between random and nonrandom,

the function 𝑑(𝑥) must be simple. We assume therefore that the set { (𝑛, 𝑘, 𝑥) :
𝑙(𝑥) = 𝑛, 𝑑(𝑥) > 𝑘} is recursively enumerable, or, which is the same, that the
function

d : Ω → (−∞,∞]
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2. Randomness

is lower semicomputable.

Remark 2.1.1 We do not assume that the set of strings 𝑥 ∈ B𝑛 with small defi-
ciency of randomness is enumerable, because then it would be easy to construct
a “random” sequence. y

Definition 2.1.2 A lower semicomputable function 𝑑 : S2 → R (where R is the
set of real numbers) is called aMartin-Löf test (ML-test), or a probability-bounded
test if it satisfies (2.1.1).
A ML-test 𝑑0(𝑥) is universal if it additively dominates all other ML-tests: for

any other ML-test 𝑑(𝑥) there is a constant 𝑐 < ∞ such that for all 𝑥 we have
𝑑(𝑥) < 𝑑0(𝑥) + 𝑐. y

If a test 𝑑0 is universal then any other test 𝑑 of randomness can discover at
most by a constant amount more deficiency of randomness in any sequence 𝑥
than 𝑑0(𝑥). Obviously, the difference of any two universal ML-tests is bounded
by some constant.
The following theorem reveals a simple connnection between descriptional

complexity and a certain randomness property.

Definition 2.1.3 Let us define the following function for binary strings 𝑥:

𝑑0(𝑥) = 𝑙(𝑥) − 𝐶(𝑥 | 𝑙(𝑥)). (2.1.2)

y

Theorem 2.1.1 (Martin-Löf) The function 𝑑0(𝑥) is a universal Martin-Löf test.

Proof. Since 𝐶(𝑥 | 𝑦) is semicomputable from above, 𝑑0 is semicomputable from
below. The property of semicomputability holds for 𝑑0 as a straightforward con-
sequence of Theorem 1.5.1 Therefore 𝑑0 is a ML-test. We must show that it is
larger (to within an additive constant) than any other ML-test. Let 𝑑 be a ML-
test. Let us define the function 𝐹(𝑥, 𝑦) to be 𝑦 − 𝑑(𝑥) for 𝑦 = 𝑙(𝑥), and ∞
otherwise. Then 𝐹 is upper semicomputable, and satisfies (1.5.1). Therefore by
Theorem 1.5.3, we have 𝐶(𝑥 | 𝑙(𝑥)) +

< 𝑙(𝑥) − 𝑑(𝑥). �

Theorem 2.1.1 says that under very general assumptions about randomness,
those strings 𝑥 are random whose descriptional complexity is close to its max-
imum, 𝑙(𝑥). The more “regularities” are discoverable in a sequence, the less
random it is. However, this is true only of regularities which decrease the de-
scriptional complexity. “Laws of randomness” are regularities whose probability
is high, for example the law of large numbers, the law of iterated logarithm, the
arcsine law, etc. A random sequence will satisfy all such laws.
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2.1. Uniform distribution

Example 2.1.4 The law of large numbers says that in most binary sequences of
length 𝑛, the number of 0’s is close to the numer of 1’s. We prove this law of prob-
ability theory by constructing a ML-test 𝑑(𝑥) taking large values on sequences
in which the number of 0’s is far from the number of 1’s.
Instead of requiring (2.1.1) we require a somewhat stronger property of

𝑑(𝑥): for all 𝑛, ∑︁
𝑥∈B𝑛

𝑃(𝑥)2𝑑 (𝑥) ≤ 1. (2.1.3)

From this, the inequality (2.1.1) follows by the following well-known in-
equality called the Markov Inequality which says the following. Let 𝑃 be
any probability distribution, 𝑓 any nonnegative function, with expected value
𝐸𝑃 ( 𝑓 ) =

∑
𝑥 𝑃(𝑥) 𝑓 (𝑥). For all _ ≥ 0 we have∑︁

{𝑃(𝑥) : 𝑓 (𝑥) > _𝐸𝑃 ( 𝑓 ) } ≤ _. (2.1.4)

For any string 𝑥 ∈ S, and natural number 𝑖, let 𝑁 (𝑖 | 𝑥) denote the number
of occurrences of 𝑖 in 𝑥. For a binary string 𝑥 of length 𝑛 define 𝑝𝑥 = 𝑁 (1 | 𝑥)/𝑛,
and

𝑃𝑥 (𝑦) = 𝑝
𝑁 (1 | 𝑦)
𝑥 (1 − 𝑝𝑥)𝑁 (0 | 𝑦)

𝑑(𝑥) = log 𝑃𝑥 (𝑥) + 𝑛 − log(𝑛 + 1).

We show that 𝑑(𝑥) is a ML-test. It is obviously computable. We prove (2.1.3).
We have∑︁

𝑥

𝑃(𝑥)2𝑑 (𝑥) =
∑︁
𝑥

2−𝑛2𝑛𝑃𝑥 (𝑥)
1

𝑛 + 1 =
1

𝑛 + 1
∑︁
𝑥

𝑃𝑥 (𝑥)

=
1

𝑛 + 1

𝑛∑︁
𝑘=0

(
𝑛

𝑘

)
( 𝑘
𝑛
)𝑘 (1 − 𝑘

𝑛
)𝑛−𝑘 < 1

𝑛 + 1

𝑛∑︁
𝑘=0

1 = 1.

The test 𝑑(𝑥) expresses the (weak) law of large numbers in a rather strong ver-
sion. We rewrite 𝑑(𝑥) as

𝑑(𝑥) = 𝑛(1 − ℎ(𝑝𝑥)) − log(𝑛 + 1)

where ℎ(𝑝) = −𝑝 log 𝑝− (1− 𝑝) log(1− 𝑝). The entropy function ℎ(𝑝) achieves
its maximum 1 at 𝑝 = 1/2. Therefore the test 𝑑(𝑥) tells us that the probability
of sequences 𝑥 with 𝑝𝑥 < 𝑝 < 1/2 for some constant 𝑝 is bounded by the
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2. Randomness

exponentially decreasing quantitiy (𝑛 + 1)2−𝑛(1−ℎ(𝑝)) . We also see that since for
some constant 𝑐 we have

1 − ℎ(𝑝) > 𝑐(𝑝 − 1/2)2,

therefore if the difference |𝑝𝑥 − 1/2| is much larger than√︂
log 𝑛
𝑐𝑛

then the sequence 𝑥 is “not random”, and hence, by Theorem 2.1.1 its complexity
is significantly smaller than 𝑛. y

2.2 Computable distributions

Let us generalize the notion of randomness to arbitrary discrete computable
probability distributions.

2.2.1 Two kinds of test

Let 𝑃(𝑥) be a probability distribution over some discrete countable space Ω,
which we will identify for simplicity with the set S of finite strings of natural
numbers. Thus, 𝑃 is a nonnegative function with∑︁

𝑥

𝑃(𝑥) = 1.

Later we will consider probability distributions 𝑃 over the space NN, and they
will also be characterized by a nonnegative function 𝑃(𝑥) over S. However, the
above condition will be replaced by a different one.
We assume 𝑃 to be computable, with some Gödel number 𝑒. We want to

define a test 𝑑(𝑥) of randomness with respect to 𝑃. It will measure how justified
is the assumption that 𝑥 is the outcome of an experiment with distribution 𝑃.

Definition 2.2.1 A function 𝑑 : S → R is an integrable test, or expectation-
bounded test of randomness with respect to 𝑃 if it is lower semicomputable and
satisfies the condition ∑︁

𝑥

𝑃(𝑥)2𝑑 (𝑥) ≤ 1. (2.2.1)

It is universal if it dominates all other integrable tests to within an additive con-
stant. y
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2.2. Computable distributions

(A similar terminology is used in [36] in order to distinguish tests satisfying
condition (2.2.1) from Martin-Löf tests.)

Remark 2.2.2 We must allow 𝑑(𝑥) to take negative values, even if only, say val-
ues ≥ −1, since otherwise condition (2.2.1) could only be satisfied with 𝑑(𝑥) = 0
for all 𝑥 with 𝑃(𝑥) > 0. y

Proposition 2.2.3 Let 𝑐 = log(2𝜋2/6). If a function 𝑑(𝑥) satisfies (2.2.1) then it
satisfies (2.1.1). If 𝑑(𝑥) satisfies (2.1.1) then 𝑑 − 2 log 𝑑 − 𝑐 satisfies (2.2.1).

Proof. The first statement follows by Markov’s Inequality (2.1.4). The second
one can be checked by immediate computation. �

Thus, condition 2.2.1 is nearly equivalent to condition (2.1.1): to each test
𝑑 according to one of them, there is a test 𝑑 ′ asymptotically equal to 𝑑 satisfying
the other. But condition (2.2.1) has the advantage of being just one inequality
instead of the infinitely many ones.

2.2.2 Randomness via complexity

We want to find a universal integrable test. Let us introduce the function 𝑤(𝑥) =
𝑃(𝑥)2𝑑 (𝑥) . The above conditions on 𝑑(𝑥) imply that 𝑤(𝑥) is semicomputable
from below and satisfies

∑
𝑥 𝑤(𝑥) ≤ 1: so, it is a constructive semimeasure.

With the universal constructive semimeasure of Theorem 1.6.3, we also obtain
a universal test for any computable probability distribution 𝑃.

Definition 2.2.4 For an arbitrary measure 𝑃 over a discrete space Ω, let us de-
note

d𝑃 (𝑥) = log
m(𝑥)
𝑃(𝑥) = − log 𝑃(𝑥) − 𝐾 (𝑥). (2.2.2)

y

The following theorem shows that randomness can be tested by checking
how close is the complexity 𝐾 (𝑥) to its upper bound − log 𝑃(𝑥).
Theorem 2.2.1 The function d𝑃 (𝑥) = − log 𝑃(𝑥) − 𝐾 (𝑥) is a universal integrable
test for any fixed computable probability distribution 𝑃. More exactly, it is lower
semicomputable, satisfies (2.2.1) and for all integrable tests 𝑑(𝑥) for 𝑃, we have

𝑑(𝑥) +
< d𝑃 (𝑥) + 𝐾 (𝑑) + 𝐾 (𝑃).

Proof. Let 𝑑(𝑥) be an integrable test for 𝑃. Then a(𝑥) = 2𝑑 (𝑥)𝑃(𝑥) is a construc-
tive semimeasure, and it has a self-delimiting program of length +

< 𝐾 (𝑑) + 𝐾 (𝑃).

41



2. Randomness

It follows (using the definition (1.6.6)) that 𝑚(a) ∗
< 2𝐾 (𝑑)+𝐾 (𝑃) ; hence inequal-

ity (1.6.7) gives
a(𝑥)2𝐾 (𝑑)+𝐾 (𝑃) ∗

< m(𝑥).
Taking logarithms finishes the proof. �

The simple form of our universal test suggests remarkable interpretations.
It says that the outcome 𝑥 is random with respect to the distribution 𝑃, if the
latter assigns to 𝑥 a large enough probability—however, not in absolute terms,
only relatively to the universal semimeasure m(𝑥). The relativization is essen-
tial, since otherwise we could not distinguish between random and nonrandom
outcomes for the uniform distribution 𝑃𝑛 defined in Section 2.1.
For any (not necessarily computable) distribution 𝑃, the 𝑃-expected value of

the function m(𝑥)/𝑃(𝑥) is at most 1, therefore the relation

m(𝑥) ≤ 𝑘𝑃(𝑥)

holds with probability not smaller than 1 − 1/𝑘. If 𝑃 is computable then the
inequality

m(𝑃)𝑃(𝑥) ∗
< m(𝑥)

holds for all 𝑥. Therefore the following applications are obtained.
• If we assume 𝑥 to be the outcome of an experiment with some simple com-
putable probability distribution 𝑃 then m(𝑥) is a good estimate of 𝑃(𝑥). The
goodness depends on how simple 𝑃 is to define and how random 𝑥 is with
respect to 𝑃: how justified is the assumption. Of course, we cannot compute
m(𝑥) but it is nevertheless well defined.

• If we trust that a given object 𝑥 is random with respect to a given distribution
𝑃 then we can use 𝑃(𝑥) as an estimate ofm(𝑥). The degree of approximation
depends on the same two factors.
Let us illustrate the behavior of the universal semimeasurem(𝑥) when 𝑥 runs

over the set of natural numbers. We define the semimeasures 𝑣 and 𝑤 as follows.
Let 𝑣(𝑛) = 𝑐/𝑛2 for an appropriate constant 𝑐, let 𝑤(𝑛) = 𝑣(𝑥) if 𝑛 = 22

𝑘

, and
0 otherwise. Then m(𝑛) dominates both 𝑣(𝑛) and 𝑤(𝑛). The function m(𝑛)
dominates 1/𝑛 log2 𝑛, but jumps at many places higher than that. Indeed, it
is easy to see that m(𝑛) converges to 0 slower than any positive computable
function converging to 0: in particular, it is not computable. Hence it cannot
be a measure, that is

∑
𝑥 m(𝑥) < 1. We feel that we can make m(𝑥) “large”

whenever 𝑥 is “simple”.
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We cannot compare the universal test defined in the present section directly
with the one defined in Section 2.1. There, we investigated tests for a whole
family 𝑃𝑛 of distributions, where 𝑃𝑛 is the uniform distribution on the set B𝑛.
That the domain of these distributions is a different one for each 𝑛 is not essential
since we can identify the set B𝑛 with the set {2𝑛, . . . , 2𝑛+1 − 1}. Let us rewrite
the function 𝑑0(𝑥) defined in (2.1.2) as

𝑑0(𝑥) = 𝑛 − 𝐶(𝑥 | 𝑛)

for 𝑥 ∈ B𝑛, and set it∞ for 𝑥 outside B𝑛. Now the similarity to the expression

d𝑃 (𝑥) = − log 𝑃(𝑥) − logm(𝑥)

is striking because 𝑛 = log 𝑃𝑛(𝑥). Together with the remarkmade in the previous
paragraph, this observation suggests that the value of − logm(𝑥) is close to the
complexity 𝐶(𝑥).

2.2.3 Conservation of randomness

The idea of conservation of randomness has been expressed first by Levin, who
has published some papers culminating in [33] developing a general theory. In
this section, we address the issue in its simplest form only. Suppose that we
want to talk about the randomness of integers. One and the same integer 𝑥 can
be represented in decimal, binary, or in some other notation: this way, every
time a different string will represent the same number. Still, the form of the
representation should not affect the question of randomness of 𝑥 significantly.
How to express this formally?
Let 𝑃 be a computable measure and let 𝑓 : S→ S be a computable function.

We expect that under certain conditions, the randomness of 𝑥 should imply the
randomness of 𝑓 (𝑥)—but, for which distribution? For example, if 𝑥 is a binary
string and 𝑓 (𝑥) is the decimal notation for the number expressed by 1𝑥 then we
expect 𝑓 (𝑥) to be random not with respect to 𝑃, but with respect to the measure
𝑓 ∗𝑃 that is the image of 𝑃 under 𝑓 . This measure is defined by the formula

( 𝑓 ∗𝑃) (𝑦) = 𝑃( 𝑓−1(𝑦)) =
∑︁
𝑓 (𝑥)=𝑦

𝑃(𝑥). (2.2.3)

Proposition 2.2.5 If 𝑓 is a computable function and 𝑃 is a computable measure
then 𝑓 ∗𝑃 is a computable measure.
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2. Randomness

Proof. It is sufficient to show that 𝑓 ∗𝑃 is lower semicomputable, since we have
seen that a lower semicomputable measure is computable. But, the semicom-
putability can be seen immediately from the definition. �

Let us see that randomness is indeed preserved for the image. Similarly
to (1.6.6), let us define for an arbitrary computable function 𝑓 :

m( 𝑓 ) =
∑︁

{m(𝑝) : program 𝑝 computes 𝑓 }. (2.2.4)

Theorem 2.2.2 Let 𝑓 be a computable function. Between the randomness test for
𝑃 and the test for the image of 𝑃, the following relation holds, for all 𝑥:

d 𝑓 ∗𝑃 ( 𝑓 (𝑥))
+
< d𝑃 (𝑥) + 𝐾 ( 𝑓 ) + 𝐾 (𝑃). (2.2.5)

Proof. Let us denote the function on the left-hand side of (2.2.5) by

𝑑𝑃 (𝑥) = d 𝑓 ∗𝑃 ( 𝑓 (𝑥)) = log
m( 𝑓 (𝑥))

( 𝑓 ∗𝑃) ( 𝑓 (𝑥)) .

It is lower semicomputable, with the help of a program of length 𝐾 ( 𝑓 ) + 𝐾 (𝑃),
by its very definition. Let us check that it is an integrable test, so it satisfies the
inequality (2.2.1). We have∑︁

𝑥

𝑃(𝑥)2𝑑𝑃 (𝑥) =
∑︁
𝑦

( 𝑓 ∗𝑃) (𝑦)2d 𝑓∗𝑃 (𝑦) =
∑︁
𝑦

m(𝑦) ≤ 1.

Hence 𝑑𝑃 (𝑥) is a test, and hence it is
+
< d𝑃 (𝑥)+𝐾 ( 𝑓 )+𝐾 (𝑃), by the universality of

the test d𝑃 (𝑥). (Strictly speaking, we must modify the proof of Theorem 2.2.1
and see that a program of length 𝐾 ( 𝑓 ) + 𝐾 (𝑃) is also sufficient to define the
semimeasure 𝑃(𝑥)𝑑(𝑥 | 𝑃).) �

The appearance of the term 𝐾 ( 𝑓 ) on the right-hand side is understandable:
using some very complex function 𝑓 , we can certainly turn any string into any
other one, also a random string into a much less random one. On the other
hand, the term 𝐾 (𝑃) appears only due to the imperfection of our concepts. It
will disappear in the more advanced theory presented in later sections, where
we develop uniform tests.

Example 2.2.6 For each string 𝑥 of length 𝑛 ≥ 1, let

𝑃(𝑥) = 2−𝑛

𝑛(𝑛 + 1) .
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2.2. Computable distributions

This distribution is uniform on strings of equal length. Let 𝑓 (𝑥) be the function
that erases the first 𝑘 bits. Then for 𝑛 ≥ 1 and for any string 𝑥 of length 𝑛 we
have

( 𝑓 ∗𝑃) (𝑥) = 2−𝑛

(𝑛 + 𝑘) (𝑛 + 𝑘 + 1) .

(The empty string has the rest of the weight of 𝑓 ∗𝑃.) The new distribution is
still uniform on strings of equal length, though the total probability of strings of
length 𝑛 has changed somewhat. We certainly expect randomnes conservation
here: after erasing the first 𝑘 bits of a random string of length 𝑛 + 𝑘, we should
still get a random string of length 𝑛. y

The computable function 𝑓 applied to a string 𝑥 can be viewed as some kind
of transformation 𝑥 ↦→ 𝑓 (𝑥). As we have seen, it does not make 𝑥 less random.
Suppose now that we introduce randomization into the transformation process
itself: for example, the machine computing 𝑓 (𝑥) can also toss some coins. We
want to say that randomness is also conserved under such more general transfor-
mations, but first of all, how to express such a transformation mathematically?
We will describe it by a “matrix”: a computable probability transition function
𝑇 (𝑥, 𝑦) ≥ 0 with the property that∑︁

𝑦

𝑇 (𝑥, 𝑦) = 1.

Now, the image of the distribution 𝑃 under this transformation can be written as
𝑇∗𝑃, and defined as follows:

(𝑇∗𝑃) (𝑦) =
∑︁
𝑥

𝑃(𝑥)𝑇 (𝑥, 𝑦).

How to express now randomness conservation? It is certainly not true that every
possible outcome 𝑦 is as random with respect to 𝑇∗𝑃 as 𝑥 is with respect to 𝑃.
We can only expect that for each 𝑥, the conditional probability (in terms of the
transition 𝑇 (𝑥, 𝑦)) of those 𝑦 whose non-randomness is larger than that of 𝑥, is
small. This will indeed be expressed by the corollary below. To get there, we
upperbound the 𝑇 (𝑥, ·)-expected value of 2d𝑇∗𝑃 (𝑦) . Let us go over to exponential
notation:

Definition 2.2.7 Denote

t𝑃 (𝑥) = 2d𝑃 (𝑥) =
m(𝑥)
𝑃(𝑥) . (2.2.6)

y
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2. Randomness

Theorem 2.2.3 We have

log
∑︁
𝑦

𝑇 (𝑥, 𝑦)2d𝑇∗𝑃 (𝑦) +
< d𝑃 (𝑥) + 𝐾 (𝑇) + 𝐾 (𝑃). (2.2.7)

Proof. Let us denote the function on the left-hand side of (2.2.7) by 𝑡𝑃 (𝑥). It
is lower semicomputable by its very construction, using a program of length
+
< 𝐾 (𝑇) + 𝐾 (𝑃). Let us check that it satisfies ∑𝑥 𝑃(𝑥)𝑡𝑃 (𝑥) ≤ 1 which, in this
notation, corresponds to inequality (2.2.1). We have∑︁

𝑥

𝑃(𝑥)𝑡𝑃 (𝑥) =
∑︁
𝑥

𝑃(𝑥)
∑︁
𝑦

𝑇 (𝑥, 𝑦)𝑡𝑇∗𝑃 (𝑦)

=
∑︁
𝑥

𝑃(𝑥)
∑︁
𝑦

𝑇 (𝑥, 𝑦) m(𝑦)
(𝑇∗𝑃) (𝑦) =

∑︁
𝑦

m(𝑦) ≤ 1.

It follows that 𝑑𝑃 (𝑥) = log 𝑡𝑃 (𝑥) is an integrable test and hence 𝑑𝑃 (𝑥)
+
< d𝑃 (𝑥) +

𝐾 (𝑇) + 𝐾 (𝑃). (See the remark at the end of the proof of Theorem 2.2.2.) �

Corollary 2.2.8 There is a constant 𝑐0 such that for every integer 𝑘 ≥ 0, for all 𝑥
we have ∑︁

{𝑇 (𝑥, 𝑦) : d𝑇∗𝑃 (𝑦) − d𝑃 (𝑥) > 𝑘 + 𝐾 (𝑇) + 𝐾 (𝑃) } ≤ 2−𝑘+𝑐0 .

Proof. The theorem says∑︁
𝑦

𝑇 (𝑥, 𝑦)t𝑇∗𝑃 (𝑦)
∗
< 𝑡𝑃 (𝑥)2𝐾 (𝑇)+𝐾 (𝑃) .

Thus, it upperbounds the expected value of the function 2d𝑇∗𝑃) (𝑦) according to
the distribution 𝑇 (𝑥, ·). Applying Markov’s inequality (2.1.4) to this function
yields the desired result. �

2.3 Infinite sequences

These lecture notes treat the theory of randomness over continuous spacesmostly
separately, starting in Section 4.1. But the case of computable measures over infi-
nite sequences is particularly simple and appealing, so we give some of its results
here, even if most follow from the more general results given later.
In this section, we will fix a finite or countable alphabet Σ = {𝑠1, 𝑠2, . . .}, and

consider probability distributions over the set

𝑋 = ΣN

46



2.3. Infinite sequences

of infinite sequences with members in Σ. An alternative way of speaking of this
is to consider a sequence of random variables 𝑋1, 𝑋2, . . ., where 𝑋𝑖 ∈ Σ, with a
joint distribution. The two interesting extreme special cases are Σ = B = {0, 1},
giving the set of infinite 0-1 sequences, and Σ = N, giving the set sequences of
natural numbers.

2.3.1 Null sets

Our goal is here to illustrate themeasure theory developed in Section A.2, through
Subsection A.2.3, on the concrete example of the set of infinite sequences, and
then to develop the theory of randomness in it.
We will distinguish a few simple kinds of subsets of the set 𝑆 of sequences,

those for which probability can be defined especially easily.

Definition 2.3.1
• For string 𝑧 ∈ Σ∗, we will denote by 𝑧𝑋 the set of elements of 𝑋 with prefix 𝑧.
Such sets will be called cylinder sets.

• A subset of 𝑋 is open if it is the union of any number (not necessarily finite)
of cylinder sets. It is called closed if its complement is open.

• An open set is called constructive if it is the union of a recursively enumerable
set of cylinder sets.

• A set is called 𝐺𝛿 if it is the intersection of a sequence of open sets. It is called
𝐹𝜎 if it is the union of a sequence of closed sets.

• We say that a set 𝐸 ⊆ 𝑋 is finitely determined if there is an 𝑛 and an E ⊆ Σ𝑛

such that

𝐸 = E𝑋 =
⋃
𝑠∈E

𝑠𝑋 .

Let F be the class of all finitely determined subsets of 𝑋 .

• A class of subsets of 𝑋 is called an algebra if it is closed with respect to finite
intersections and complements (and then of course, also with respect to finite
unions). It is called a 𝜎-algebra (sigma-algebra) when it is also closed with
respect to countable intersections (and then of course, also with respect to
countable unions).

y

Example 2.3.2 An example open set that is not finitely determined, is the set 𝐸
of all sequences that contain a substring 11. y
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The following observations are easy to prove.

Proposition 2.3.3
a) Every open set 𝐺 can be represented as the union of a sequence of disjoint

cylinder sets.

b) The set of open sets is closed with respect to finite intersection and arbitrarily
large union.

c) Each finitely determined set is both open and closed.

d) The class F of finitely determined sets forms an algebra.

Probability is generally defined as a nonnegative, monotonic function (a “mea-
sure”, see later) on some subsets of the event space (in our case the set 𝑋) that
has a certain additivity property. We do not need immediately the complete
definition of measures, but let us say what we mean by an additive set function.

Definition 2.3.4 Consider a nonnegative, function ` is defined over some sub-
sets of 𝑋 . that is alsomonotonic, that is 𝐴 ⊆ 𝐵 implies `(𝐴) ⊆ `(𝐵). We say that
it is additive if, whenever it is defined on the sets 𝐸1, . . . , 𝐸𝑛, and on 𝐸 =

⋃𝑛
𝑖=1 𝐸𝑖

and the sets 𝐸𝑖 are mutually disjoint, then we have `(𝐸) = `(𝐸1) + · · · + `(𝐸𝑛).
We say that ` is countably additive, or 𝜎-additive (sigma-additive), if in ad-

dition whenever it is defined on the sets 𝐸1, 𝐸2, . . ., and on 𝐸 =
⋃∞

𝑖=1 𝐸𝑖 and the
sets 𝐸𝑖 are mutually disjoint, then we have `(𝐸) =

∑∞
𝑖=1 `(𝐸𝑖). y

First we consider only measures defined on cylinder sets.

Definition 2.3.5 (Measure over ΣN ) Let ` : Σ∗ → R+ be a function assigning a
nonnegative number to each string in Σ∗. We will call ` a measure if it satisfies
the condition

`(𝑥) =
∑︁
𝑠∈Σ

`(𝑥𝑠). (2.3.1)

We will take the liberty to also write

`(𝑠𝑋) = `(𝑠)

for all 𝑠 ∈ Σ∗, and `(∅) = 0. We call ` a probability measure if `(Λ) = 1 and
correspondingly, `(𝑋) = 1.
A measure is called computable if it is computable as a function ` : Σ∗ → R+

according to Definition 1.5.2. y

The following observation lets us extend measures.
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Lemma 2.3.6 Let ` be a measure defined as above. If a cylinder set 𝑠𝑋 is the
disjoint union 𝑥𝑋 = 𝑥1𝑋∪𝑥2𝑋∪. . . of cylinder sets, then we have `(𝑧) = ∑

𝑖 `(𝑥𝑖).

Proof. Let us call an arbitrary 𝑦 ∈ Σ∗ good if

`(𝑧𝑦) =
∑︁
𝑖

`(𝑧𝑦𝑋 ∩ 𝑥𝑖𝑋)

holds. We have to show that the empty string Λ is good.
It is easy to see that 𝑦 is good if 𝑧𝑦𝑋 ⊆ 𝑥𝑖𝑋 for some 𝑖. Also, if 𝑦𝑠 is good

for all 𝑠 ∈ Σ then 𝑦 is good. Now assume that Λ is not good. Then there is also
an 𝑠1 ∈ Σ that is not good. But then there is also an 𝑠2 ∈ Σ such that 𝑠1𝑠2 is
not good. And so on, we obtain an infinite sequence 𝑠1𝑠2 · · · such that 𝑠1 · · · 𝑠𝑛 is
not good for any 𝑛. But then the sequence 𝑧𝑠1𝑠2 · · · is not contained in

⋃
𝑖 𝑥𝑖𝑋 ,

contrary to the assumption . �

Corollary 2.3.7 Two disjoint union representations of the same open set⋃
𝑖

𝑥𝑖𝑋 =
⋃
𝑖

𝑦𝑖𝑋

imply
∑
𝑖 `(𝑥𝑖) =

∑
𝑖 `(𝑦𝑖).

Proof. The set
⋃

𝑖 𝑥𝑖𝑋 can also be written as⋃
𝑖

𝑥𝑖𝑋 =
⋃
𝑖, 𝑗

𝑥𝑖𝑋 ∩ 𝑦 𝑗𝑋.

An element 𝑥𝑖𝑋∩𝑦 𝑗𝑋 is nonempty only if one of the strings 𝑥𝑖, 𝑦 𝑗 is a continuation
of the other. Calling this string 𝑧𝑖 𝑗 we have 𝑥𝑖𝑋 ∩ 𝑦 𝑗𝑋 = 𝑧𝑖 𝑗𝑋 . Now Lemma 2.3.6
is applicable to the union 𝑥𝑖𝑋 =

⋃
𝑗(𝑥𝑖𝑋 ∩ 𝑦 𝑗𝑋), giving

`(𝑥𝑖) =
∑︁
𝑗

`(𝑥𝑖𝑋 ∩ 𝑦 𝑗𝑋),∑︁
𝑖

`(𝑥𝑖) =
∑︁
𝑖, 𝑗

`(𝑥𝑖𝑋 ∩ 𝑦 𝑗𝑋).

The right-hand side is also equal similarly to
∑

𝑗 `(𝑦 𝑗). �

The above corollary allows the following definition:

Definition 2.3.8 For an open set 𝐺 given as a disjoint union of cylinder sets
𝑥𝑖𝑋 let `(𝐺) =

∑
𝑖 `(𝑥𝑖). For a closed set 𝐹 = 𝑋 \ 𝐺 where 𝐺 is open, let

`(𝐹) = `(𝑋) − `(𝐺). y
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The following is easy to check.

Proposition 2.3.9 Themeasure as defined on open sets is monotonic and countably
additive. In particular, it is countably additive on the algebra of finitely determined
sets.

Before extending measures to a wider range of sets, consider an important
special case. With infinite sequences, there are certain events that are not im-
possible, but still have probability 0.

Definition 2.3.10 Given a measure `, a set 𝑁 ⊆ 𝑋 is called a null set with
respect to ` if there is a sequence 𝐺1, 𝐺2, . . . of open sets with the property
𝑁 ⊆ ⋂

𝑚 𝐺𝑚, and `(𝐺𝑚) ≤ 2−𝑚. We will say that the sequence 𝐺𝑚 witnesses the
fact that 𝑁 is a null set. y

Examples 2.3.11 Let Σ = {0, 1}, let us define the measure _ by _ (𝑥) = 2−𝑛 for
all 𝑛 and for all 𝑥 ∈ Σ𝑛.
1. For every infinite sequence b ∈ 𝑋 , the one-element set {b} is a null set with
respect to _. Indeed, for each natural number 𝑛, let 𝐻𝑛 = {b ∈ 𝑋 : b(0) =
b(0), b(1) = b(1), . . . , b(𝑛) = b(𝑛) }. Then _ (𝐻𝑛) = 2−𝑛−1, and {𝑠} =⋂

𝑛 𝐻𝑛.

2. For a less trivial example, consider the set 𝐸 of those elements 𝑡 ∈ 𝑋 that are
1 in each positive even position, that is

𝐸 = {𝑡 ∈ 𝑋 : 𝑡(2) = 1, 𝑡(4) = 1, 𝑡(6) = 1 . . .}.

Then 𝐸 is a null set. Indeed, for each natural number 𝑛, let 𝐺𝑛 = {𝑡 ∈ 𝑋 :
𝑡(2) = 1, 𝑡(4) = 1, . . . , 𝑡(2𝑛) = 1}. This helps expressing 𝐸 as 𝐸 =

⋂
𝑛 𝐺𝑛,

where _ (𝐺𝑛) = 2−𝑛.
y

Proposition 2.3.12 Let 𝑁1, 𝑁2, . . . be a sequence of null sets with respect to a
measure `. Their union 𝑁 =

⋃
𝑖 𝑁𝑖 is also a null set.

Proof. Let 𝐺𝑖,1, 𝐺𝑖,2, . . . be the infinite sequence witnessing the fact that 𝑁𝑖 is a
null set. Let 𝐻𝑚 =

⋃∞
𝑖=1 𝐺𝑖,𝑚+𝑖. Then the sequence 𝐻𝑚 of open sets witnesses the

fact that 𝑁 is a null set. �

We would like to extend our measure to null sets 𝑁 and say `(𝑁) = 0. The
proposition we have just proved shows that such an extension would be count-
ably additive on the null sets. But we do not need this extension for the moment,
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2.3. Infinite sequences

so we postpone it. Still, given a probability measure 𝑃 over 𝑋 , it becomes mean-
ingful to say that a certain property holds with probability 1. What this means
is that the set of those sequences that do not have this property is a null set.
Following the idea of Martin-Löf, we would like to call a sequence nonran-

dom, if it is contained in some simple null set; that is it has some easily definable
property with probability 0. As we have seen in part 1 of Example 2.3.11, it is
important to insist on simplicity, otherwise (say with respect to the measure _)
every sequence might be contained in a null set, namely the one-element set con-
sisting of itself. But most of these sets are not defined simply at all. An example
of a simply defined null set is given is part 2 of Example 2.3.11. These reflections
justify the following definition, in which “simple” is specified as “constructive”.

Definition 2.3.13 Let ` be a computable measure. A set 𝑁 ⊆ 𝑋 is called a
constructive null set if there is recursively enumerable set Γ ⊆ N × Σ∗ with the
property that denoting Γ𝑚 = {𝑥 : (𝑚, 𝑥) ∈ Γ} and 𝐺𝑚 =

⋃
𝑥∈Γ𝑚 𝑥𝑋 we have

𝑁 ⊆ ⋂
𝑚 𝐺𝑚, and `(𝐺𝑚) ≤ 2−𝑚. y

In words, the difference between the definition of null sets and constructive
null sets is that the sets 𝐺𝑚 =

⋃
𝑥∈Γ𝑚 𝑥𝑋 here are required to be constructive

open, moreover, in such a way that from 𝑚 one can compute the program gen-
erating 𝐺𝑚. In even looser words, a set is a constructive null set if for any Y > 0
one can construct effectively a union of cylinder sets containing it, with total
measure ≤ Y.
Now we are in a position to define random infinite sequences.

Definition 2.3.14 (Random sequence) An infinite sequence b is random with
respect to a probability measure 𝑃 if and only if b is not contained in any con-
structive null set with respect to 𝑃. y

It is easy to see that the set of nonrandom sequences is a null set. Indeed,
there is only a countable number or constructive null sets, so even their union is
a null set. The following theorem strengthens this observation significantly.

Theorem 2.3.1 Let us fix a computable probability measure 𝑃. The set of all
nonrandom sequences is a constructive null set.

Thus, there is a universal constructive null set, containing all other construc-
tive null sets. A sequence is random when it does not belong to this set.

Proof of Theorem 2.3.1. The proof uses the projection technique that has ap-
peared several times in this book, for example in proving the existence of a
universal lower semicomputable semimeasure.
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We know that it is possible to list all recursively enumerable subsets of the
set N × Σ∗ into a sequence, namely that there is a recursively enumerable set
Δ ⊆ N2 × Σ∗ with the property that for every recursively enumerable set Γ ⊆
N × Σ∗ there is an 𝑒 with Γ = { (𝑚, 𝑥) : (𝑒, 𝑚, 𝑥) ∈ Δ}. We will write

Δ𝑒,𝑚 = {𝑥 : (𝑒, 𝑚, 𝑥) ∈ Δ},
𝐷𝑒,𝑚 =

⋃
𝑥∈Δ𝑒,𝑚

𝑥𝑋.

We transform the set Δ into another set Δ′ with the following property.
• For each 𝑒, 𝑚 we have

∑
(𝑒,𝑚,𝑥) ∈Δ′ `(𝑥) ≤ 2−𝑚+1.

• If for some 𝑒 we have
∑

(𝑒,𝑚,𝑥) ∈Δ `(𝑥) ≤ 2−𝑚 for all 𝑚 then for all 𝑚 we have
{𝑥 : (𝑒, 𝑚, 𝑥) ∈ Δ′} = {𝑥 : (𝑒, 𝑚, 𝑥) ∈ Δ}.

This transformation is routine, so we leave it to the reader. By the construction
of Δ′, for every constructive null set 𝑁 there is an 𝑒 with

𝑁 ⊆
⋂
𝑚

𝐷′
𝑒,𝑚.

Define the recursively enumerable set

Γ̂ = { (𝑚, 𝑥) : ∃ 𝑒 (𝑒, 𝑚 + 𝑒 + 2, 𝑥) ∈ Δ′}.

Then 𝐺𝑚 =
⋃

𝑒 𝐷
′
𝑒,𝑚+𝑒+2. For all 𝑚 we have∑︁

𝑥∈Γ̂𝑚

`(𝑥) =
∑︁
𝑒

∑︁
(𝑒,𝑚+𝑒+2,𝑥) ∈Δ′

`(𝑥) ≤
∑︁
𝑒

2−𝑚−𝑒−1 = 2−𝑚.

This shows that Γ̂ defines a constructive null set. Let Γ be any other recursively
enumerable subset of N × Σ∗ that defines a constructive null set. Then there is
an 𝑒 such that for all 𝑚 we have 𝐺𝑚 = 𝐷′

𝑒,𝑚. The universality follows now from⋂
𝑚

𝐺𝑚 =
⋂
𝑚

𝐷′
𝑒,𝑚 ⊆

⋂
𝑚

𝐷′
𝑒,𝑚+𝑒+2 ⊆

⋂
𝑚

𝐺𝑚.

�

2.3.2 Probability space

Now we are ready to extend measure to a much wider range of subsets of 𝑋 .
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2.3. Infinite sequences

Definition 2.3.15 Elements of the smallest 𝜎-algebra A containing the cylinder
sets of 𝑋 are called the Borel sets of 𝑋 . The pair (𝑋,A) is an example of a
measureable space, where the Borel sets are called the measureable sets.
A nonnegative sigma-additive function ` over A is called a measure. It is

called a probability measure if `(𝑋) = 1. If ` is fixed then the triple (𝑋,A, `)
is called a measure space. If it is a probability measure then the space is called a
probability space. y

In the Appendix we cited a central theorem ofmeasure theory, Caratheodory’s
extension theorem. It implies that if a measure is defined on an algebra L in a
sigma-additive way then it can be extended uniquely to the 𝜎-algebra generated
by L, that is the smallest 𝜎-algebra containing L. We defined a measure ` over
𝑋 as a nonnegative function ` : Σ∗ → R+ satisfying the equality (2.3.1). Then
we defined `(𝑥𝑋) = `(𝑥), and further extended ` in a 𝜎-additive way to all
elements of the algebra F. Now Caratheodory’s theorem allows us to extend it
uniquely to all Borel sets, and thus to define a measureable space (𝑋,A, `).
Of course, all null sets in A get measure 0.
Open, closed and measureable sets can also be defined in the set of real

numbers.

Definition 2.3.16 A subset 𝐺 ⊆ R is open if it is the union of a set of open
intervals (𝑎𝑖, 𝑏𝑖). It is closed if its complement is open.
The set B of Borel sets of B is defined as the smallest 𝜎-algebra containing all

open sets. y

The pair (R,B) is another example of a measureable space.
Definition 2.3.17 (Lebesgue measure) Consider the set left-closed intervals of
the line (including intervals of the form (−∞, 𝑎). LetL be the set of finite disjoint
unions of such intervals. This is an algebra. We define the function _ over L as
follows: _ (⋃𝑖 [𝑎𝑖, 𝑏𝑖)) =

∑
𝑖 𝑏𝑖 − 𝑎𝑖. It is easy to check that this is a 𝜎-additive

measure and therefore by Caratheodory’s theorem can be extended to the set B
of all Borel sets. This function is called the Lebesgue measure over R, giving us
the measureable space (R,B, _). y

Finally, we can define the notion of a measureable function over 𝑋 .

Definition 2.3.18 (Measureable functions) A function 𝑓 : 𝑋 → R is called
measureable if and only if 𝑓−1(𝐸) ∈ A for all 𝐸 ∈ B. y

The following is easy to prove.

Proposition 2.3.19 Function 𝑓 : 𝑋 → R is measureable if and only if all sets of
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2. Randomness

the form 𝑓−1((𝑟,∞)) = {𝑥 : 𝑓 (𝑥) > 𝑟} are measureable, where 𝑟 is a rational
number.

2.3.3 Computability

Measureable functions are quite general; it is worth introducing some more
resticted kinds of function over the set of sequences.

Definition 2.3.20 A function 𝑓 : 𝑋 → R is continuous if and only if for every
𝑥 ∈ 𝑋 , for every Y > 0 there is a cylinder set 𝐶 3 𝑥 such that | 𝑓 (𝑦) − 𝑓 (𝑥) | < Y

for all 𝑦 ∈ 𝐶.
A function 𝑓 : 𝑋 → R is lower semicontinuous if for every 𝑟 ∈ R the set {𝑥 ∈

𝑋 : 𝑓 (𝑥) > 𝑟} is open. It is upper semicontinuous if − 𝑓 is lower semicontinuous.
y

The following is easy to verify.

Proposition 2.3.21 A function 𝑓 : 𝑋 → R is continuous if and only if it is both
upper and lower semicontinuous.

Definition 2.3.22 A function 𝑓 : 𝑋 → R is computable if for every open rational
interval (𝑢, 𝑣) the set 𝑓−1((𝑢, 𝑣)) is a constructive open set of 𝑋 , uniformly in
𝑢, 𝑣. y

Informally this means that if for the infinite sequence b ∈ 𝑋 we have 𝑢 <

𝑓 (b) < 𝑣 then from 𝑢, 𝑣 sooner or later we will find a prefix 𝑥 of b with the
property 𝑢 < 𝑓 (𝑥𝑋) < 𝑣.

Definition 2.3.23 A function 𝑓 : 𝑋 → R is lower semicomputable if for every
rational 𝑟 the set {𝑠 ∈ 𝑋 : 𝑓 (𝑠) > 𝑟} is a constructive open set of 𝑋 , uniformly
in 𝑟. It is upper semicomputable if − 𝑓 is lower semicomputable. y

The following is easy to verify.

Proposition 2.3.24 A function 𝑋 → R is computable if and only if it is both lower
and upper semicomputable.

2.3.4 Integral

The definition of integral over a measure space is given in the Appendix, in Sub-
section A.2.3. Here, we give an exposition specialized to infinite sequences.

Definition 2.3.25 A measurable function 𝑓 : 𝑋 → R is called a step function if
its range is finite. The set of step functions will be called E.

54



2.3. Infinite sequences

Given a step function 𝑓 which takes values 𝑥𝑖 on sets 𝐴𝑖, and a finite measure
`, we define

`( 𝑓 ) = ` 𝑓 =

∫
𝑓 𝑑` =

∫
𝑓 (𝑥)`(𝑑𝑥) =

∑︁
𝑖

𝑥𝑖`(𝐴𝑖).

y

Proposition A.2.14, when specified to our situation here, says the following.

Proposition 2.3.26 The functional ` defined above on step functions can be ex-
tended to the set E+ of monotonic limits of nonnegative elements of E, by continuity.
The set E+ is the set of all nonnegative measurable functions.

Now we extend the notion of integral to a wider class of functions.

Definition 2.3.27 A measurable function 𝑓 is called integrable with respect to
a finite measure ` if ` | 𝑓 |+ < ∞ and ` | 𝑓 |− < ∞. In this case, we define ` 𝑓 =
` | 𝑓 |+ − ` | 𝑓 |−. y

It is easy to see that the mapping 𝑓 ↦→ ` 𝑓 is linear when 𝑓 runs through the
set of measureable functions with ` | 𝑓 | < ∞.
The following is also easy to check.

Proposition 2.3.28 Let ` be a computable measure.
a) If 𝑓 is computable then a program to compute ` 𝑓 can be found from the pro-

gram to compute 𝑓 .

b) If 𝑓 is lower semicomputable then a program to lower semicompute ` 𝑓 can be
found from a program to lower semicompute 𝑓 .

2.3.5 Randomness tests

We can now define randomness tests similarly to Section 2.2.

Definition 2.3.29 A function 𝑑 : 𝑋 → R is an integrable test, or expectation-
bounded test of randomness with respect to the probability measure 𝑃 if it is
lower semicomputable and satisfies the condition∫

2𝑑 (𝑥)𝑃(𝑑𝑥) ≤ 1. (2.3.2)

It is called a Martin-Löf test, or probability-bounded test, if instead of the latter
condition only the weaker one is satisfied saying 𝑃(𝑑(𝑥) > 𝑚) < 2−𝑚 for each
positive integer 𝑚.
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It is universal if it dominates all other integrable tests to within an additive
constant. Universal Martin-Löf tests are defined in the same way. y

Randomness tests and constructive null sets are closely related.

Theorem 2.3.2 Let 𝑃 be a computable probability measure over the set 𝑆 = Σ∞.
There is a correspondence between constructive null sets and randomness tests:
a) For every randomness tests 𝑑, the set 𝑁 = {b : 𝑑(b) = ∞} is a constructive

null set.

b) For every constructive null set 𝑁 there is a randomness test 𝑑 with 𝑁 = {b :
𝑑(b) = ∞}.

Proof. Let 𝑑 be a randomness test: then for each 𝑘 the set 𝐺𝑘 = {b : 𝑑(b) > 𝑘}
is a constructive open set, and by Markov’s inequality (wich is proved in the
continuous case just as in the discrete case) we have 𝑃(𝐺𝑘) ≤ 2−𝑘. The sets 𝐺𝑘
witness that 𝑁 is a constructive null set.
Let 𝑁 be a constructive null set with 𝑁 ⊆ ⋂∞

𝑘=1 𝐺𝑘, where 𝐺𝑘 is a uniform
sequence of constructive open sets with 𝑃(𝐺𝑘) = 2−𝑘. Without loss of generality
assume that the sequence 𝐺𝑘 is decreasing. Then the function 𝑑(b) = sup{𝑘 :
b ∈ 𝐺𝑘 } is lower semicomputable and satisfies 𝑃{b : 𝑑(b) ≥ 𝑘} ≤ 2−𝑘, so it
is a Martin-Löf test. Just as in Proposition 2.2.3, it is easy to check that 𝑑(𝑥) −
2 log 𝑑(𝑥) − 𝑐 is an integrable test for some constant 𝑐. �

Just as there is a universal constructive null set, there are universal random-
ness tests.

Theorem 2.3.3 For a computable measure 𝑃, there is a universal integrable test
d𝑃 (b). More exactly, the function b ↦→ d𝑃 (b) is lower semicomputable, satis-
fies (2.2.1) and for all integrable tests 𝑑(b) for 𝑃, we have

𝑑(b) +
< d𝑃 (b) + 𝐾 (𝑑) + 𝐾 (𝑃).

The proof is similar to the proof Theorem 1.6.3 on the existence of a universal
constructive semimeasure. It uses the projection technique and a weighted sum.

2.3.6 Randomness and complexity

We hope for a result connecting complexity with randomness similar to Theo-
rem 2.2.1. Somewhat surprisingly, there is indeed such a result. This is a sur-
prise since in an infinite sequence, arbitrarily large oscillations of any quantity
depending on the prefixes are actually to be expected.
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Theorem 2.3.4 Let 𝑋 = ΣN be the set of infinite sequences. For all computable
measures ` over 𝑋 , we have

d` (b) +
= sup

𝑛
(− log `(b1:𝑛) − 𝐾 (b1:𝑛)). (2.3.3)

Here, the constant in +
= depends on the computable measure `.

Corollary 2.3.30 Let _ be the uniform distribution over the set of infinite binary
sequences. Then

d_ (b) +
= sup

𝑛
(𝑛 − 𝐾 (b1:𝑛)). (2.3.4)

In other words, an infinite binary sequence is random (with respect to the
uniform distribution) if and only if the complexity 𝐾 (b1:𝑛) of its initial segments
of length 𝑛 never decreases below 𝑛 by more than an additive constant.

Proof. To prove +
<, define the function

𝑓` (b) =
∑︁
𝑠

1𝑠𝑋 (b)
m(𝑠 | `)
`(𝑠) =

∑︁
𝑛

m(b1:𝑛 | `)
`(b1:𝑛)

≥ sup
𝑛

m(b1:𝑛 | `)
`(b1:𝑛)

.

The function b ↦→ 𝑓` (b) is lower semicomputable with `b 𝑓` (b) ≤ 1, and hence

d` (b)
+
> log 𝑓 (b) +

> sup
𝑛

(− log `(b1:𝑛) − 𝐾 (b1:𝑛 | `)).

The proof of +
< reproduces the proof of Theorem 5.2 of [18]. Let us abbrevi-

ate:
1𝑦 (b) = 1𝑦𝑋 (b).

Since d𝑑(b)e only takes integer values and is lower semicomputable, there are
computable sequences 𝑦𝑖 ∈ Σ∗ and 𝑘𝑖 ∈ N with

2 d𝑑 (b) e = sup
𝑖

2𝑘𝑖1𝑦𝑖 (b) ≥
1
2

∑︁
𝑖

2𝑘𝑖1𝑦𝑖 (b)

with the property that if 𝑖 < 𝑗 and 1𝑦𝑖 (b) = 1𝑦 𝑗 (b) = 1 then 𝑘𝑖 < 𝑘 𝑗. The
inequality follows from the fact that for any finite sequence 𝑛1 < 𝑛2 < . . .,∑

𝑗 2𝑛 𝑗 ≤ 2max 𝑗 2𝑛 𝑗 . The function 𝛾(𝑦) =
∑

𝑦𝑖=𝑦
2𝑘𝑖 is lower semicomputable.

With it, we have ∑︁
𝑖

2𝑘𝑖1𝑦𝑖 (b) =
∑︁
𝑦∈Σ∗
1𝑦 (b)𝛾(𝑦).
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Since `2 d𝑑e ≤ 2, we have ∑𝑦 `(𝑦)𝛾(𝑦) ≤ 2, hence `(𝑦)𝛾(𝑦) ∗
< m(𝑦), that is

𝛾(𝑦) ∗
< m(𝑦)/`(𝑦). It follows that

2𝑑 (b) ∗
< sup

𝑦∈Σ∗
1𝑦 (b)

m(𝑦)
`(𝑦) = sup

𝑛

m(b1:𝑛)
`(b1:𝑛)

.

Taking logarithms, we obtain the +
< part of the theorem. �

2.3.7 Universal semimeasure, algorithmic probability

Universal semimeasures exist over infinite sequences just as in the discrete space.

Definition 2.3.31 A function ` : Σ∗ → R+ is a semimeasure if it satisfies

`(𝑥) ≥
∑︁
𝑠∈Σ

`(𝑥𝑠),

`(Λ) ≤ 1.

If it is lower semicomputable we will call the semimeasure constructive. y

These requirements imply, just as for measures, the following generalization
to an arbitrary prefix-free set 𝐴 ⊆ Σ∗:∑︁

𝑥∈𝐴
`(𝑥) ≤ 1.

Standard technique gives the following:

Theorem 2.3.5 (Universal semimeasure) There is a universal constructive semimea-
sure `, that is a constructive semimeasure with the property that for every other
constructive semimeasure a there is a constant 𝑐a > 0 with `(𝑥) ≥ 𝑐aa(𝑥).
Definition 2.3.32 Let us fix a universal constructive semimeasure over 𝑋 and
denote it by 𝑀 (𝑥). y

There is a graphical way to represent a universal semimeasure, via mono-
tonic Turing machines, which can be viewed a generalization of self-delimiting
machines.

Definition 2.3.33 A Turing machine T is monotonic if it has no input tape or
output tape, but can ask repeatedly for input symbols and can emit repeatedly
output symbols. The input is assumed to be an infinite binary string, but it is
not assumed that T will ask for all of its symbols, even in infinite time. If the
finite or infinite input string is 𝑝 = 𝑝1𝑝2 · · ·, the (finite or infinite) output string
is written as 𝑇 (𝑝) ∈ Σ∗ ∪ ΣN. y
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Just as we can generalize self-delimiting machines to obtain the notion of
monotonic machines, we can generalize algorithmic probability, defined for a
discrete space, to a version defined for infinite sequences. Imagine themonotonic
Turing machine T computing the function 𝑇 (𝑝) as in the definition, and assume
that its input symbols come from coin-tossing.

Definition 2.3.34 (Algorithmic probability over infinite sequences) For a string
𝑥 ∈ Σ∗, let 𝑃𝑇 (𝑥) be the probability of 𝑇 (𝜋) w 𝑥, when 𝜋 = 𝜋1𝜋2 · · · is the
infinite coin-tossing sequence. y

We can compute

𝑃𝑇 (𝑥) =
∑︁

𝑇 (𝑝) w𝑥,𝑝 minimal
2−𝑙 (𝑝) ,

where “minimal” means that no prefix 𝑝′ of 𝑝 gives 𝑇 (𝑝′) w 𝑥. This expression
shows that 𝑃𝑇 (𝑥) is lower semicomputable. It is also easy to check that it is a
semimeasure, so we have a constructive semimeasure. The following theorem is
obtained using a standard construction:

Theorem 2.3.6 Every constructive semimeasure `(𝑥) can be represented as `(𝑥) =
𝑃𝑇 (𝑥) with the help of an appropriate a monotonic machine T.

This theorem justifies the following.

Definition 2.3.35 From now on we will call the universal semimeasure 𝑀 (𝑥)
also the algorithmic probability. A monotonic Turing machine T giving 𝑃𝑇 (𝑥) =
𝑀 (𝑥) will be called an optimal machine. y

We will see that − log𝑀 (𝑥) should also be considered a kind of description
complexity:

Definition 2.3.36 Denote

𝐾𝑀 (𝑥) = − log𝑀 (𝑥).
y

How does 𝐾𝑀 (𝑥) compare to 𝐾 (𝑥)?
Proposition 2.3.37 We have the bounds

𝐾𝑀 (𝑥) +
< 𝐾 (𝑥) +

< 𝐾𝑀 (𝑥) + 𝐾 (𝑙(𝑥)).

Proof. To prove 𝐾𝑀 (𝑥) +
< 𝐾 (𝑥) define the lower semicomputable function

`(𝑥) = sup
𝑆

∑︁
𝑦∈𝑆

m(𝑥 𝑦),
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2. Randomness

By its definition this is a constructive semimeasure and it is ≥ m(𝑥). This implies
𝑀 (𝑥) ∗

> m(𝑥), and thus 𝐾𝑀 (𝑥) +
< 𝐾 (𝑥).

For the other direction, define the following lower semicomputable function
a over Σ∗:

a(𝑥) = m(𝑙(𝑥)) · 𝑀 (𝑥).

To show that it is a semimeasure compute:∑︁
𝑥∈Σ∗

a(𝑥) =
∑︁
𝑛

m(𝑛)
∑︁
𝑥∈Σ𝑛

𝑀 (𝑥) ≤
∑︁
𝑛

m(𝑛) ≤ 1.

It follows that m(𝑥) ∗
> a(𝑥) and hence 𝐾 (𝑥) +

< 𝐾𝑀 (𝑥) + 𝐾 (𝑙(𝑥)). �

2.3.8 Randomness via algorithmic probability

Fix a computable measure 𝑃(𝑥) over the space 𝑋 . Just as in the discrete case,
the universal semimeasure gives rise to a Martin-Löf test.

Definition 2.3.38 Denote

d′
𝑃 (b) = log sup

𝑛

𝑀 (b1:𝑛)
𝑃(b1:𝑛)

.

y

By Proposition 2.3.37, this function is is ∗
> d𝑃 (b), defined in Theorem 2.3.3.

It can be shown that it is no longer expectation-bounded. But the theorem below
shows that it is still a Martin-Löf (probability-bounded) test, so it defines the
same infinite random sequences.

Theorem 2.3.7 The function d′
𝑃 (b) is a Martin-Löf test.

Proof. Lower semicomputability follows from the form of definition. By standard
methods, produce a list of finite strings 𝑦1, 𝑦2, . . . with:
a) 𝑀 (𝑦𝑖)/𝑃(𝑦𝑖) > 2𝑚

b) The cylinder sets 𝑦𝑖𝑋 cover of 𝐺𝑚, and are disjoint (thus the set {𝑦1, 𝑦2, . . . }
is prefix-free).

We have

𝑃(𝐺𝑚) =
∑︁
𝑖

𝑃(𝑦𝑖) < 2−𝑚
∑︁
𝑖

𝑀 (𝑦𝑖) ≤ 2−𝑚.

�
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2.3. Infinite sequences

Just as in the discrete case, the universality of 𝑀 (𝑥) implies

𝐾𝑀 (𝑥) +
< − log 𝑃(𝑥) + 𝐾 (𝑃).

On the other hand,

sup
𝑛

− log 𝑃(b1:𝑛) − 𝐾𝑀 (b1:𝑛)

is a randomness test. So for random b, the value 𝐾𝑀 (b1:𝑛) remains within a
constant of − log 𝑃(𝑥): it does not oscillate much.
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3 Information

3.1 Information-theoretic relations

In this subsection, we use some material from [23].

3.1.1 The information-theoretic identity

Information-theoretic entropy is related to complexity in both a formal and a
more substantial way.

Classical entropy and classical coding

Entropy is used in information theory in order to characterize the compressibility
of a statistical source.

Definition 3.1.1 The entropy of a discrete probability distribution 𝑃 is defined
as

H(𝑃) = −
∑︁
𝑥

𝑃(𝑥) log 𝑃(𝑥).

y

A simple argument shows that this quantity is non-negative. It is instructive
to recall a more general inequality, taken from [13], implying it:

Theorem 3.1.1 Let 𝑎𝑖, 𝑏𝑖 > 0, 𝑎 =
∑
𝑖 𝑎𝑖, 𝑏 =

∑
𝑖 𝑏𝑖. Then we have∑︁

𝑖

𝑎𝑖 log
𝑎𝑖

𝑏𝑖
≥ 𝑎 log

𝑎

𝑏
, (3.1.1)

with equality only if 𝑎𝑖/𝑏𝑖 is constant. In particular, if
∑
𝑖 𝑎𝑖 = 1 and

∑
𝑖 𝑏𝑖 ≤ 1

then we have
∑
𝑖 𝑎𝑖 log

𝑎𝑖
𝑏𝑖
≥ 0.

Proof. Exercise, an application of Jensen’s inequality to the concave function
log 𝑥. �
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3. Information

If 𝑃 is a probability distribution and 𝑄(𝑥) ≥ 0,
∑
𝑥 𝑄(𝑥) ≤ 1 then this

inequality implies
𝐾 (𝑃) ≤

∑︁
𝑥

𝑃(𝑥) log𝑄(𝑥).

We can interpret this inequality as follows. We have seen in Subsection 1.6.3 that
if 𝑥 ↦→ 𝑧𝑥 is a prefix code, mapping the objects 𝑥 into binary strings 𝑧𝑥 that are
not prefixes of each other then

∑
𝑥 2−𝑙 (𝑧𝑥 ) ≤ 1. Thus, substituting 𝑄(𝑥) = 2−𝑙 (𝑧𝑥 )

above we obtain Shannon’s result:

Theorem 3.1.2 (Shannon) If 𝑥 ↦→ 𝑧𝑥 is a prefix code then for its expected code-
word length we have the lower bound:∑︁

𝑥

𝑃(𝑥)𝑙(𝑧𝑥) ≥ 𝐾 (𝑃).

Entropy as expected complexity

Applying Shannon’s theorem 3.1.2 to the code obtained by taking 𝑧𝑥 as the short-
est self-delimiting description of 𝑥, we obtain the inequality∑︁

𝑥

𝑃(𝑥)𝐾 (𝑥) ≥ H(𝑃)

On the other hand, since m(𝑥) is a universal semimeasure, we have m(𝑥) ∗
>

𝑃(𝑥): more precisely, 𝐾 (𝑥) +
< − log 𝑃(𝑥) + 𝐾 (𝑃), leading to the following theo-

rem.

Theorem 3.1.3 For a computable distribution 𝑃 we have

H(𝑃) ≤
∑︁
𝑥

𝑃(𝑥)𝐾 (𝑥) +
< H(𝑃) + 𝐾 (𝑃). (3.1.2)

Note that H(𝑃) is the entropy of the distribution 𝑃 while 𝐾 (𝑃) is just the
description complexity of the function 𝑥 ↦→ 𝑃(𝑥), it has nothing to do directly
with the magnitudes of the values 𝑃(𝑥) for each 𝑥 as real numbers. These two
relations give

𝐾 (𝑃) +
=
∑︁
𝑥

𝑃(𝑥)𝐾 (𝑥) − 𝐾 (𝑃),

the entropy is within an additive constant equal to the expected complexity. Our
intended interpretation of 𝐾 (𝑥) as information content of the individual object
𝑥 is thus supported by a tight quantitative relationship to Shannon’s statistical
concept.
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3.1. Information-theoretic relations

Identities, inequalities

The statistical entropy obeys meaningful identities which immediately follow
from the definition of conditional entropy.

Definition 3.1.2 Let 𝑋 and 𝑌 be two discrete random variables with a joint
distribution. The conditional entropy of 𝑌 with respect to 𝑋 is defined as

H(𝑌 | 𝑋) = −
∑︁
𝑥

𝑃 [𝑋 = 𝑥]
∑︁
𝑦

𝑃 [𝑌 = 𝑦 | 𝑋 = 𝑥] log 𝑃 [𝑌 = 𝑦 | 𝑋 = 𝑥].

The joint entropy of 𝑋 and 𝑌 is defined as the entropy of the pair (𝑋, 𝑌 ). y

The following additivity property is then verifiable by simple calculation:

H(𝑋, 𝑌 ) = H(𝑋) +H(𝑌 | 𝑋). (3.1.3)

Its meaning is that the amount of information in the pair (𝑋, 𝑌 ) is equal to the
amount of information in 𝑋 plus the amount of our residual uncertainty about
𝑌 once the value of 𝑋 is known.
Though intuitively expected, the following identity needs proof:

H(𝑌 | 𝑋) ≤ H(𝑌 ).

We will prove it after we define the difference below.

Definition 3.1.3 The information in 𝑋 about 𝑌 is defined by

I(𝑋 : 𝑌 ) = H(𝑌 ) −H(𝑌 | 𝑋).

y

This is the amount by which our knowledge of 𝑋 decreases our uncertainty
about 𝑌 .
The identity below comes from equation (3.1.3).

I(𝑋 : 𝑌 ) = I(𝑌 : 𝑋) = H(𝑋) +H(𝑌 ) −H(𝑋, 𝑌 )

The meaning of the symmetry relation is that the quantity of information in 𝑌
about 𝑋 is equal to the quantity of information in 𝑋 about 𝑌 . Despite its simple
derivation, this fact is not very intuitive; especially since only the quantities are
equal, the actual contents are generally not (see [22]). We also call I(𝑋 : 𝑌 ) the
mutual information of 𝑋 and 𝑌 . We can also write

I(𝑋 : 𝑌 ) =
∑︁
𝑥,𝑦

𝑃 [𝑋 = 𝑥, 𝑌 = 𝑦] log 𝑃 [𝑋 = 𝑥, 𝑌 = 𝑦]
𝑃 [𝑋 = 𝑥]𝑃 [𝑌 = 𝑦] . (3.1.4)
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Proposition 3.1.4 The information I(𝑋 : 𝑌 ) is nonnegative and is 0 only if 𝑋, 𝑌
are independent.

Proof. Apply Theorem 3.1.1 to (3.1.4). This is 0 only if 𝑃 [𝑋 = 𝑥, 𝑌 = 𝑦] =

𝑃 [𝑋 = 𝑥]𝑃 [𝑌 = 𝑦] for all 𝑥, 𝑦. �

The algorithmic addition theorem

For the notion of algorithmic entropy 𝐾 (𝑥) defined in Section 1.6, it is a seri-
ous test of fitness to ask whether it has an additivity property analogous to the
identity (3.1.3). Such an identity would express some deeper relationship than
the trivial identity (3.1.3) since the conditional complexity is defined using the
notion of conditional computation, and not by an algebraic formula involving the
unconditional definition.
A literal translation of the identity (3.1.3) turns out to be true for the function

𝐾 (𝑥) as well as for Kolmogorov’s complexity 𝐶(𝑥) with good approximation. But
the exact additivity property of algorithmic entropy is subtler.

Theorem 3.1.4 (Addition) We have

𝐾 (𝑥, 𝑦) +
= 𝐾 (𝑥) + 𝐾 (𝑦 | 𝑥, 𝐾 (𝑥)). (3.1.5)

Proof. We first prove +
<. Let 𝐹 be the following s.d. interpreter. The machine

computing 𝐹(𝑝) tries to parse 𝑝 into 𝑝 = 𝑢𝑣 so that 𝑇 (𝑢) is defined, then outputs
the pair (𝑇 (𝑢), 𝑇 (𝑣, 〈𝑇 (𝑢), 𝑙(𝑢)〉)). If 𝑢 is a shortest description of 𝑥 and 𝑣 a
shortest description of 𝑦 given the pair (𝑥, 𝐾 (𝑥)) then the output of 𝐹 is the pair
(𝑥, 𝑦).
Now we prove +

>. Let 𝑐 be a constant (existing in force of Lemma 1.7.3) such
that for all 𝑥 we have

∑
𝑦 2−𝐾 (𝑥,𝑦) ≤ 2−𝐾 (𝑥)+𝑐. Let us define the semicomputable

function 𝑓 (𝑧, 𝑦) by
𝑓 ((𝑥, 𝑘), 𝑦) = 2𝑘−𝐾 (𝑥,𝑦)−𝑐.

Then for 𝑘 = 𝐾 (𝑥) we have ∑𝑦 𝑓 (𝑧, 𝑦) ≤ 1, hence the generalization (1.6.13)
of the coding theorem implies 𝐾 (𝑦 | 𝑥, 𝐾 (𝑥)) +

< 𝐾 (𝑥, 𝑦) − 𝐾 (𝑥). �

Recall the definition of 𝑥∗ as the first shortest description of 𝑥.

Corollary 3.1.5 We have

𝐾 (𝑥∗, 𝑦) +
= 𝐾 (𝑥, 𝑦). (3.1.6)
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The Addition Theorem implies

𝐾 (𝑥, 𝑦) +
< 𝐾 (𝑥) + 𝐾 (𝑦 | 𝑥) +

< 𝐾 (𝑥) + 𝐾 (𝑦)

while these relations do not hold for Kolmogorov’s complexity 𝐶(𝑥), as pointed
out in the discussion of Theorem 1.4.2. For an ordinary interpreter, extra infor-
mation is needed to separate the descriptions of 𝑥 and 𝑦. The self-delimiting
interpreter accepts only a description that provides the neccesary information to
determine its end.
The term 𝐾 (𝑥) cannot be omitted from the condition in 𝐾 (𝑦 | 𝑥, 𝐾 (𝑥)) in the

identity (3.1.5). Indeed, it follows from equation (1.7.2) that with 𝑦 = 𝐾 (𝑥),
we have 𝐾 (𝑥, 𝑦) − 𝐾 (𝑥) +

= 0. But 𝐾 (𝐾 (𝑥) | 𝑥) can be quite large, as shown in
the following theorem given here without proof.

Theorem 3.1.5 (see [17]) There is a constant 𝑐 such that for all 𝑛 there is a
binary string 𝑥 of length 𝑛 with

𝐾 (𝐾 (𝑥) | 𝑥) ≥ log 𝑛 − log log 𝑛 − 𝑐.

We will prove this theorem in Section 3.3. For the study of information rela-
tions, let us introduce yet another notation.

Definition 3.1.6 For any functions 𝑓 , 𝑔, ℎ with values in S, let

𝑓 � 𝑔 mod ℎ

mean that there is a constant 𝑐 such that 𝐾 ( 𝑓 (𝑥) | 𝑔(𝑥), ℎ(𝑥)) ≤ 𝑐 for all 𝑥. We
will omit modℎ if ℎ is not in the condition. The sign � will mean inequality in
both directions. y

The meaning of 𝑥 � 𝑦 is that the objects 𝑥 and 𝑦 hold essentially the same
information. Theorem 1.4.1 implies that if 𝑓 � 𝑔 then we can replace 𝑓 by 𝑔
wherever it occurs as an argument of the functions 𝐻 or 𝐾. As an illustration of
this definition, let us prove the relation

𝑥∗ � 〈𝑥, 𝐾 (𝑥)〉

which implies 𝐾 (𝑦 | 𝑥, 𝐾 (𝑥)) +
= 𝐾 (𝑦 | 𝑥∗), and hence

𝐾 (𝑥, 𝑦) − 𝐾 (𝑥) +
= 𝐾 (𝑦 | 𝑥∗). (3.1.7)

The direction � holds because we can compute 𝑥 = 𝑇 (𝑥∗) and 𝐾 (𝑥) = 𝑙(𝑥∗)
from 𝑥∗. On the other hand, if we have 𝑥 and 𝐾 (𝑥) then we can enumerate the
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set 𝐸(𝑥) of all shortest descriptions of 𝑥. By the corollary of Theorem 1.7.1, the
number of elements of this set is bounded by a constant. The estimate (1.6.4)
implies 𝐾 (𝑥∗ | 𝑥, 𝐾 (𝑥)) +

= 0.
Though the string 𝑥∗ and the pair (𝑥, 𝐾 (𝑥)) contain the same information,

they are not equivalent under some stronger criteria on the decoder. To obtain
𝑥 from the shortest description may take extremely long time. But even if this
time 𝑡 is acceptable, to find any description of length 𝐾 (𝑥) for 𝑥 might require
about 𝑡2𝐾 (𝑥) steps of search.
The Addition Theorem can be made formally analogous to its information-

theoretic couterpart using Chaitin’s notational trick.

Definition 3.1.7 Let 𝐾∗(𝑦 | 𝑥) = 𝐾 (𝑦 | 𝑥∗). y

Of course, 𝐾∗(𝑥) = 𝐾 (𝑥). Now we can formulate the relation (3.1.7) as

𝐾∗(𝑥, 𝑦) +
= 𝐾∗(𝑥) + 𝐾∗(𝑦 | 𝑥).

However, we prefer to use the function 𝐾 (𝑦 | 𝑥) since the function 𝐾∗(𝑦 | 𝑥) is not
semicomputable. Indeed, if there was a function ℎ(𝑥, 𝑦) upper semicomputable
in 〈𝑥, 𝑦〉 such that 𝐾 (𝑥, 𝑦) − 𝐾 (𝑥) +

= ℎ(𝑥, 𝑦) then by the argument of the proof
of the Addition Theorem, we would have 𝐾 (𝑦 | 𝑥) +

< ℎ(𝑥, 𝑦) which is not true,
according to remark after the proof of the Addition Theorem.

Definition 3.1.8 We define the algorithmic mutual information with the same
formula as classical information:

𝐼(𝑥 : 𝑦) = 𝐾 (𝑦) − 𝐾 (𝑦 | 𝑥).

y

Since the quantity 𝐼(𝑥 : 𝑦) is not quite equal to 𝐾 (𝑥) − 𝐾 (𝑥 | 𝑦) (in fact,
Levin showed (see [17]) that they are not even asymptotically equal), we prefer
to define information also by a symmetrical formula.

Definition 3.1.9 The mutual information of two objects 𝑥 and 𝑦 is

𝐼∗(𝑥 : 𝑦) = 𝐾 (𝑥) + 𝐾 (𝑦) − 𝐾 (𝑥, 𝑦).

y

The Addition Theorem implies the identity

𝐼∗(𝑥 : 𝑦) +
= 𝐼(𝑥∗ : 𝑦) +

= 𝐼(𝑦∗ : 𝑥).

Let us show that classical information is indeed the expected value of algorithmic
information, for a computable probability distribution 𝑝:
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Lemma 3.1.10 Given a computable joint probability mass distribution 𝑝(𝑥, 𝑦)
over (𝑥, 𝑦) we have

I(𝑋 : 𝑌 ) − 𝐾 (𝑝) +
<
∑︁
𝑥

∑︁
𝑦

𝑝(𝑥, 𝑦) 𝐼∗(𝑥 : 𝑦) (3.1.8)

+
< I(𝑋 : 𝑌 ) + 2𝐾 (𝑝),

where 𝐾 (𝑝) is the length of the shortest prefix-free program that computes 𝑝(𝑥, 𝑦)
from input (𝑥, 𝑦).

Proof. We have∑︁
𝑥,𝑦

𝑝(𝑥, 𝑦) 𝐼∗(𝑥 : 𝑦) +
=
∑︁
𝑥,𝑦

𝑝(𝑥, 𝑦) [𝐾 (𝑥) + 𝐾 (𝑦) − 𝐾 (𝑥, 𝑦)].

Define
∑

𝑦 𝑝(𝑥, 𝑦) = 𝑝1(𝑥) and
∑
𝑥 𝑝(𝑥, 𝑦) = 𝑝2(𝑦) to obtain∑︁

𝑥,𝑦

𝑝(𝑥, 𝑦) 𝐼(𝑥 : 𝑦) +
=
∑︁
𝑥

𝑝1(𝑥)𝐾 (𝑥) +
∑︁
𝑦

𝑝2(𝑦)𝐾 (𝑦) −
∑︁
𝑥,𝑦

𝑝(𝑥, 𝑦)𝐾 (𝑥, 𝑦).

The distributions 𝑝𝑖 (𝑖 = 1, 2) are computable. We have seen in (3.1.2) that
H(𝑞) +

<
∑
𝑥 𝑞(𝑥)𝐾 (𝑥)

+
< H(𝑞) + 𝐾 (𝑞).

Hence, H(𝑝𝑖)
+
<

∑
𝑥 𝑝𝑖(𝑥)𝐾 (𝑥)

+
< H(𝑝𝑖) + 𝐾 (𝑝𝑖). (𝑖 = 1, 2), and H(𝑝) +

<∑
𝑥,𝑦 𝑝(𝑥, 𝑦)𝐾 (𝑥, 𝑦)

+
< H(𝑝)+𝐾 (𝑝). On the other hand, the probabilistic mutual

information is expressed in the entropies by I(𝑋 : 𝑌 ) = H(𝑝1) +H(𝑝2) −H(𝑝).
By construction of the 𝑞𝑖’s above, we have 𝐾 (𝑝1), 𝐾 (𝑝2)

+
< 𝐾 (𝑝). Since the

complexities are positive, substitution establishes the lemma. �

Remark 3.1.11 The information 𝐼∗(𝑥 : 𝑦) can be written as

𝐼∗(𝑥 : 𝑦) +
= log

m(𝑥, 𝑦)
m(𝑥)m(𝑦) .

Formally, 𝐼∗(𝑥 : 𝑦) looks like dm×m((𝑥, 𝑦) |m × m) with the function d· (·) in-
troduced in (2.2.2). Thus, it looks like 𝐼∗(𝑥 : 𝑦) measures the deficiency of
randomness with respect to the distribution m × m. The latter distribution ex-
presses our “hypothesis” that 𝑥, 𝑦 are “independent” from each other. There is a
serious technical problem with this interpretation: the function d𝑃 (𝑥) was only
defined for computable measures 𝑃. Though the definition can be extended, it is
not clear at all that the expression d𝑃 (𝑥) will also play the role of universal test
for arbitrary non-computable distributions. Levin’s theory culminating in [33]
develops this idea, and we return to it in later parts of these notes. y
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Let us examine the size of the defects of naive additivity and information
symmetry.

Corollary 3.1.12 For the defect of additivity, we have

𝐾 (𝑥) + 𝐾 (𝑦 | 𝑥) − 𝐾 (𝑥, 𝑦) +
= 𝐼(𝐾 (𝑥) : 𝑦 | 𝑥) +

< 𝐾 (𝐾 (𝑥) | 𝑥). (3.1.9)

For information asymmetry, we have

𝐼(𝑥 : 𝑦) − 𝐼(𝑦 : 𝑥) +
= 𝐼(𝐾 (𝑦) : 𝑥 | 𝑦) − 𝐼(𝐾 (𝑥) : 𝑦 | 𝑥). (3.1.10)

Proof. Immediate from the addition theorem. �

Theorem 3.1.6 (Levin) The information 𝐼(𝑥 : 𝑦) is not even asymptotically sym-
metric.

Proof. For some constant 𝑐, assume |𝑥 | = 𝑛 and 𝐾 (𝐾 (𝑥) | 𝑥) ≥ log 𝑛− log log 𝑛−
𝑐. Consider 𝑥, 𝑥∗ and 𝐾 (𝑥). Then we can check immediately the relations

𝐼(𝑥 : 𝐾 (𝑥)) +
< 3 log log 𝑛 < log 𝑛 − log log 𝑛 − 𝑐

+
< 𝐼(𝑥∗ : 𝐾 (𝑥)).

and
𝐼(𝐾 (𝑥) : 𝑥) +

= 𝐼(𝐾 (𝑥) : 𝑥∗).
It follows that symmetry breaks down in an exponentially great measure either
on the pair (𝑥, 𝐾 (𝑥)) or the pair (𝑥∗, 𝐾 (𝑥)). �

Data processing

The following useful identity is also classical, and is called the data processing
identity:

I(𝑍 : (𝑋, 𝑌 )) = I(𝑍 : 𝑋) + I(𝑍 : 𝑌 | 𝑋). (3.1.11)

Let us see what corresponds to this for algorithmic information.
Here is the correct conditional version of the addition theorem:

Theorem 3.1.7 We have

𝐾 (𝑥, 𝑦 | 𝑧) +
= 𝐾 (𝑥 | 𝑧) + 𝐾 (𝑦 | 𝑥, 𝐾 (𝑥 | 𝑧), 𝑧). (3.1.12)

Proof. The same as for the unconditional version. �

Remark 3.1.13 The reader may have guessed the inequality

𝐾 (𝑥, 𝑦 | 𝑧) +
= 𝐾 (𝑥 | 𝑧) + 𝐾 (𝑦 | 𝑥, 𝐾 (𝑥), 𝑧),

but it is incorrect: taking 𝑧 = 𝑥, 𝑦 = 𝐾 (𝑥), the left-hand side equals 𝐾 (𝑥∗ | 𝑥),
and the right-hand side equals 𝐾 (𝑥 | 𝑥) + 𝐾 (𝐾 (𝑥) | 𝑥∗, 𝑥) +

= 0. y
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The following inequality is a useful tool. It shows that conditional complexity
is a kind of one-sided distance, and it is the algorithmic analogue of the well-
known (and not difficult classical inequality)

H(𝑋 | 𝑌 ) ≤ H(𝑍 | 𝑌 ) +H(𝑋 | 𝑍).

Theorem 3.1.8 (Simple triangle inequality) We have

𝐾 (𝑧 | 𝑥) +
< 𝐾 (𝑦, 𝑧 | 𝑥) +

< 𝐾 (𝑦 | 𝑥) + 𝐾 (𝑧 | 𝑦). (3.1.13)

Proof. According to (3.1.12), we have

𝐾 (𝑦, 𝑧 | 𝑥) +
= 𝐾 (𝑦 | 𝑥) + 𝐾 (𝑧 | 𝑦, 𝐾 (𝑦 | 𝑥), 𝑥).

The left-hand side is +
> 𝐾 (𝑧 | 𝑥), the second term of the right-hand side is +

<

𝐾 (𝑧 | 𝑦). �

Equation (3.1.12) justifies the following.

Definition 3.1.14

𝐼∗(𝑥 : 𝑦 | 𝑧) = 𝐾 (𝑥 | 𝑧) + 𝐾 (𝑦 | 𝑧) − 𝐾 (𝑥, 𝑦 | 𝑧). (3.1.14)

y

Then we have

𝐼∗(𝑥 : 𝑦 | 𝑧) +
= 𝐾 (𝑦 | 𝑧) − 𝐾 (𝑦 | 𝑥, 𝐾 (𝑥 | 𝑧), 𝑧)
+
= 𝐾 (𝑥 | 𝑧) − 𝐾 (𝑥 | 𝑦, 𝐾 (𝑦 | 𝑧), 𝑧).

Theorem 3.1.9 (Algorithmic data processing identity) We have

𝐼∗(𝑧 : (𝑥, 𝑦)) +
= 𝐼∗(𝑧 : 𝑥) + 𝐼∗(𝑧 : 𝑦 | 𝑥∗). (3.1.15)

Proof. We have

𝐼∗(𝑧 : (𝑥, 𝑦)) +
= 𝐾 (𝑥, 𝑦) + 𝐾 (𝑧) − 𝐾 (𝑥, 𝑦, 𝑧)

𝐼∗(𝑧 : 𝑥) +
= 𝐾 (𝑥) + 𝐾 (𝑧) − 𝐾 (𝑥, 𝑧)

𝐼∗(𝑧 : (𝑥, 𝑦)) − 𝐼∗(𝑧 : 𝑥) +
= 𝐾 (𝑥, 𝑦) + 𝐾 (𝑥, 𝑧) − 𝐾 (𝑥, 𝑦, 𝑧) − 𝐾 (𝑥)
+
= 𝐾 (𝑦 | 𝑥∗) + 𝐾 (𝑧 | 𝑥∗) − 𝐾 (𝑦, 𝑧 | 𝑥∗)
+
= 𝐼∗(𝑧 : 𝑦 | 𝑥∗),

where we used additivity and the definition (3.1.14) repeatedly. �
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Corollary 3.1.15 The information 𝐼∗ is monotonic:

𝐼∗(𝑥 : (𝑦, 𝑧)) +
> 𝐼∗(𝑥 : 𝑦). (3.1.16)

The following theorem is also sometimes useful.

Theorem 3.1.10 (Starry triangle inequality) For all 𝑥, 𝑦, 𝑧, we have

𝐾 (𝑥 | 𝑦∗) +
< 𝐾 (𝑥, 𝑧 | 𝑦∗) +

< 𝐾 (𝑧 | 𝑦∗) + 𝐾 (𝑥 | 𝑧∗). (3.1.17)

Proof. Using the algorithmic data-processing identity (3.1.15) and the defini-
tions, we have

𝐾 (𝑧) − 𝐾 (𝑧 | 𝑦∗) + 𝐾 (𝑥 | 𝑧∗) − 𝐾 (𝑥 | 𝑦, 𝐾 (𝑦 | 𝑧∗), 𝑧∗)
+
= 𝐼∗(𝑦 : 𝑧) + 𝐼∗(𝑦 : 𝑥 | 𝑧∗) +

= 𝐼∗(𝑦 : (𝑥, 𝑧))
+
= 𝐾 (𝑥, 𝑧) − 𝐾 (𝑥, 𝑧 | 𝑦∗),

which gives, after cancelling 𝐾 (𝑧) + 𝐾 (𝑥 | 𝑧∗) on the left-hand side with 𝐾 (𝑥, 𝑧)
on the right-hand side, to which it is equal according to additivity, and changing
sign:

𝐾 (𝑥, 𝑧 | 𝑦∗) +
= 𝐾 (𝑧 | 𝑦∗) + 𝐾 (𝑥 | 𝑦, 𝐾 (𝑦 | 𝑧∗), 𝑧∗).

From here, we proceed as in the proof of the simple triangle inequality (3.1.13)
�

3.1.2 Information non-increase

In this subsection, we somewhat follow the exposition of [23].
The classical data processing identity has a simple but important application.

Suppose that the random variables 𝑍, 𝑋, 𝑌 form a Markov chain in this order.
Then 𝐼(𝑍 : 𝑌 | 𝑋) = 0 and hence 𝐼(𝑍 : (𝑋, 𝑌 )) = 𝐼(𝑍 : 𝑋). In words: all
information in 𝑍 about 𝑌 is coming through 𝑋: a Markov transition from 𝑋 to
𝑌 cannot increase the information about 𝑍. Let us try to find the algorithmic
counterpart of this theorem.
Here, we rigorously show that this is the case in the algorithmic statistics

setting: the information in one object about another cannot be increased by
any deterministic algorithmic method by more than a constant. With added
randomization this holds with overwhelming probability. For more elaborate
versions see [31, 33].
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Suppose we want to obtain information about a certain object 𝑥. It does not
seem to be a good policy to guess blindly. This is confirmed by the following
inequality. ∑︁

𝑦

m(𝑦)2𝐼 (𝑥:𝑦) ∗
< 1 (3.1.18)

which says that for each 𝑥, the expected value of 2𝐼 (𝑥:𝑦) is small, even with
respect to the universal constructive semimeasurem(𝑦). The proof is immediate
if we recognize that by the Coding Theorem,

2𝐼 (𝑥:𝑦) ∗
=
2−𝐾 (𝑦 | 𝑥)

m(𝑦)

and use the estimate (1.6.10).
We prove a strong version of the information non-increase law under deter-

ministic processing (later we need the attached corollary):

Theorem 3.1.11 Given 𝑥 and 𝑧, let 𝑞 be a program computing 𝑧 from 𝑥∗. Then
we have

𝐼∗(𝑦 : 𝑧) +
< 𝐼∗(𝑦 : 𝑥) + 𝐾 (𝑞).

Proof. By monotonicity (3.1.16) and the data processing identity (3.1.15):

𝐼∗(𝑦 : 𝑧) +
< 𝐼∗(𝑦 : (𝑥, 𝑧)) +

= 𝐼∗(𝑦 : 𝑥) + 𝐼∗(𝑦 : 𝑧 | 𝑥∗).

By definition of information and the definition of 𝑞:

𝐼∗(𝑦 : 𝑧 | 𝑥∗) +
< 𝐾 (𝑧 | 𝑥∗) +

< 𝐾 (𝑞).

�

Randomized computation can increase information only with negligible prob-
ability. Suppose that 𝑧 is obtained from 𝑥 by some randomized computation. The
probability 𝑝(𝑧 | 𝑥) of obtaining 𝑧 from 𝑥 is a semicomputable distribution over
the 𝑧’s. The information increase 𝐼∗(𝑧 : 𝑦) − 𝐼∗(𝑥 : 𝑦) satisfies the theorem
below.

Theorem 3.1.12 For all 𝑥, 𝑦, 𝑧 we have

m(𝑧 | 𝑥∗)2𝐼∗ (𝑧:𝑦)−𝐼∗ (𝑥:𝑦) ∗
< m(𝑧 | 𝑥∗, 𝑦, 𝐾 (𝑦 | 𝑥∗)).

Therefore it is upperbounded by m(𝑧 | 𝑥) ∗
< m(𝑧 | 𝑥∗).
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Remark 3.1.16 The theorem implies∑︁
𝑧

m(𝑧 | 𝑥∗)2𝐼∗ (𝑧:𝑦)−𝐼∗ (𝑥:𝑦) ∗
< 1. (3.1.19)

This says that the m(· | 𝑥∗)-expectation of the exponential of the increase is
bounded by a constant. It follows that for example, the probability of an in-
crease of mutual information by the amount 𝑑 is ∗

< 2−𝑑 . y

Proof. We have, by the data processing inequality:

𝐼∗(𝑦 : (𝑥, 𝑧)) − 𝐼∗(𝑦 : 𝑥) +
= 𝐼∗(𝑦 : 𝑧 | 𝑥∗) +

= 𝐾 (𝑧 | 𝑥∗) − 𝐾 (𝑧 | 𝑦, 𝐾 (𝑦 | 𝑥∗), 𝑥∗).

Hence, using also 𝐼∗(𝑦 : (𝑥, 𝑧)) +
> 𝐼∗(𝑦 : 𝑧) by monotonicity:

𝐼∗(𝑦 : 𝑧) − 𝐼∗(𝑦 : 𝑥) − 𝐾 (𝑧 | 𝑥∗) +
< −𝐾 (𝑧 | 𝑦, 𝐾 (𝑦 | 𝑥∗), 𝑥∗).

Putting both sides into the exponent gives the statement of the theorem. �

Remark 3.1.17 The theorem on information non-increase and its proof look
similar to the theorems on randomness conservation. There is a formal connec-
tion, via the observation made in Remark 3.1.11. Due to the difficulties men-
tioned there, we will explore the connection only later in our notes. y

3.2 The complexity of decidable and enumerable sets

If 𝜔 = 𝜔(1)𝜔(2) · · · is an infinite binary sequence, then we may be interested
in how the complexity of the initial segments

𝜔(1 : 𝑛) = 𝜔(1) · · ·𝜔(𝑛)

grows with 𝑛. We would guess that if 𝜔 is “random” then 𝐶(𝜔(1 : 𝑛)) is approx-
imately 𝑛; this question will be studied satisfactorily in later sections. Here, we
want to look at some other questions.
Can we determine whether the sequence 𝜔 is computable, by just looking at

the complexity of its initial segments? It is easy to see that if 𝜔 is computable
then 𝐶(𝜔(1 : 𝑛)) +

< log 𝑛. But of course, if 𝐶(𝜔(1 : 𝑛)) +
< log 𝑛 then it is

not necessarily true yet that 𝜔 is computable. Maybe, we should put 𝑛 into
the condition. If 𝜔 is computable then 𝐶(𝜔(1 : 𝑛) | 𝑛) +

< 0. Is it true that
𝐶(𝜔(1 : 𝑛) | 𝑛) +

< 0 for all 𝑛 then indeed 𝜔 is computable? Yes, but the proof
is quite difficult (see either its original, attributed to Albert Meyer in [37], or
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3.2. The complexity of decidable and enumerable sets

in [61]). The suspicion arises that when measuring the complexity of starting
segments of infinite sequences, neither Kolmogorov complexity nor its prefix
version are the most natural choice. Other examples will support the suspicion,
so let us introduce, following Loveland’s paper [37], the following variant.

Definition 3.2.1 Let us say that a program 𝑝 decides a string 𝑥 =

(𝑥 (1), 𝑥 (2), . . . ) on a Turing machine 𝑇 up to 𝑛 if for all 𝑖 ∈ {1, . . . , 𝑛} we
have

𝑇 (𝑝, 𝑖) = 𝑥 (𝑖).
Let us further define the decision complexity

𝐶𝑇 (𝑥; 𝑛) = min{ 𝑙(𝑝) : 𝑝 decides 𝑥 on 𝑇 up to 𝑛}.

y

As for the Kolmogorov complexity, an invariance theorem holds, and there is
an optimal machine 𝑇0 for this complexity. Again, we omit the index 𝑇 , assuming
that such an optimal machine has been fixed.
The differences between 𝐶(𝑥), 𝐶(𝑥 | 𝑛) and 𝐶(𝑥; 𝑛) are interesting to ex-

plore; intuitively, the important difference is that the program achieving the
decision complexity of 𝑥 does not have to offer precise information about the
length of 𝑥. We clearly have

𝐶(𝑥 | 𝑛) +
< 𝐶(𝑥; 𝑛) +

< 𝐶(𝑥).

Examples that each of these inequalities can be strict, are left to exercises.

Remark 3.2.2 If 𝜔(1 : 𝑛) is a segment of an infinite sequence 𝜔 then we can
write

𝐶(𝜔; 𝑛)
instead of 𝐶(𝜔(1 : 𝑛); 𝑛) without confusion, since there is only one way to
understand this expression. y

Decision complexity offers an easy characterization of decidable infinite se-
quences.

Theorem 3.2.1 Let 𝜔 = (𝜔(1), 𝜔(2), . . . ) be an infinite sequence. Then 𝜔 is
decidable if and only if

𝐶(𝜔; 𝑛) +
< 0. (3.2.1)

Proof. If 𝜔 is decidable then (3.2.1) is obviously true. Suppose now that (3.2.1)
holds: there is a constant 𝑐 such that for all 𝑛 we have 𝐶(𝜔(1 : 𝑛); 𝑛) < 𝑐.
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Then there is a program 𝑝 of length ≤ 𝑐 with the property that for infinitely
many 𝑛, decides 𝑥 on the optimal machine 𝑇0 up to 𝑛. Then for all 𝑖, we have
𝑇0(𝑝, 𝑖) = 𝜔(𝑖), showing that 𝜔 is decidable. �

Let us use now the new tool to prove a somewhat more surprising result. Let
𝜔 be a 0-1 sequence that is the indicator function of a recursively enumerable
set. In other words, the set { 𝑖 : 𝜔(𝑖) = 1} is recursively enumerable. As we
know such sequences are not always decidable, so 𝐶(𝜔(1 : 𝑛); 𝑛) is not going to
be bounded. How fast can it grow? The following theorem gives exact answer,
showing that it grows only logarithmically.

Theorem 3.2.2 (Barzdin, see [2])
a) Let 𝜔 be the indicator function of a recursively enumerable set 𝐸. Then we have

𝐶(𝜔; 𝑛) +
< log 𝑛.

b) The set 𝐸 can be chosen such that for all 𝑛 we have 𝐶(𝜔; 𝑛) ≥ log 𝑛.

Proof. Let us prove (a) first. Let 𝑛′ be the first power of 2 larger than 𝑛. Let
𝑘(𝑛) = ∑

𝑖≤𝑛′ 𝜔(𝑖). For a constant 𝑑, let 𝑝 = 𝑝(𝑛, 𝑑) be a program that contains
an initial segment 𝑞 of size 𝑑 followed by a the number 𝑘(𝑛) in binary notation,
and padded to dlog 𝑛e + 𝑑 with 0’s. The program 𝑞 is self-delimiting, so it sees
where 𝑘(𝑛) begins.
The machine 𝑇0(𝑝, 𝑖) works as follows, under the control of 𝑞. From the

length of the whole 𝑝, it determines 𝑛′. It begins to enumerate 𝜔(1 : 𝑛′) until
it found 𝑘(𝑛) 1’s. Then it knows the whole 𝜔(1 : 𝑛′), so it outputs 𝜔(𝑖).
Let us prove now (b). Let us list all possible programs 𝑞 for the machine 𝑇0

as 𝑞 = 1, 2, . . .. Let 𝜔(𝑞) = 1 if and only if 𝑇0(𝑞, 𝑞) = 0. The sequence 𝜔 is
obviously the indicator function of a recursively enumerable set. To show that 𝜔
has the desired property, assume that for some 𝑛 there is a 𝑝with 𝑇0(𝑝, 𝑖) = 𝜔(𝑖)
for all 𝑖 ≤ 𝑛. Then 𝑝 > 𝑛 since 𝜔(𝑝) is defined to be different from 𝑇0(𝑝, 𝑝). It
follows that 𝑙(𝑝) ≥ log 𝑛. �

Decision complexity has been especially convenient for the above theorem.
Neither 𝐶(𝜔(1 : 𝑛)) nor 𝐶(𝜔(1 : 𝑛) | 𝑛) would have been suitable to formulate
such a sharp result. To analyze the phenomenon further, we introduce some
more concepts.

Definition 3.2.3 Let us denote, for this section, by 𝐸 the set of those binary
strings 𝑝 on which the optimal prefix machine 𝑇 halts:

𝐸𝑡 = { 𝑝 : 𝑇 (𝑝) halts in < 𝑡 steps},
𝐸 = 𝐸∞.

(3.2.2)

76



3.2. The complexity of decidable and enumerable sets

Let
𝜒 = 𝜒𝐸 (3.2.3)

be the infinite sequence that is the indicator function of the set 𝐸, when the latter
is viewed as a set of numbers. y

It is easy to see that the set 𝐸 is complete among recursively enumerable
sets with respect to many-one reduction. The above theorems show that though
it contains an infinite amount of information, this information is not stored in
the sequence 𝜒 densely at all: there are at most log 𝑛 bits of it in the segment
𝜒(1 : 𝑛). There is an infinite sequence, though, in which the same information
is stored much more densely: as we will see later, maximally densely.

Definition 3.2.4 (Chaitin’s Omega) Let

Ω𝑡 =
∑︁
𝑝∈𝐸𝑡
2−𝑙 (𝑝) ,

Ω = Ω∞.

(3.2.4)

y

Let Ω(1 : 𝑛) be the sequence of the first 𝑛 binary digits in the expansion of
Ω, and let it also denote the binary number 0.Ω(1) · · ·Ω(𝑛). Then we have

Ω(1 : 𝑛) < Ω < Ω(1 : 𝑛) + 2−𝑛.

Theorem 3.2.3 The sequences Ω and 𝜒 are Turing-equivalent.

Proof. Let us show first that givenΩ as an oracle, a Turing machine can compute
𝜒. Suppose that we want to know for a given string 𝑝 of length 𝑘whether 𝜒(𝑝) =
1 that is whether 𝑇 (𝑝) halts. Let 𝑡(𝑛) be the first 𝑡 for which Ω𝑡 > Ω(1 : 𝑛). If a
program 𝑝 of length 𝑛 is not in 𝐸𝑡 (𝑛) then it is not in 𝐸 at all, since 2−𝑙 (𝑝) = 2𝑛 <
Ω − Ω𝑡. It follows that 𝜒(1 : 2𝑛) can be computed from Ω(1 : 𝑛).
To show that Ω can be computed from 𝐸, let us define the recursively enu-

merable set
𝐸′ = {𝑟 : 𝑟 rational, Ω > 𝑟}.

The set 𝐸′ is reducible to 𝐸 since the latter is complete among recursively enumer-
able sets with respect to many-one reduction. On the other hand, Ω is obviously
computable from 𝐸′. �

The following theorem shows that Ω stores the information more densely.

Theorem 3.2.4 We have 𝐾 (Ω(1 : 𝑛)) +
> 𝑛.
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Proof. Let 𝑝1 be a self-delimiting program outputting Ω(1 : 𝑛). Recall the def-
inition of the sets 𝐸𝑡 in (3.2.2) and the numbers Ω𝑡 in (3.2.4). Let Ω1 denote
the real number whose binary digits after 0 are given by Ω(1 : 𝑛), and let 𝑡1 be
the first 𝑡 with Ω𝑡 > Ω1. Let 𝑥1 be the first string 𝑥 such that 𝑇 (𝑝) ≠ 𝑥 for any
𝑝 ∈ 𝐸𝑡1 .
We have 𝐾 (𝑥1) ≥ 𝑛. On the other hand, we just computed 𝑥1 from 𝑝1, so

𝐾 (𝑥1 | 𝑝1)
+
< 0. We found 𝑛 ≤ 𝐾 (𝑥1)

+
< 𝐾 (𝑝1) + 𝐾 (𝑥1 | 𝑝1)

+
< 𝐾 (𝑝1). �

3.3 The complexity of complexity

3.3.1 Complexity is sometimes complex

This section is devoted to a quantitative estimation of the uncomputability of
the complexity function 𝐶(𝑥). Actually, we will work with the prefix complexity
𝐾 (𝑥), but the results would be very similar for 𝐶(𝑥). The first result shows that
the value 𝐾 (𝑥) is not only not computable from 𝑥, but its conditional complexity
𝐾 (𝐾 (𝑥) | 𝑥) given 𝑥 is sometimes quite large. How large can it be expected to be?
Certainly not much larger than log 𝐾 (𝑥) + 2 log log 𝐾 (𝑥), since we can describe
any value 𝐾 (𝑥) using this many bits. But it can come close to this, as shown by
Theorem 3.1.5. This theorem says that for all 𝑛, there exists 𝑥 of length 𝑛 with

𝐾 (𝐾 (𝑥) | 𝑥) +
> log 𝑛 − log log 𝑛. (3.3.1)

Proof of Theorem 3.1.5. Let 𝑈 (𝑝, 𝑥) be the optimal self-delimiting machine for
which 𝐾 (𝑦 | 𝑥) = min𝑈 (𝑝,𝑥)=𝑦 𝑙(𝑝). Let 𝑠 ≤ log 𝑛 be such that if 𝑙(𝑥) = 𝑛 then a
𝑝 of length 𝑥 can be found for which 𝑈 (𝑝, 𝑥) = 𝐾 (𝑥). We will show

𝑠
+
> log 𝑛 − log log 𝑛. (3.3.2)

Let us say that 𝑝 ∈ {0, 1}𝑠 is suitable for 𝑥 ∈ {0, 1}𝑛 if there exists a 𝑘 = 𝑈 (𝑝, 𝑥)
and a 𝑞 ∈ {0, 1}𝑘 with 𝑈 (𝑝, Λ) = 𝑥. Thus, 𝑝 is suitable for 𝑥 if it produces the
length of some program of 𝑥, not necessarily a shortest program.
Let 𝑀𝑖 denote the set of those 𝑥 of length 𝑛 for which there exist at least 𝑖

different suitable 𝑝 of length 𝑠. We will examine the sequence

{0, 1}𝑛 = 𝑀0 ⊇ 𝑀1 ⊇ . . . ⊇ 𝑀 𝑗 ⊇ 𝑀 𝑗+1 = ∅,

where 𝑀 𝑗 ≠ ∅. It is clear that 2𝑠 ≥ 𝑗. To lowerbound 𝑗, we will show that the
sets 𝑀𝑖 decrease only slowly:

log |𝑀𝑖 |
+
< log |𝑀𝑖+1 | + 4 log 𝑛. (3.3.3)
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We can assume
log |𝑀𝑖 \ 𝑀𝑖+1 | ≥ log |𝑀𝑖 | − 1, (3.3.4)

otherwise (3.3.3) is trivial. We will write a program that finds an element 𝑥 of
𝑀𝑖 \𝑀𝑖+1 with the property 𝐾 (𝑥) ≥ log |𝑀𝑖 | − 1. The program works as follows.
• It finds 𝑖, 𝑛 with the help of descriptions of length log 𝑛 + 2 log log 𝑛, and 𝑠
with the help of a description of length 2 log log 𝑛.

• It finds |𝑀𝑖+1 | with the help of a description of length log |𝑀𝑖+1 | + log 𝑛 +
2 log log 𝑛.

• From these data, it determines the set 𝑀𝑖+1, and then begins to enumerate
the set 𝑀𝑖 \ 𝑀𝑖+1 as 𝑥1, 𝑥2, . . .. For each of these elements 𝑥𝑟, it knows that
there are exactly 𝑖 programs suitable for 𝑥𝑟, find all those, and find the shortest
program for 𝑥 produced by these. Therefore it can compute 𝐾 (𝑥𝑟).

• According to the assumption (3.3.4), there is an 𝑥𝑟 with 𝐾 (𝑥𝑟) ≥ log |𝑀𝑖 | − 1.
The program outputs the first such 𝑥𝑟.

The construction of the program shows that its length is +
< log |𝑀𝑖+1 | + 4 log 𝑛,

hence for the 𝑥 we found

log |𝑀𝑖 | − 1 ≤ 𝐾 (𝑥) +
< log |𝑀𝑖+1 | + 4 log 𝑛,

which proves (3.3.3). This implies 𝑗 ≥ 𝑛/(4 log 𝑛), and hence (3.3.2). �

3.3.2 Complexity is rarely complex

Let
𝑓 (𝑥) = 𝐾 (𝐾 (𝑥) | 𝑥).

We have seen that 𝑓 (𝑥) is sometimes large. Here, we will show that the sequen-
ces 𝑥 for which this happens are rare. Recall that we defined 𝜒 in (3.2.3) as the
indicator sequence of the halting problem.

Theorem 3.3.1 We have

𝐼(𝜒 : 𝑥) +
> 𝑓 (𝑥) − 2.4 log 𝑓 (𝑥).

In view of the inequality (3.1.18), this shows that such sequences are rare,
even in terms of the universal probability, so they are certainly rare if wemeasure
them by any computable distribution. So, we may even call such sequences
“exotic”.
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In the proof, we start by showing that the sequences in question are rare.
Then the theorem will follow when we make use of the fact that 𝑓 (𝑥) is com-
putable from 𝜒.
We need a lemma about the approximation of one measure by another from

below.

Lemma 3.3.1 For any semimeasure a andmeasure ` ≤ a, let 𝑆𝑚 = {𝑥 : 2𝑚`(𝑥) ≤
a(𝑥) }. Then `(𝑆𝑚) ≤ 2−𝑚. If

∑
𝑥 (a(𝑥) − `(𝑥)) < 2−𝑛 then a(𝑆1) < 2−𝑛+1.

The proof is straightforward.
Let

𝑋 (𝑛) = {𝑥 : 𝑓 (𝑥) = 𝑛}.
Lemma 3.3.2 We have

m(𝑋 (𝑛)) ∗
< 𝑛1.22−𝑛.

Proof. Using the definition of 𝐸𝑡 in (3.2.2), let

m𝑡 (𝑥) =
∑︁

{ 𝑝 : 𝑇 (𝑝) = 𝑥 in < 𝑡 steps},
𝐾𝑡 (𝑥) = − logm𝑡 (𝑥).

Then according to the definition (1.6.14) we have m(𝑥) = m∞(𝑥), and 𝐾 (𝑥) +
=

𝐾∞(𝑥). Let

𝑡(𝑘) = min{𝑡 : Ω(1 : 𝑘) < Ω𝑡 },
` = m𝑡 (𝑘) .

Clearly, 𝐾𝑡 (𝑘) (𝑥) +
> 𝐾 (𝑥). Let us show that 𝐾𝑡 (𝑘) (𝑥) is a good approximation for

𝐾 (𝑥) for most 𝑥. Let

𝑌 (𝑘) = {𝑥 : 𝐾 (𝑥) ≤ 𝐾𝑡 (𝑘) (𝑥) − 1}.

By definition, for 𝑥 ∉ 𝑌 (𝑘) we have

|𝐾𝑡 (𝑘) (𝑥) − 𝐾 (𝑥) | +
= 0.

On the other hand, applying Lemma 3.3.1 with ` = m𝑡 (𝑘) , a = m, we obtain

m(𝑌 (𝑘)) < 2−𝑘+1. (3.3.5)

Note that
𝐾 (𝐾𝑡 (𝑘) (𝑥) | 𝑥,Ω(1 : 𝑘)) +

= 0,
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therefore for 𝑥 ∉ 𝑌 (𝑘) we have

𝐾 (𝐾 (𝑥) | 𝑥,Ω(1 : 𝑘)) +
= 0,

𝐾 (𝐾 (𝑥) | 𝑥) +
< 𝑘 + 1.2 log 𝑘.

If 𝑛 = 𝑘 + 1.2 log 𝑘 then 𝑘 +
= 𝑛 − 1.2 log 𝑛, and hence, if 𝑥 ∉ 𝑌 (𝑛 − 1.2 log 𝑛)

then 𝐾 (𝐾 (𝑥) | 𝑥) +
< 𝑛. Thus, there is a constant 𝑐 such that

𝑋 (𝑛) ⊆ 𝑌 (𝑛 − 1.2 log 𝑛 − 𝑐).

Using (3.3.5) this gives the statement of the lemma. �

Proof of Theorem 3.3.1. Since 𝑓 (𝑥) is computable from Ω, the function

a(𝑥) = m(𝑥)2 𝑓 (𝑥) ( 𝑓 (𝑥))−2.4

is computable from Ω. Let us show that it is a semimeasure (within a multiplica-
tive constant). Indeed, using the above lemma:∑︁

𝑥

a(𝑥) =
∑︁
𝑘

∑︁
𝑥∈𝑋 (𝑘)

a(𝑥) =
∑︁
𝑘

2𝑘𝑘−2.4m(𝑋 (𝑘)) =
∑︁
𝑘

𝑘−1.2
∗
< 1.

Since m(· | Ω) is the universal semimeasure relative to Ω we find m(𝑥 | Ω) ∗
>

a(𝑥), hence

𝐾 (𝑥 | Ω) +
< − log a(𝑥) = 𝐾 (𝑥) − 𝑓 (𝑥) + 2.4 log 𝑓 (𝑥),

𝐼(Ω : 𝑥) +
> 𝑓 (𝑥) − 2.4 log 𝑓 (𝑥).

Since Ω is equivalent to 𝜒, the proof is complete. �
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4 Generalizations

4.1 Continuous spaces, noncomputable measures

This section starts the consideration of randomness in continuous spaces and
randomness with respect to noncomputable measures.

4.1.1 Introduction

The algorithmic theory of randomness is well developed when the underlying
space is the set of finite or infinite sequences and the underlying probability
distribution is the uniform distribution or a computable distribution. These re-
strictions seem artificial. Some progress has been made to extend the theory to
arbitrary Bernoulli distributions by Martin-Löf in [38], and to arbitrary distribu-
tions, by Levin in [30, 32, 33]. The paper [25] by Hertling and Weihrauch also
works in general spaces, but it is restricted to computable measures. Similarly,
Asarin’s thesis [1] defines randomness for sample paths of the Brownian motion:
a fixed random process with computable distribution.
The exposition here has been inspired mainly by Levin’s early paper [32]

(and the much more elaborate [33] that uses different definitions): let us sum-
marize part of the content of [32]. The notion of a constructive topological
space X and the space of measures over X is introduced. Then the paper de-
fines the notion of a uniform test. Each test is a lower semicomputable function
(`, 𝑥) ↦→ 𝑓` (𝑥), satisfying

∫
𝑓` (𝑥)`(𝑑𝑥) ≤ 1 for each measure `. There are

also some additional conditions. The main claims are the following.
a) There is a universal test t` (𝑥), a test such that for each other test 𝑓 there
is a constant 𝑐 > 0 with 𝑓` (𝑥) ≤ 𝑐 · t` (𝑥). The deficiency of randomness is
defined as d` (𝑥) = log t` (𝑥).

b) The universal test has some strong properties of “randomness conservation”:
these say, essentially, that a computable mapping or a computable random-
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ized transition does not decrease randomness.

c) There is a measure 𝑀 with the property that for every outcome 𝑥 we have
t𝑀 (𝑥) ≤ 1. In the present work, we will call such measures neutral.

d) Semimeasures (semi-additive measures) are introduced and it is shown that
there is a lower semicomputable semi-measure that is neutral (let us assume
that the 𝑀 introduced above is lower semicomputable).

e) Mutual information 𝐼(𝑥 : 𝑦) is defined with the help of (an appropriate
version of) Kolmogorov complexity, between outcomes 𝑥 and 𝑦. It is shown
that 𝐼(𝑥 : 𝑦) is essentially equal to d𝑀×𝑀 (𝑥, 𝑦). This interprets mutual
information as a kind of “deficiency of independence”.

This impressive theory leaves a number of issues unresolved:
1. The space of outcomes is restricted to be a compact topological space, more-
over, a particular compact space: the set of sequences over a finite alphabet
(or, implicitly in [33], a compactified infinite alphabet). However, a good
deal of modern probability theory happens over spaces that are not even lo-
cally compact: for example, in case of the Brownian motion, over the space
of continuous functions.

2. The definition of a uniform randomness test includes some conditions (dif-
ferent ones in [32] and in [33]) that seem somewhat arbitrary.

3. No simple expression is known for the general universal test in terms of de-
scription complexity. Such expressions are nice to have if they are available.
Here, we intend to carry out as much of Levin’s program as seems possible

after removing the restrictions. A number of questions remain open, but we feel
that they are worth to be at least formulated. A fairly large part of the exposition
is devoted to the necessary conceptual machinery. This will also allow to carry
further some other initiatives started in the works [38] and [30]: the study of
tests that test nonrandomness with respect to a whole class of measures (like
the Bernoulli measures).
Constructive analysis has been developed by several authors, converging ap-

proximately on the same concepts, We will make use of a simplified version of
the theory introduced in [57]. As we have not found a constructive measure the-
ory in the literature fitting our purposes, we will develop this theory here, over
(constructive) complete separable metric spaces. This generality is well sup-
ported by standard results in measure theoretical probability, and is sufficient
for constructivizing a large part of current probability theory.
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The appendix recalls some of the needed topology, measure theory, construc-
tive analysis and constructive measure theory. We also make use of the notation
introduced there.

4.1.2 Uniform tests

We first define tests of randomness with respect to an arbitrary measure. Recall
the definition of lower semicomputable real functions on a computable metric
space X.

Definition 4.1.1 Let us be given a computable complete metric space X =

(𝑋, 𝑑, 𝐷, 𝛼). For an arbitrary measure ` ∈ M(X), a `-test of randomness is a
`-lower semicomputable function 𝑓 : 𝑋 → R+ with the property ` 𝑓 ≤ 1. We
call an element 𝑥 randomwith respect to ` if 𝑓 (𝑥) < ∞ for all `-tests 𝑓 . But even
among random elements, the size of the tests quantifies (non-)randomness.
A uniform test of randomness is a lower semicomputable function 𝑓 : X ×

M(X) → R+, written as (𝑥, `) ↦→ 𝑓` (𝑥) such that 𝑓` (·) is a `-test for each
`. y

The condition ` 𝑓 ≤ 1 guarantees that the probability of those outcomes
whose randomness is ≥ 𝑚 is at most 1/𝑚. The definition of tests is in the spirit
of Martin-Löf ’s tests. The important difference is in the semicomputability con-
dition: instead of restricting the measure ` to be computable, we require the
test to be lower semicomputable also in its argument `.
The following result implies that every `-test can be extended to a uniform

test.

Theorem 4.1.1 Let 𝜙𝑒, 𝑒 = 1, 2, . . . be an enumeration of all lower semicom-
putable functions X×Y×M(X) → R+, where Y is also a computable metric space,
and 𝑠 : Y × M(X) → R a lower semicomputable function. There is a recursive
function 𝑒 ↦→ 𝑒′ with the property that
a) For each 𝑒, the function 𝜙𝑒′ (𝑥, 𝑦, `) is everywhere defined with

`𝑥𝜙𝑒′ (𝑥, 𝑦, `) ≤ 𝑠(𝑦, `).
b) For each 𝑒, 𝑦, `, if `𝑥𝜙𝑒(𝑥, 𝑦`) < 𝑠(𝑦, `) then 𝜙𝑒′ (·, 𝑦, `) = 𝜙𝑒(·, 𝑦, `).
This theorem generalizes a theorem of Hoyrup and Rojas (in allowing a lower

semicomputable upper bound 𝑠(𝑦, `)).

Proof. By Proposition B.1.38, we can represent 𝜙𝑒(𝑥, 𝑦, `) as a supremum 𝜙𝑒 =

sup𝑖 ℎ𝑒,𝑖 where ℎ𝑒,𝑖(𝑥, 𝑦, `) is a computable function of 𝑒, 𝑖 monotonically in-
creasing in 𝑖. Similarly, we can represent 𝑠(𝑦, `) as a supremum sup 𝑗 𝑠 𝑗(𝑦, `)
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where 𝑠 𝑗(𝑦, `) is a computable function monotonically increasing in 𝑗. The inte-
gral `𝑥ℎ𝑒,𝑖(𝑥, 𝑦, `) is computable as a function of (𝑦, `), in particular it is upper
semicomputable.
Define ℎ′

𝑒,𝑖, 𝑗
(𝑥, 𝑦, `) as ℎ𝑒,𝑖(𝑥, 𝑦, `) for all 𝑗, 𝑦, ` with `𝑥ℎ𝑒,𝑖(𝑥, 𝑦, `) <

𝑠 𝑗(𝑦, `), and 0 otherwise. Since 𝑠 𝑗(𝑦, `) is computable this definition makes
the function ℎ′

𝑒,𝑖, 𝑗
(𝑥, 𝑦, `) lower semicomputable. The function ℎ′′

𝑒,𝑖
(𝑥, 𝑦, `) =

sup 𝑗 ℎ′𝑒,𝑖, 𝑗(𝑥, 𝑦, `) is then also lower semicomputable, with ℎ′′
𝑒,𝑖
(𝑥, 𝑦, `) ≤

ℎ𝑒,𝑖(𝑥, 𝑦, `), and `𝑥ℎ′𝑒,𝑖(𝑥, 𝑦, `) ≤ 𝑠(𝑦, `). Also, ℎ′′
𝑒,𝑖
(𝑥, 𝑦, `) is monotonically

increasing in 𝑖. The function 𝜙′
𝑒(𝑥, 𝑦, `) = sup𝑖 ℎ′′𝑒,𝑖(𝑥, 𝑦, `) is then also lower

semicomputable, and by Fubini’s theorem we have `𝑥𝜙′
𝑒(𝑥, 𝑦, `) ≤ 𝑠(𝑦, `).

Define 𝜙𝑒′ (𝑥, 𝑦, `) = 𝜙′
𝑒(𝑥, 𝑦, `). Consider any 𝑒, 𝑦, ` such that

`𝑥𝜙𝑒(𝑥, 𝑦, `) < 𝑠(𝑦, `) holds. Then for every 𝑖 there is a 𝑗with `𝑥ℎ𝑒,𝑖(𝑥, 𝑦, `) <
𝑠 𝑗(𝑦, `), and hence ℎ′𝑒,𝑖, 𝑗(𝑥, 𝑦, `) = ℎ𝑒,𝑖(𝑥, 𝑦, `). It follows that ℎ′′𝑒,𝑖(𝑥, 𝑦, `) =

ℎ𝑒,𝑖(𝑥, 𝑦, `) for all 𝑖 and hence 𝜙′
𝑒(𝑥, 𝑦, `) = 𝜙𝑒(𝑥, 𝑦, `).

�

Corollary 4.1.2 (Uniform extension) There is an operation 𝐻𝑒(𝑥, `) ↦→ 𝐻𝑒′ (𝑥, `)
with the property that 𝐻𝑒′ (𝑥, `) is a uniform test and if 2𝐻𝑒(·, `) is a `-test then
𝐻𝑒′ (𝑥, `) = 𝐻𝑒(𝑥, `).

Proof. In Theorem 4.1.1 set 𝜙𝑒(𝑥, 𝑦, `) = 1
2𝐻𝑒(𝑥, `) with 𝑠(𝑦, `) = 1. �

Corollary 4.1.3 (Universal generalized test) Let 𝑠 : Y × M(X) → R+ a lower
semicomputable function. Let 𝐸 be the set of lower semicomputable functions𝜙(𝑥, 𝑦, `) ≥
0 with `𝑥𝜙(𝑥, 𝑦, `) ≤ 𝑠(𝑦, `). There is a function 𝜓 ∈ 𝐸 that is optimal in the
sense that for all 𝜙 ∈ 𝐸 there is a constant 𝑐𝜙 with 𝜙 ≤ 2𝑐𝜙𝜓.

Proof. Apply the operation 𝑒 ↦→ 𝑒′ of theorem 4.1.1 to the sequence 𝜙𝑒(𝑥, 𝑦, `)
(𝑒 = 1, 2, . . .) of all lower semicomputable functions of 𝑥, 𝑦, `. The elements of
the sequence𝜙′

𝑒(𝑥, 𝑦, `), 𝑒 = 1, 2, . . . are in 𝐸 and and the sequence 2𝜙′
𝑒(𝑥, 𝑦, `),

𝑒 = 1, 2, . . . contains all elements of 𝐸. Hence the function𝜓(𝑥, 𝑦, `) = ∑∞
𝑒=1 2

−𝑒𝜙′
𝑒(𝑥, 𝑦, `)

is in 𝐸 and has the optimality property. �

Definition 4.1.4 A uniform test 𝑢 is called universal if for every other test 𝑡 there
is a constant 𝑐𝑡 > 0 such that for all 𝑥, ` we have 𝑡` (𝑥) ≤ 𝑐𝑢` (𝑥). y

Theorem 4.1.2 (Universal test,[26]) There is a universal uniform test.

Proof. This is a special case of Corollary 4.1.3 with 𝑠(𝑦, `) = 1. �
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Definition 4.1.5 Let us fix a universal uniform test, called t` (𝑥). An element
𝑥 ∈ 𝑋 is called random with respect to measure ` ∈ M(X) if t` (𝑥) < ∞.
The deficiency of randomness is defined as d` (𝑥) = log t` (𝑥). y

If the space is discrete then typically all elements are random with respect
to `, but they will still be distinguished according to their different values of
d` (𝑥).

4.1.3 Sequences

Let our computable metric space X = (𝑋, 𝑑, 𝐷, 𝛼) be the Cantor space of Exam-
ple B.1.35.2: the set of sequences over a (finite or countable) alphabet ΣN. We
may want to measure the non-randomness of finite sequences, viewing them as
initial segments of infinite sequences. Take the universal test t` (𝑥). For this, it
is helpful to apply the representation of Proposition B.1.23, taking into account
that adding the extra parameter ` does not change the validity of the theorem:

Proposition 4.1.6 There is a function 𝑔 : M(X) × Σ∗ → R+ with t` (b) =

sup𝑛 𝑔` (b≤𝑛), and with the following properties:
a) 𝑔 is lower semicomputable.

b) 𝑣 v 𝑤 implies 𝑔` (𝑣) ≤ 𝑔` (𝑤).
c) For all integer 𝑛 ≥ 0 we have ∑𝑤∈Σ𝑛 `(𝑤)𝑔` (𝑤) ≤ 1.
The properties of the function 𝑔` (𝑤) clearly imply that sup𝑛 𝑔` (b≤𝑛) is a

uniform test.
The existence of a universal function among the functions 𝑔 can be proved

by the usual methods:

Proposition 4.1.7 Among the functions 𝑔` (𝑤) satisfying the properties listed in
Proposition 4.1.6, there is one that dominates to within a multiplicative constant.

These facts motivate the following definition.

Definition 4.1.8 (Extended test) Over the Cantor space, we extend the defini-
tion of a universal test t` (𝑥) to finite sequences as follows. We fix a function
t` (𝑤) with 𝑤 ∈ Σ∗ whose existence is assured by Proposition 4.1.7. For infinite
sequences b we define t` (b) = sup𝑛 t` (b≤𝑛). The test with values defined also
on finite sequences will be called an extended test. y

We could try to define extended tests also over arbitrary constructive metric
spaces, extending them to the canonical balls, with the monotonicity property
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that t` (𝑣) ≤ t` (𝑤) if ball 𝑤 is manifestly included in ball 𝑣. But there is nothing
simple and obvious corresponding to the integral requirement (c).
Over the space ΣN for a finite alphabet Σ, an extended test could also be

extracted directly from a test, using the following formula (as observed by Vyugin
and Shen).

Definition 4.1.9

𝑢(𝑧) = inf{𝑢(𝜔) : 𝜔 is an infinite extension of 𝑧}.

y

This function is lower semicomputable, by Proposition B.1.31.

4.1.4 Conservation of randomness

For 𝑖 = 1, 0, let X𝑖 = (𝑋𝑖, 𝑑𝑖, 𝐷𝑖, 𝛼𝑖) be computable metric spaces, and let
M𝑖 = (M(X𝑖), 𝜎𝑖, a𝑖) be the effective topological space of probability measures
over X𝑖. Let Λ be a computable probability kernel from X1 to X0 as defined in
Subsection B.2.3. In the following theorem, the same notation d` (𝑥) will refer
to the deficiency of randomness with respect to two different spaces, X1 and
X0, but this should not cause confusion. Let us first spell out the conservation
theorem before interpreting it.

Theorem 4.1.3 For a computable probability kernel Λ from X1 to X0, we have

_
𝑦
𝑥 tΛ∗` (𝑦)

∗
< t` (𝑥). (4.1.1)

Proof. Let ta(𝑥) be the universal test over X0. The left-hand side of (4.1.1) can
be written as

𝑢` = ΛtΛ∗` .

According to (A.2.4), we have `𝑢` = (Λ∗`)tΛ∗` which is ≤ 1 since t is a test. If
we show that (`, 𝑥) ↦→ 𝑢` (𝑥) is lower semicomputable then the universality of
t` will imply that 𝑢`

∗
< t`.

According to Proposition B.1.38, as a lower semicomputable function, ta(𝑦)
can be written as sup𝑛 𝑔𝑛(a, 𝑦), where (𝑔𝑛(a, 𝑦)) is a computable sequence of
computable functions. We pointed out in Subsection B.2.3 that the function
` ↦→ Λ∗` is computable. Therefore the function (𝑛, `, 𝑥) ↦→ 𝑔𝑛(Λ∗`, 𝑓 (𝑥))
is also a computable. So, 𝑢` (𝑥) is the supremum of a computable sequence of
computable functions and as such, lower semicomputable. �
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It is easier to interpret the theorem first in the special case when Λ = Λℎ for
a computable function ℎ : 𝑋1 → 𝑋0, as in Example B.2.12. Then the theorem
simplifies to the following.

Corollary 4.1.10 For a computable function ℎ : 𝑋1 → 𝑋0, we have dℎ∗` (ℎ(𝑥))
+
<

d` (𝑥).
Informally, this says that if 𝑥 is random with respect to ` in X1 then ℎ(𝑥) is

essentially at least as random with respect to the output distribution ℎ∗` in X0.
Decrease in randomness can only be caused by complexity in the definition of
the function ℎ.
Let us specialize the theorem even more:

Corollary 4.1.11 For a probability distribution ` over the space 𝑋 × 𝑌 let `𝑋 be
its marginal on the space 𝑋 . Then we have

d`𝑋 (𝑥)
+
< d` ((𝑥, 𝑦)).

This says, informally, that if a pair is random then each of its elements is
random (with respect to the corresponding marginal distribution).
In the general case of the theorem, concerning random transitions, we cannot

bound the randomness of each outcome uniformly. The theorem asserts that the
average nonrandomness, as measured by the universal test with respect to the
output distribution, does not increase. In logarithmic notation: _ 𝑦𝑥2dΛ∗` (𝑦) +

<

d` (𝑥), or equivalently,
∫
2dΛ∗` (𝑦)_𝑥 (𝑑𝑦)

+
< d` (𝑥).

Corollary 4.1.12 Let Λ be a computable probability kernel from X1 to X0. There
is a constant 𝑐 such that for every 𝑥 ∈ X1, and integer 𝑚 > 0 we have

_𝑥{ 𝑦 : dΛ∗` (𝑦) > d` (𝑥) + 𝑚 + 𝑐} ≤ 2−𝑚.

Thus, in a computable random transition, the probability of an increase of
randomness deficiency by 𝑚 units (plus a constant 𝑐) is less than 2−𝑚. The
constant 𝑐 comes from the description complexity of the transition Λ.
A randomness conservation result related to Corollary 4.1.10 was proved

in [25]. There, the measure over the space X0 is not the output measure of
the transformation, but is assumed to obey certain inequalities related to the
transformation.
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4.2 Test for a class of measures

4.2.1 From a uniform test

A Bernoulli measure is what we get by tossing a (possibly biased) coin repeatedly.

Definition 4.2.1 Let 𝑋 = BN be the set of infinite binary sequences, with the
usual sequence topology. Let 𝐵𝑝 be the measure on 𝑋 that corresponds to tossing
a coin independently with probability 𝑝 of success: it is called the Bernoulli
measure with parameter 𝑝. Let B denote the set of all Bernoulli measures. y

Given a sequence 𝑥 ∈ 𝑋 we may ask the question whether 𝑥 is random with
respect to at least some Bernoulli measure. (It can clearly not be random with
respect to two different Bernoulli measures since if 𝑥 is random with respect to
𝐵𝑝 then its relative frequencies converge to 𝑝.) This idea suggests two possible
definitions for a test of the property of “Bernoulliness”:
1. We could define tB(𝑥) = inf`∈B(𝑥).
2. We could define the notion of a Bernoulli test as a lower semicomputable
function 𝑓 (𝑥) with the property 𝐵𝑝 𝑓 ≤ 1 for all 𝑝.

We will see that in case of this class of measures the two definitions lead to
essentially the same test.
Let us first extend the definition to more general sets of measures, still having

a convenient property.

Definition 4.2.2 (Class tests) Consider a class C of measures that is effectively
compact in the sense of Definition B.1.27 or (equivalently for metric spaces) in
the sense of Theorem B.1.1. A lower semicomputable function 𝑓 (𝑥) is called a
C-test if for all ` ∈ C we have ` 𝑓 ≤ 1. It is a universal C-test if it dominates all
other C-tests to within a multiplicative constant. y

Example 4.2.3 It is easy to show that the classB is effectively compact. Oneway
is to appeal to the general theorem in Proposition B.1.32 saying that applying
a computable function to an effectively compact set (in this case the interval
[0, 1]), the image is also an effectively compact set. y

For the case of infinite sequences, we can also define extended tests.

Definition 4.2.4 (Extended class test) Let our space X be the Cantor space of
infinite sequences ΣN. Consider a class C of measures that is effectively compact
in the sense of Definition B.1.27 or (equivalently for metric spaces) in the sense
of Theorem B.1.1. A lower semicomputable function 𝑓 : Σ∗ → R+ is called an
extended C-test if it is monotonic with respect to the prefix relation and for all
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4.2. Test for a class of measures

` ∈ C and integer 𝑛 ≥ 0 we have∑︁
𝑥∈Σ𝑛

`(𝑥) 𝑓 (𝑥) ≤ 1.

It is universal if it dominates all other extended C-tests to within a multiplicative
constant. y

The following observation is immediate.

Proposition 4.2.5 A function 𝑓 : ΣN → R+ is a class test if and only if it can be
represented as lim𝑛 𝑔(b≤𝑛) where 𝑔(𝑥) is an extended class test.

The following theorem defines a universal C-test.

Theorem 4.2.1 Let t` (𝑥) be a universal uniform test. Then 𝑢(𝑥) = inf`∈C t` (𝑥)
defines a universal C-test.

Proof. Let us show first that 𝑢(𝑥) is a C-test. It is lower semicomputable accord-
ing to Proposition B.1.31. Also, for each ` we have `𝑢 ≤ `t` ≤ 1, showing that
𝑢(𝑥) is a C-test.
Let us now show that it is universal. Let 𝑓 (𝑥) be an arbitrary C-test. By

Corollary 4.1.2 there is a uniform test 𝑔` (𝑥) such that for all ` ∈ C we have
𝑔` (𝑥) = 𝑓 (𝑥)/2. It follows from the universality of the uniform test t` (𝑥) that
𝑓 (𝑥) ∗

< 𝑔` (𝑥)
∗
< t` (𝑥) for all ` ∈ C. But then 𝑓 (𝑥) ∗

< inf`∈C t` (𝑥) = 𝑢(𝑥). �

For the case of sequences, the same statement can be made for extended
tests. (This is not completely automatic since a test is obtained from an extended
test via a supremum, on the other hand a class test is obtained, according the
theorem above, via an infimum.)

4.2.2 Typicality and class tests

The set of Bernoulli measures has an important property shared by many classes
considered in practice: namely that random sequences determine the measure
to which it belongs.

Definition 4.2.6 Consider a class C of measures over a computable metric space
X = (𝑋, 𝑑, 𝐷, 𝛼). We will say that a lower semicomputable function

𝑠 : 𝑋 × C → R+

is a separating test for C if
• 𝑠` (·) is a test for each ` ∈ C.
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• If ` ≠ a then 𝑠` (𝑥) ∨ 𝑠a(𝑥) = ∞ for all 𝑥 ∈ 𝑋 .
Given a separating test 𝑠` (𝑥) we call an element 𝑥 typical for ` ∈ C if 𝑠` (𝑥) <
∞. y

A typical element determines uniquely the measure ` for which it is typical.
Note that if a separating tests exists for a class then any two different measures
`1, `2 in the class are orthogonal to each other, that is there are disjoint mea-
sureable sets 𝐴1, 𝐴2 with ` 𝑗(𝐴 𝑗) = 1. Indeed, let 𝐴 𝑗 = {𝑥 : 𝑠` 𝑗 (𝑥) < ∞}.
Let us show a nontrivial example: the class ofB of Bernoulli measures. Recall

that by Chebyshev’s inequality we have

𝐵𝑝({𝑥 ∈ B𝑛 : |
∑︁
𝑖

𝑥 (𝑖) − 𝑛𝑝| ≥ _𝑛1/2(𝑝(1 − 𝑝))1/2}) ≤ _−2.

Since 𝑝(1 − 𝑝) ≤ 1/4, this implies

𝐵𝑝({𝑥 ∈ B𝑛 : |
∑︁
𝑖

𝑥 (𝑖) − 𝑛𝑝 > _𝑛1/2/2}) < _−2.

Setting _ = 𝑛0.1 and ignoring the factor 1/2 gives

𝐵𝑝({𝑥 ∈ B𝑛 : |
∑︁
𝑖

𝑥 (𝑖) − 𝑛𝑝| > 𝑛0.6}) < 𝑛−0.2.

Setting 𝑛 = 2𝑘:

𝐵𝑝({𝑥 ∈ B2𝑘 : |
∑︁
𝑖

𝑥 (𝑖) − 2𝑘𝑝| > 20.6𝑘 }) < 2−0.2𝑘. (4.2.1)

Now, for the example.

Example 4.2.7 For a sequence b in BN, and for 𝑝 ∈ [0, 1] let

𝑔𝑝(𝑥) = 𝑔𝐵𝑝 (𝑥) = sup{𝑘 : |
2𝑘∑︁
𝑖=1

b(𝑖) − 2𝑘𝑝| > 20.6𝑘 }.

Then we have

𝐵
b
𝑝𝑔𝑝(b) ≤

∑︁
𝑘

𝑘 · 2−0.2𝑘 = 𝑐 < ∞

for some constant 𝑐, so 𝑠𝑝(b) = 𝑔𝑝(𝑥)/𝑐 is a test for each 𝑝. The property 𝑠𝑝(b) <
∞ implies that 2−𝑘∑2𝑘𝑖=1 b(𝑖) converges to 𝑝. For a given b this is impossible for
both 𝑝 and 𝑞 for 𝑝 ≠ 𝑞, hence 𝑠𝑝(b) ∨ 𝑠𝑞(b) = ∞. y
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4.2. Test for a class of measures

The following structure theorem gives considerable insight.

Theorem 4.2.2 Let C be an effectively compact class of measures, let t` (𝑥) be the
universal uniform test and let tC(𝑥) be a universal class test for C. Assume that a
separating test 𝑠` (𝑥) exists for C. Then we have the representation

t` (𝑥) ∗
= tC(𝑥) ∨ 𝑠` (𝑥)

for all ` ∈ C, 𝑥 ∈ 𝑋 .

Proof. First, we have tC(𝑥) ∨ 𝑠` (𝑥)
∗
< t` (𝑥). Indeed as we know from the Uni-

form Extension Corollary 4.1.2, we can extend 𝑠` (𝑥)/2 to a uniform test, hence
𝑠` (𝑥)

∗
< t` (𝑥). Also by definition tC(𝑥) ≤ t` (𝑥).

On the other hand, let us show tC(𝑥) ∨ 𝑠` (𝑥) ≥ t` (𝑥). Suppose first that 𝑥
is not random with respect to any a ∈ C: then tC(𝑥) = ∞. Suppose now that 𝑥
is random with respect to some a ∈ C, a ≠ `. Then 𝑠` (𝑥) = ∞. Finally, suppose
t` (𝑥) < ∞. Then ta(𝑥) = ∞ for all a ∈ C, a ≠ `, hence tC(𝑥) = infa∈C ta(𝑥) =
t` (𝑥), so the inequality holds again. �

The above theorem separates the randomness test into two parts. One part
tests randomness with respect to the class C, the other one tests typicality with
respect to the measure `. In the Bernoulli example,
• Part tB(b) checks “Bernoulliness”, that is independence. It encompasses all
the irregularity criteria.

• Part 𝑠𝑝(b) checks (crudely) for the law of large numbers: whether relative
frequency converges (fast) to 𝑝.

If the independence of the sequence is taken for granted, we may assume that
the class test is satisfied. What remains is typicality testing, which is similar to
ordinary statistical parameter testing.

Remarks 4.2.8
1. Separation is the only requirement of the test 𝑠` (𝑥), otherwise, for example
in the Bernoulli test case, no matter how crude the convergence criterion
expressed by 𝑠` (𝑥), the maximum tC(𝑥) ∨ 𝑠` (𝑥) is always (essentially) the
same universal test.

2. Though the convergence criterion can be crude, but one still seems to need
some kind of constructive convergence of the relative frequencies if the sep-
aration test is to be defined in terms of relative frequency convergence.

y
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Example 4.2.9 For Y > 0 let 𝑃(Y) be the Markov chain 𝑋1, 𝑋2, . . . with set of
states {0, 1}, with transition probabilities 𝑇 (0, 1) = 𝑇 (1, 0) = Y and 𝑇 (0, 0) =
𝑇 (1, 1) = 1 − Y, and with 𝑃 [𝑋1 = 0] = 𝑃 [𝑋1 = 1] = 1/2. Let C(𝛿) be the class
of all 𝑃(Y) with Y ≥ 𝛿. For each 𝛿 > 0, this is an effectively compact class, and a
separating test is easy to construct since an effective law of large numbers holds
for these Markov chains.
We can generalize to the set of 𝑚-state stationary Markov chains whose

eigenvalue gap is ≥ Y. y

This example is in contrast to V’yugin’s example [56] showing that, in the
nonergodic case, in general no recursive speed of convergence can be guaranteed
in the Ergodic Theorem (which is the appropriate generalization of the law of
large numbers)1.
We can show that if a computable Markov chain is ergodic then its law of

large numbers does have a constructive speed of convergence. Hopefully, this
observation can be extended to some interesting compact classes of ergodic pro-
cesses.

4.2.3 Martin-Löf’s approach

Martin-Löf also gave a definition of Bernoulli tests in [38]. For its definition let
us introduce the following notation.

Notation 4.2.10 The set of sequences with a given frequency of 1’s will be de-
noted as follows:

B(𝑛, 𝑘) = {𝑥 ∈ B𝑛 :
∑︁
𝑖

𝑥 (𝑖) = 𝑘}.

y

Martin-Löf ’s definition translates to the integral constraint version as follows:

Definition 4.2.11 Let 𝑋 = BN be the set of infinite binary sequences with the
usual metrics. A combinatorial Bernoulli test is a function 𝑓 : B∗ → R+ with the
following constraints:
a) It is lower semicomputable.

b) It is monotonic with respect to the prefix relation.
1This paper of Vyugin also shows that though there is no recursive speed of convergence, a

certain constructive proof of the pointwise ergodic theorem still gives rise to a test of randomness.
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c) For all 0 ≤ 𝑘 ≤ 𝑛 we have ∑︁
𝑥∈B(𝑛,𝑘)

𝑓 (𝑥) ≤
(
𝑛

𝑘

)
. (4.2.2)

y

The following observation is useful.

Proposition 4.2.12 If a combinatorial Bernoulli test 𝑓 (𝑥) is given on strings 𝑥 of
length less than 𝑛, then extending it to longer strings using monotonicity we get a
function that is still a combinatorial Bernoulli test.

Proof. It is sufficient to check the relation (4.2.2). We have (even for 𝑘 = 0,
when B(𝑛 − 1, 𝑘 − 1) = ∅):∑︁

𝑥∈B(𝑛,𝑘)
𝑓 (𝑥) ≤

∑︁
𝑦∈B(𝑛−1,𝑘−1)

𝑓 (𝑦) +
∑︁

𝑦∈B(𝑛−1,𝑘)
𝑓 (𝑦)

≤
(
𝑛 − 1
𝑘 − 1

)
+
(
𝑛 − 1
𝑘

)
=

(
𝑛

𝑘

)
.

�

The following can be shown using standard methods:

Proposition 4.2.13 (Universal combinatorial Bernoulli test) There is a universal
combinatorial Bernoulli test 𝑓 (𝑥), that is a combinatorial Bernoulli test with the
property that for every combinatorial Bernoulli test ℎ(𝑥) there is a constant 𝑐ℎ > 0
such that for all 𝑥 we have ℎ(𝑥) ≤ 𝑐ℎ𝑔(𝑥).
Definition 4.2.14 Let us fix a universal combinatorial Bernoulli test 𝑏(𝑥) and
extend it to infinite sequences b by

𝑏(b) = sup
𝑛
𝑏(b≤𝑛).

Let tB(b) be a universal class test for Bernoulli measures, for b ∈ BN. y

Let us show that the general class test for Bernoulli measures and Martin-
Löf ’s Bernoulli test yield the same random sequences.

Theorem 4.2.3 With the above definitions, we have 𝑏(b) ∗
= tB(b). In words: a

sequence is nonrandom with respect to all Bernoulli measures if and only if it is
rejected by a universal combinatorial Bernoulli test.

95



4. Generalizations

Proof. We first show 𝑏(b) ≤ tB(b). Moreover, we show that 𝑏(𝑥) is an ex-
tended class test for the class of Bernoulli measures. We only need to check
the sum condition, namely that for all 0 ≤ 𝑝 ≤ 1, and all 𝑛 > 0 the inequality∑
𝑥∈B𝑛 𝐵𝑝(𝑥)𝑏(𝑥) ≤ 1 holds. Indeed, we have∑︁

𝑥∈B𝑛
𝐵𝑝(𝑥) 𝑓 (𝑥) =

𝑛∑︁
𝑘=0

𝑝𝑘 (1 − 𝑝)𝑛−𝑘
∑︁

𝑥∈B(𝑛,𝑘)
𝑓 (𝑥)

≤
𝑛∑︁
𝑘=0

𝑝𝑘 (1 − 𝑝)𝑛−𝑘
(
𝑛

𝑘

)
= 1.

On the other hand, let 𝑓 (𝑥) = tB(𝑥), 𝑥 ∈ B∗ be the extended test for tB(b). For
all integers 𝑁 > 0 let 𝑛 = b

√︁
𝑁/2c. Then as 𝑁 runs through the integers, 𝑛 also

runs through all integers. For 𝑥 ∈ B𝑁 let 𝐹(𝑥) = 𝑓 (𝑥≤𝑛). Since 𝑓 (𝑥) is lower
semicomputable and monotonic with respect to the prefix relation, this is also
true of 𝐹(𝑥).
We need to estimate

∑
𝑥∈B(𝑁,𝐾) 𝐹(𝑥). For this, note that for 𝑦 ∈ B(𝑛, 𝑘) we

have

|{𝑥 ∈ B(𝑁, 𝐾) : 𝑦 v 𝑥 }| =
(
𝑁 − 𝑛

𝐾 − 𝑘

)
. (4.2.3)

Now for 0 ≤ 𝐾 ≤ 𝑁 we have∑︁
𝑥∈B(𝑁,𝐾)

𝐹(𝑥) =
∑︁
𝑦∈B𝑛

𝑓 (𝑦) |{𝑥 ∈ B(𝑁, 𝐾) : 𝑦 v 𝑥 }|

=

𝑛∑︁
𝑘=0

(
𝑁 − 𝑛

𝐾 − 𝑘

) ∑︁
𝑦∈B(𝑛,𝑘)

𝑓 (𝑦).
(4.2.4)

Let us estimate
(𝑁−𝑛
𝐾−𝑘

) / (𝑁
𝐾

)
. If 𝐾 = 𝑘 = 0 then this is 1. If 𝑘 = 𝑛 then it is

𝐾 · · · (𝐾−𝑛+1)
𝑁 · · · (𝑁−𝑛+1) . Otherwise, using 𝑝 = 𝐾/𝑁:(𝑁−𝑛

𝐾−𝑘
)(𝑁

𝐾

) =
(𝑁 − 𝑛) (𝑁 − 𝑛 − 1) · · · (𝑁 − 𝐾 − (𝑛 − 𝑘) + 1)/(𝐾 − 𝑘)!

𝑁 (𝑁 − 1) · · · (𝑁 − 𝐾 + 1)/𝐾!

=
𝐾 · · · (𝐾 − 𝑘 + 1) · (𝑁 − 𝐾) · · · (𝑁 − 𝐾 − (𝑛 − 𝑘) + 1)

𝑁 · · · (𝑁 − 𝑛 + 1) .

≤ 𝐾𝑘 (𝑁 − 𝐾)𝑛−𝑘
(𝑁 − 𝑛)𝑛 = 𝑝𝑘 (1 − 𝑝)𝑛−𝑘

(
𝑁

𝑁 − 𝑛

)𝑛
. (4.2.5)

96



4.3. Neutral measure

Thus in all cases the estimate(
𝑁 − 𝑛

𝐾 − 𝑛

)/ (
𝑁

𝐾

)
≤ 𝑝𝑘 (1 − 𝑝)𝑛−𝑘

(
𝑁

𝑁 − 𝑛

)𝑛
holds. We have (

𝑁

𝑁 − 𝑛

)𝑛
=

(
1 + 𝑛

𝑁 − 𝑛

)𝑛
≤ 𝑒

𝑁
2(𝑁−𝑛) ≤ 𝑒2,

since we assumed 2𝑛2 ≤ 𝑁. Substituting into (4.2.4) gives∑︁
𝑥∈B(𝑁,𝐾)

𝐹(𝑥) ≤ 𝑒2
𝑛∑︁
𝑘=0

𝑝𝑘 (1 − 𝑝)𝑛−𝑘
∑︁

𝑦∈B(𝑛,𝑘)
𝑓 (𝑦) ≤ 𝑒2,

since 𝑓 (𝑥) is an extended class test for Bernoulli measures. It follows that
𝑒−2𝐹(𝑥) ∗

< 𝑏(𝑥), hence also 𝐹(𝑥) ∗
< 𝑏(𝑥). But we have tC(b) = sup𝑛 𝑓 (b≤𝑛) =

sup𝑛 𝐹(b≤𝑛), hence tC(b)
∗
< 𝑏(b). �

4.3 Neutral measure

Let t` (𝑥) be our universal uniform randomness test. We call a measure𝑀 neutral
if t𝑀 (𝑥) ≤ 1 for all 𝑥. If 𝑀 is neutral then no experimental outcome 𝑥 could
refute the theory (hypothesis, model) that 𝑀 is the underlying measure to our
experiments. It can be used as “apriori probability”, in a Bayesian approach to
statistics. Levin’s theorem says the following:

Theorem 4.3.1 If the space X is compact then there is a neutral measure over X.

The proof relies on a nontrivial combinatorial fact, Sperner’s Lemma, which
also underlies the proof of the Brouwer fixpoint theorem. Here is a version of
Sperner’s Lemma, spelled out in continuous form:

Proposition 4.3.1 Let 𝑝1, . . . , 𝑝𝑘 be points of some finite-dimensional space R𝑛.
Suppose that there are closed sets 𝐹1, . . . , 𝐹𝑘 with the property that for every subset
1 ≤ 𝑖1 < · · · < 𝑖 𝑗 ≤ 𝑘 of the indices, the simplex 𝑆(𝑝𝑖1 , . . . , 𝑝𝑖 𝑗) spanned by
𝑝𝑖1 , . . . , 𝑝𝑖 𝑗 is covered by the union 𝐹𝑖1 ∪ · · · ∪ 𝐹𝑖 𝑗 . Then the intersection

⋂
𝑖 𝐹𝑖 of

all these sets is not empty.

The following lemma will also be needed.

Lemma 4.3.2 For every closed set 𝐴 ⊂ X and measure `, if `(𝐴) = 1 then there
is a point 𝑥 ∈ 𝐴 with t` (𝑥) ≤ 1.
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Proof. This follows easily from ` 𝑡` = `𝑥1𝐴 (𝑥)𝑡` (𝑥) ≤ 1. �

Proof of Theorem 4.3.1. For every point 𝑥 ∈ X, let 𝐹𝑥 be the set of measures for
which t` (𝑥) ≤ 1. If we show that for every finite set of points 𝑥1, . . . , 𝑥𝑘, we
have

𝐹𝑥1 ∩ · · · ∩ 𝐹𝑥𝑘 ≠ ∅, (4.3.1)

then we will be done. Indeed, according to Proposition A.2.50, the compactness
of X implies the compactness of the space M(X) of measures. Therefore if every
finite subset of the family {𝐹𝑥 : 𝑥 ∈ X} of closed sets has a nonempty inter-
section, then the whole family has a nonempty intersection: this intersection
consists of the neutral measures.
To show (4.3.1), let 𝑆(𝑥1, . . . , 𝑥𝑘) be the set of probability measures con-

centrated on 𝑥1, . . . , 𝑥𝑘. Lemma 4.3.2 implies that each such measure belongs
to one of the sets 𝐹𝑥𝑖 . Hence 𝑆(𝑥1, . . . , 𝑥𝑘) ⊂ 𝐹𝑥1 ∪ · · · ∪ 𝐹𝑥𝑘 , and the same
holds for every subset of the indices {1, . . . , 𝑘}. Sperner’s Lemma 4.3.1 implies
𝐹𝑥1 ∩ · · · ∩ 𝐹𝑥𝑘 ≠ ∅. �

When the space is not compact, there are generally no neutral probability
measures, as shown by the following example.

Proposition 4.3.3 Over the discrete space X = N of natural numbers, there is no
neutral measure.

Proof. It is sufficient to construct a randomness test 𝑡` (𝑥) with the property that
for every measure `, we have sup𝑥 𝑡` (𝑥) = ∞. Let

𝑡` (𝑥) = sup{𝑘 ∈ N :
∑︁
𝑦<𝑥

`(𝑦) > 1 − 2−𝑘 }. (4.3.2)

By its construction, this is a lower semicomputable functionwith sup𝑥 𝑡` (𝑥) = ∞.
It is a test if

∑
𝑥 `(𝑥)𝑡` (𝑥) ≤ 1. We have∑︁

𝑥

`(𝑥)𝑡` (𝑥) =
∑︁
𝑘>0

∑︁
𝑡` (𝑥) ≥𝑘

`(𝑥) <
∑︁
𝑘>0

2−𝑘 ≤ 1.

�

Using a similar construction over the spaceNN of infinite sequences of natural
numbers, we could show that for every measure ` there is a sequence 𝑥 with
t` (𝑥) = ∞.
Proposition 4.3.3 is a little misleading, since N can be compactified into N =

N∪ {∞} (as in Part 1 of Example A.1.22). Theorem 4.3.1 implies that there is a
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neutral probability measure 𝑀 over the compactified space N. Its restriction to
N is, of course, not a probability measure, since it satisfies only

∑
𝑥<∞ 𝑀 (𝑥) ≤ 1.

We called these functions semimeasures.

Remark 4.3.4
1. It is easy to see that Theorem 4.6.1 characterizing randomness in terms of
complexity holds also for the space N.

2. The topological space of semimeasures over N is not compact, and there is
no neutral one among them. Its topology is not the same as what we get
when we restrict the topology of probability measures over N to N. The dif-
ference is that over N, for example the set of measures {` : `(N) > 1/2} is
closed, since N (as the whole space) is a closed set. But over N, this set is not
necessarily closed, since N is not a closed subset of N.

y

Neutral measures are not too simple, even over N, as the following theorem
shows.

Theorem 4.3.2 There is no neutral measure over N that is upper semicomputable
over N or lower semicomputable over N.

Proof. Let us assume that a is a measure that is upper semicomputable over N.
Then the set

{ (𝑥, 𝑟) : 𝑥 ∈ N, 𝑟 ∈ Q, a(𝑥) < 𝑟}
is recursively enumerable: let (𝑥𝑖, 𝑟𝑖) be a particular enumeration. For each 𝑛,
let 𝑖(𝑛) be the first 𝑖 with 𝑟𝑖 < 2−𝑛, and let 𝑦𝑛 = 𝑥𝑖(𝑛) . Then a(𝑦𝑛) < 2−𝑛, and at
the same time 𝐾 (𝑦𝑛)

+
< 𝐾 (𝑛). As mentioned, in Remark 4.3.4, Theorem 4.6.1

characterizing randomness in terms of complexity holds also for the space N.
Thus,

da(𝑦𝑛) +
= − log a(𝑦𝑛) − 𝐾 (𝑦𝑛 | a)

+
> 𝑛 − 𝐾 (𝑛).

Suppose now that a is lower semicomputable over N. The proof for this case is
longer. We know that a is the monotonic limit of a recursive sequence 𝑖 ↦→ a𝑖(𝑥)
of recursive semimeasures with rational values a𝑖(𝑥). For every 𝑘 = 0, . . . , 2𝑛−2,
let

𝑉𝑛,𝑘 = {` ∈ M(N) : 𝑘 · 2−𝑛 < `({0, . . . , 2𝑛 − 1}) < (𝑘 + 2) · 2−𝑛 },
𝐽 = { (𝑛, 𝑘) : 𝑘 · 2−𝑛 < a({0, . . . , 2𝑛 − 1}) }.

The set 𝐽 is recursively enumerable. Let us define the functions 𝑗 : 𝐽 → N and
𝑥 : 𝐽 → {0, . . . , 2𝑛 − 1} as follows: 𝑗(𝑛, 𝑘) is the smallest 𝑖 with a𝑖({0, . . . , 2𝑛 −
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1}) > 𝑘 · 2−𝑛, and

𝑥𝑛,𝑘 = min{ 𝑦 < 2𝑛 : a 𝑗(𝑛,𝑘) (𝑦) < 2−𝑛+1}.

Let us define the function 𝑓` (𝑥, 𝑛, 𝑘) as follows. We set 𝑓` (𝑥, 𝑛, 𝑘) = 2𝑛−2 if the
following conditions hold:
a) ` ∈ 𝑉𝑛,𝑘;
b) `(𝑥) < 2−𝑛+2;
c) (𝑛, 𝑘) ∈ 𝐽 and 𝑥 = 𝑥𝑛,𝑘.
Otherwise, 𝑓` (𝑥, 𝑛, 𝑘) = 0. Clearly, the function (`, 𝑥, 𝑛, 𝑘) ↦→ 𝑓` (𝑥, 𝑛, 𝑘) is
lower semicomputable. Condition (b) implies∑︁

𝑦

`(𝑦) 𝑓` (𝑦, 𝑛, 𝑘) ≤ `(𝑥𝑛,𝑘) 𝑓` (𝑥𝑛,𝑘, 𝑛, 𝑘) < 2−𝑛+2 · 2𝑛−2 = 1. (4.3.3)

Let us show that a ∈ 𝑉𝑛,𝑘 implies

𝑓a(𝑥𝑛,𝑘, 𝑛, 𝑘) = 2𝑛−2. (4.3.4)

Consider 𝑥 = 𝑥𝑛,𝑘. Conditions (a) and (c) are satisfied by definition. Let us
show that condition (b) is also satisfied. Let 𝑗 = 𝑗(𝑛, 𝑘). By definition, we have
a 𝑗(𝑥) < 2−𝑛+1. Since by definition a 𝑗 ∈ 𝑉𝑛,𝑘 and a 𝑗 ≤ a ∈ 𝑉𝑛,𝑘, we have

a(𝑥) ≤ a 𝑗(𝑥) + 2−𝑛+1 < 2−𝑛+1 + 2−𝑛+1 = 2−𝑛+2.

Since all three conditions (a), (b) and (c) are satisfied, we have shown (4.3.4).
Now we define

𝑔` (𝑥) =
∑︁
𝑛≥2

1
𝑛(𝑛 + 1)

∑︁
𝑘

𝑓` (𝑥, 𝑛, 𝑘).

Let us prove that 𝑔` (𝑥) is a uniform test. It is lower semicomputable by defini-
tion, so we only need to prove

∑
𝑥 `(𝑥) 𝑓` (𝑥) ≤ 1. For this, let 𝐼𝑛,` = {𝑘 : ` ∈

𝑉𝑛,𝑘 }. Clearly by definition, |𝐼𝑛,` | ≤ 2. We have, using this last fact and the test
property (4.3.3):∑︁
𝑥

`(𝑥)𝑔` (𝑥) =
∑︁
𝑛≥2

1
𝑛(𝑛 + 1)

∑︁
𝑘∈𝐼𝑛,`

∑︁
𝑥

`(𝑥) 𝑓` (𝑥, 𝑛, 𝑘) ≤
∑︁
𝑛≥2

1
𝑛(𝑛 + 1) · 2 ≤ 1.

Thus, 𝑔` (𝑥) is a uniform test. If a ∈ 𝑉𝑛,𝑘 then we have

ta(𝑥𝑛,𝑘)
∗
> 𝑔a(𝑥𝑛,𝑘) ≥

1
𝑛(𝑛 + 1) 𝑓` (𝑥𝑛,𝑘, 𝑛, 𝑘) ≥

2𝑛−2

𝑛(𝑛 + 1) .

Hence a is not neutral. �
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Remark 4.3.5 In [32] and [33], Levin imposed extra conditions on tests which
allow to find a lower semicomputable neutral semimeasure. y

The universal lower semicomputable semimeasure m(𝑥) has a certain prop-
erty similar to neutrality. According to Theorem 2.3.4 specialized to one-element
sequences, for every computable measure ` we have d` (𝑥) +

= − log `(𝑥) − 𝐾 (𝑥)
(where the constant in +

= depends on `). So, for computable measures, the
expression

d` (𝑥) = − log `(𝑥) − 𝐾 (𝑥) (4.3.5)

can serve as a reasonable deficiency of randomness. (We will also use the test
t = 2d.) If we substitute m for ` in d` (𝑥), we get 0. This substitution is not
justified, of course. The fact that m is not a probability measure can be helped,
using compactification as above, and extending the notion of randomness tests.
But the test d` can replace d` only for computable `, whilem is not computable.
Anyway, this is the sense in which all outcomesmight be considered randomwith
respect to m, and the heuristic sense in which m may be considered “neutral”.

4.4 Monotonicity, quasi-convexity/concavity

Some people find that `-tests as defined in Definition 4.1.1 are too general, in
case ` is a non-computable measure. In particular, randomness with respect
to computable measures has a certain—intuitively meaningful—monotonicity
property: roughly, if a is greater than ` then if 𝑥 is random with respect to `, it
should also be random with respect to a.

Proposition 4.4.1 For computable measures `, a we have for all rational 𝑐 > 0:

2−𝑘` ≤ a ⇒ da(𝑥)
+
< d` (𝑥) + 𝑘 + 𝐾 (𝑘). (4.4.1)

Here the constant in +
< depends on `, a, but not on 𝑘.

Proof. We have 1 ≥ ata ≥ 2−𝑘`ta, hence 2−𝑘ta is a `-test. Using the method of
Theorem 4.1.1 in finding universal tests, one can show that the sum∑︁

𝑘:2−𝑘`ta<1

2−𝑘−𝐾 (𝑘) ta

is a `-test, and hence ∗
< t`. Therefore this is true of each member of the sum,

which is just what the theorem claims. �
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There are other properties true for tests on computable measures that we
may want to require for all measures. For the following properties, let us define
quasi-convexity, which is a weakening of the notion of convexity.

Definition 4.4.2 A function 𝑓 : 𝑉 → R defined on a vector space 𝑉 is called
quasi-convex if for every real number 𝑥 the set {𝑣 : 𝑓 (𝑣) ≤ 𝑥 } is convex. It is
quasi-concave if − 𝑓 is quasi-convex. y

It is easy to see that quasi-convexity is equivalent to the inequality

𝑓 (_𝑢 + (1 − _)𝑣) ≤ 𝑓 (𝑢) ∨ 𝑓 (𝑣)

for all 𝑢, 𝑣 and 0 < _ < 1, while quasi-concavity is equivalent to

𝑓 (_𝑢 + (1 − _)𝑣) ≥ 𝑓 (𝑢) ∧ 𝑓 (𝑣)

The uniform test with respect to computable measures is approximately both
quasi-convex and quasi-concave. Let a = _`1 + (1 − _)`2.
Quasi-convexity means, roughly, that if 𝑥 is random with respect to both

`1 and `2 then it is also random with respect to a. This property strengthens
monotonicity in the cases where it applies.

Proposition 4.4.3 Let `1, `2 be computable measures and 0 < _ < 1 computable,
with a = _`1 + (1 − _)`2. Then we have

da(𝑥)
+
< d`1 (𝑥) ∨ d`2 (𝑥) + 𝐾 (_).

Proof. The relation 1 ≥ ata = _`1ta + (1 − _)`2ta implies 1 ≥ `𝑖ta for some
𝑖 ∈ {1, 2}. Then da

+
< d`𝑖 + 𝐾 (_) (since _ was used to define a and thus ta). �

Quasi-concavity means, roughly, that if 𝑥 is non-random with respect to both
`1 and `2 then it is also nonrandom with respect to a:

Proposition 4.4.4 Let `1, `2 be computable measures and 0 < _ < 1 arbitrary
(not even necessarily computable), with a = _`1 + (1 − _)`2. Then we have

da
+
> d`1 ∧ d`2 .

Proof. The function t`1 ∧ t`2 is lower semicomputable, and is a `𝑖-test for each
𝑖. Therefore it is also a a-test, and as such is ∗

< ta. Here, the constant in the
∗
<

depends only on (the programs for) `1, `2, and not on _. �

These properties do not survive for arbitrary measures and arbitrary con-
stants.
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Example 4.4.5 Let measure `1 be uniform over the interval [0, 1/2], let `2 be
uniform over [1/2, 1]. For 0 ≤ 𝑥 ≤ 1 let

a𝑥 = (1 − 𝑥)`1 + 𝑥`2.

Then a1/2 is uniform over [0, 1]. Let 𝜙𝑥 be the uniform distribution over [𝑥, 𝑥 +
1/2], and 𝜓𝑥 the uniform distribution over [0, 𝑥] ∪ [𝑥 + 1/2, 1].
Let 𝑝 < 1/2 be random with respect to the uniform distribution a1/2.

1. The relations

a1/2 ≤ 𝑝−1a𝑝, da1/2 (𝑝) < ∞, da𝑝 (𝑝) = ∞

show that any statement analogous to the monotonicity property of Proposi-
tion 4.4.1 fails when the measures involved are not required to be comput-
able.

2. For rational 𝑟 with 0 < 𝑟 < 𝑝 the relations

a := (1 − 𝑝)a𝑟 + 𝑝a1−𝑟, da(𝑝) = ∞, da𝑟 (𝑝) < ∞, da1−𝑟 (𝑝) < ∞

provide a similar counterexample to Proposition 4.4.3.
3. The relations

a1/2 = (a𝑝 + a1−𝑝)/2, da1/2 (𝑝) < ∞, da𝑝 (𝑝) = da1−𝑝 (𝑝) = ∞

provide a similar counterexample to Proposition 4.4.4.
The following counterexample relies on a less subtle effect:

a1/2 = (𝜙𝑝 + 𝜓𝑝)/2, da1/2 (𝑝) < ∞, d𝜙𝑝
(𝑝) = d𝜓𝑝

(𝑝) = ∞,

since as a boundary point of the support, 𝑝 is computable from both 𝜙𝑝 and
𝜓𝑝 in a uniform way.

For a complete proof, uniform tests must be provided for each of the cases: this
is left as exercise for the reader. y

The non-monotonicity example could be used to argue that the we allowed
too many `-tests, that the test t` (𝑥) should not be allowed to depend on prop-
erties of ` that exploit the computational properties of ` so much stronger than
its quantitative properties.

4.5 Algorithmic entropy

Some properties of description complexity make it a good expression of the idea
of individual information content.
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4.5.1 Entropy

The entropy of a discrete probability distribution ` is defined as

H(`) = −
∑︁
𝑥

`(𝑥) log `(𝑥).

To generalize entropy to continuous distributions the relative entropy is defined
as follows. Let `, a be twomeasures, where ` is taken (typically, but not always),
to be a probability measure, and a another measure, that can also be a probabil-
ity measure but is most frequently not. We define the relative entropy Ha(`) as
follows. If ` is not absolutely continuous with respect to a then Ha(`) = −∞.
Otherwise, writing

𝑑`

𝑑a
=
`(𝑑𝑥)
a(𝑑𝑥) =: 𝑓 (𝑥)

for the (Radon-Nikodym) derivative (density) of ` with respect to a, we define

Ha(`) = −
∫
log

𝑑`

𝑑a
𝑑` = −`𝑥 log `(𝑑𝑥)

a(𝑑𝑥) = −a𝑥 𝑓 (𝑥) log 𝑓 (𝑥).

Thus, H(`) = H#(`) is a special case.
Example 4.5.1 Let 𝑓 (𝑥) be a probability density function for the distribution `
over the real line, and let _ be the Lebesgue measure there. Then

H_ (`) = −
∫

𝑓 (𝑥) log 𝑓 (𝑥)𝑑𝑥.

y

In information theory and statistics, when both ` and a are probability mea-
sures, then −Ha(`) is also denoted 𝐷(` ‖ a), and called (after Kullback) the
information divergence of the two measures. It is frequently used in the role
of a distance between ` and a. It is not symmetric, but can be shown to obey
the triangle inequality, and to be nonnegative. Let us prove the latter property:
in our terms, it says that relative entropy is nonpositive when both ` and a are
probability measures.

Proposition 4.5.2 Over a space 𝑋 , we have

Ha(`) ≤ −`(𝑋) log `(𝑋)
a(𝑋) . (4.5.1)

In particular, if `(𝑋) ≥ a(𝑋) then Ha(`) ≤ 0.
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Proof. The inequality −𝑎 ln 𝑎 ≤ −𝑎 ln 𝑏 + 𝑏 − 𝑎 expresses the concavity of the
logarithm function. Substituting 𝑎 = 𝑓 (𝑥) and 𝑏 = `(𝑋)/a(𝑋) and integrating
by a:

(ln 2)Ha(`) = −a𝑥 𝑓 (𝑥) ln 𝑓 (𝑥) ≤ −`(𝑋) ln `(𝑋)
a(𝑋) + `(𝑋)

a(𝑋) a(𝑋) − `(𝑋)

= −`(𝑋) ln `(𝑋)
a(𝑋) ,

giving (4.5.1). �

4.5.2 Algorithmic entropy

Le us recall some facts on description complexity. Let us fix some (finite or
infinite) alphabet Σ and consider the discrete space Σ∗.
The universal lower semicomputable semimeasurem(𝑥) over Σ∗ was defined

in Definition 1.6.9. It is possible to turnm(𝑥) into a measure, by compactifying
the discrete space Σ∗ into

Σ∗ = Σ∗ ∪ {∞}
(as in part 1 of Example A.1.22; this process makes sense also for a constructive
discrete space), and settingm(∞) = 1−∑

𝑥∈Σ∗ m(𝑥). The extended measurem
is not quite lower semicomputable since the number `(Σ∗\{0}) is not necessarily
lower semicomputable.

Remark 4.5.3 A measure ` is computable over Σ∗ if and only if the function
𝑥 ↦→ `(𝑥) is computable for 𝑥 ∈ Σ∗. This property does not imply that the
number

1 − `(∞) = `(Σ∗) =
∑︁
𝑥∈Σ∗

`(𝑥)

is computable. y

Let us allow, for a moment, measures ` that are not probability measures:
they may not even be finite. Metric and computability can be extended to this
case, the universal test t` (𝑥) can also be generalized. The Coding Theorem 1.6.5
and other considerations suggest the introduction of the following notation, for
an arbitrary measure `:

Definition 4.5.4 We define the algorithmic entropy of a point 𝑥 with respect to
measure ` as

𝐻` (𝑥) = −d` (𝑥) = − log t` (𝑥). (4.5.2)

y
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4. Generalizations

Then, with # defined as the counting measure over the discrete set Σ∗ (that
is, #(𝑆) = |𝑆|), we have

𝐾 (𝑥) +
= 𝐻#(𝑥).

This allows viewing 𝐻` (𝑥) as a generalization of description complexity.
The following theorem generalizes an earlier known theorem stating that

over a discrete space, for a computable measure, entropy is within an additive
constant the same as “average complexity”: H(`) +

= `𝑥𝐾 (𝑥).
Theorem 4.5.1 Let ` be a probability measure. Then we have

Ha(`) ≤ `𝑥𝐻a(𝑥 | `). (4.5.3)

If 𝑋 is a discrete space then the following estimate also holds:

Ha(`)
+
> `𝑥𝐻a(𝑥 | `). (4.5.4)

Proof. Let 𝛿 be the measure with density ta(𝑥 | `) with respect to a: ta(𝑥 | `) =
𝛿(𝑑𝑥)
a(𝑑𝑥) . Then 𝛿(𝑋) ≤ 1. It is easy to see from the maximality property of ta(𝑥 | `)
that ta(𝑥 | `) > 0, therefore according to Proposition A.2.23, we have a(𝑑𝑥)

𝛿(𝑑𝑥) =(
𝛿(𝑑𝑥)
a(𝑑𝑥)

)−1
. Using Proposition A.2.23 and 4.5.2:

Ha(`) = −`𝑥 log `(𝑑𝑥)
a(𝑑𝑥) ,

−`𝑥𝐻a(𝑥 | `) = `𝑥 log
𝛿(𝑑𝑥)
a(𝑑𝑥) = −`𝑥 log a(𝑑𝑥)

𝛿(𝑑𝑥) ,

Ha(`) − `𝑥𝐻a(𝑥 | `) = −`𝑥 log `(𝑑𝑥)
𝛿(𝑑𝑥) ≤ −`(𝑋) log `(𝑋)

𝛿(𝑋) ≤ 0.

This proves (4.5.3).
Over a discrete space 𝑋 , the function (𝑥, `, a) ↦→ ` (𝑑𝑥)

a(𝑑𝑥) =
` (𝑥)
a(𝑥) is computable,

therefore by the maximality property of 𝐻a(𝑥 | `) we have ` (𝑑𝑥)
a(𝑑𝑥)

∗
< ta(𝑥 | `),

hence Ha(`) = −`𝑥 log ` (𝑑𝑥)
a(𝑑𝑥)

+
> `𝑥𝐻a(𝑥 | `). �

4.5.3 Addition theorem

The Addition Theorem (3.1.5) can be generalized to the algorithmic entropy
𝐻` (𝑥) introduced in (4.5.2) (a somewhat similar generalization appeared in [54]).
The generalization, defining 𝐻`,a = 𝐻`×a, is

𝐻`,a(𝑥, 𝑦) +
= 𝐻` (𝑥 | a) + 𝐻a(𝑦 | 𝑥, 𝐻` (𝑥 | a), `). (4.5.5)
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4.5. Algorithmic entropy

Before proving the general addition theorem, we establish a few useful facts.

Proposition 4.5.5 We have

𝐻` (𝑥 | a)
+
< − log a𝑦2−𝐻`,a (𝑥,𝑦) .

Proof. The function 𝑓 (𝑥, `, a) that is the right-hand side, is upper semicom-
putable by definition, and obeys `𝑥2− 𝑓 (𝑥,`,a) ≤ 1. Therefore the inequality fol-
lows from the minimum property of 𝐻` (𝑥). �

Let 𝑧 ∈ N, then the inequality

𝐻` (𝑥)
+
< 𝐾 (𝑧) + 𝐻` (𝑥 | 𝑧) (4.5.6)

will be a simple consequence of the general addition theorem. The following
lemma, needed in the proof of the theorem, generalizes this inequality some-
what:

Lemma 4.5.6 For a computable function (𝑦, 𝑧) ↦→ 𝑓 (𝑦, 𝑧) over N, we have

𝐻` (𝑥 | 𝑦)
+
< 𝐾 (𝑧) + 𝐻` (𝑥 | 𝑓 (𝑦, 𝑧)).

Proof. The function

(𝑥, 𝑦, `) ↦→ 𝑔` (𝑥, 𝑦) =
∑︁
𝑧

2−𝐻` (𝑥 | 𝑓 (𝑦,𝑧))−𝐾 (𝑧)

is lower semicomputable, and `𝑥𝑔` (𝑥, 𝑦) ≤ ∑
𝑧 2−𝐾 (𝑧) ≤ 1. Hence 𝑔` (𝑥, 𝑦)

∗
<

2−𝐻` (𝑥 | 𝑦) . The left-hand side is a sum, hence the inequality holds for each ele-
ment of the sum: just what we had to prove. �

The following monotonicity property will be needed:

Lemma 4.5.7 For 𝑖 < 𝑗 we have

𝑖 + 𝐻` (𝑥 | 𝑖)
+
< 𝑗 + 𝐻` (𝑥 | 𝑗).

Proof. From Lemma 4.5.6, with 𝑓 (𝑖, 𝑛) = 𝑖 + 𝑛 we have

𝐻` (𝑥 | 𝑖) − 𝐻` (𝑥 | 𝑗)
+
< 𝐾 ( 𝑗 − 𝑖) +

< 𝑗 − 𝑖.

�

Let us generalize the minimum property of 𝐻` (𝑥).
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4. Generalizations

Proposition 4.5.8 Let (𝑦, a) ↦→ 𝐹a(𝑦) be an upper semicomputable function with
values in Z = Z ∪ {−∞,∞}. Then by Corollary 4.1.3 among the lower semicom-
putable functions (𝑥, 𝑦, a) ↦→ 𝑔a(𝑥, 𝑦) with a𝑥𝑔a(𝑥, 𝑦) ≤ 2−𝐹a (𝑦) there is one
that is maximal to within a multiplicative constant. Choosing 𝑓a(𝑥, 𝑦) as such a
function we have for all 𝑥 with 𝐹a(𝑦) > −∞:

𝑓a(𝑥, 𝑦) ∗
= 2−𝐹a (𝑦) ta(𝑥 | 𝑦, 𝐹a(𝑦)),

or in logarithmic notation − log 𝑓a(𝑥, 𝑦) +
= 𝐹a(𝑦) + 𝐻a(𝑥 | 𝑦, 𝐹a(𝑦)).

Proof. To prove the inequality ∗
>, define

𝑔a(𝑥, 𝑦, 𝑚) = max
𝑖≥𝑚
2−𝑖ta(𝑥 | 𝑦, 𝑖).

Function 𝑔a(𝑥, 𝑦, 𝑚) is lower semicomputable and decreasing in 𝑚. Therefore

𝑔a(𝑥, 𝑦) = 𝑔a(𝑥, 𝑦, 𝐹a(𝑦))

is also lower semicomputable since it is obtained by substituting an upper semi-
computable function for𝑚 in 𝑔a(𝑥, 𝑦, 𝑚). Themultiplicative form of Lemma 4.5.7
implies

𝑔a(𝑥, 𝑦, 𝑚) ∗
= 2−𝑚ta(𝑥 | 𝑦, 𝑚),

𝑔a(𝑥, 𝑦) ∗
= 2−𝐹a (𝑦) ta(𝑥 | 𝑦, 𝐹a(𝑦)).

We have, since ta is a test:

a𝑥2−𝑚ta(𝑥 | 𝑦, 𝑚) ≤ 2−𝑚,
a𝑥𝑔a(𝑥, 𝑦)

∗
< 2−𝐹a (𝑦) ,

implying 𝑔a(𝑥, 𝑦)
∗
< 𝑓a(𝑥, 𝑦) by the optimality of 𝑓a(𝑥, 𝑦).

To prove the upper bound, consider all lower semicomputable functions𝜙𝑒(𝑥, 𝑦, 𝑚, a)
(𝑒 = 1, 2, . . . ). By Theorem 4.1.1, there is a recursive mapping 𝑒 ↦→ 𝑒′ with the
property that a𝑥𝜙𝑒′ (𝑥, 𝑦, 𝑚, a) ≤ 2−𝑚+1, and for each 𝑦, 𝑚, a if a𝑥𝜙𝑒(𝑥, 𝑦, 𝑚, a) <
2−𝑚+1 then𝜙𝑒 = 𝜙𝑒′. Let us apply this transformation to the function𝜙𝑒(𝑥, 𝑦, 𝑚, a) =
𝑓a(𝑥, 𝑦). The result is a lower semicomputable function 𝑓 ′a (𝑥, 𝑦, 𝑚) = 𝜙𝑒′ (𝑥, 𝑦, 𝑚, a)
with the property that a𝑥 𝑓 ′a (𝑥, 𝑦, 𝑚) ≤ 2−𝑚+1, further a𝑥 𝑓a(𝑥, 𝑦) ≤ 2−𝑚 implies
𝑓 ′a (𝑥, 𝑦, 𝑚) = 𝑓a(𝑥, 𝑦). Now (𝑥, 𝑦, 𝑚, a) ↦→ 2𝑚−1 𝑓 ′a (𝑥, 𝑦, 𝑚) is a uniform test of
𝑥 conditional on 𝑦, 𝑚 and hence it is ∗

< ta(𝑥 | 𝑦, 𝑚). Substituting 𝐹a(𝑦) for𝑚 the
relation a𝑥 𝑓a(𝑥, 𝑦) ≤ 2−𝑚 is satisfied and hence we have

𝑓a(𝑥, 𝑦) = 𝑓 ′a (𝑥, 𝑦, 𝐹a(𝑦))
∗
< 2−𝐹a (𝑦)+1ta(𝑥 | 𝑦, 𝐹a(𝑦)).

�
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4.5. Algorithmic entropy

As mentioned above, the theory generalizes to measures that are not proba-
bility measures. Taking 𝑓` (𝑥, 𝑦) = 1 in Proposition 4.5.8 gives the inequality

𝐻` (𝑥 | blog `(𝑋)c)
+
< log `(𝑋),

with a physical meaning when ` is the phase space measure. Using (4.5.6), this
implies

𝐻` (𝑥)
+
< log `(𝑋) + 𝐾 (blog `(𝑋)c). (4.5.7)

Theorem 4.5.2 (General addition) The following inequality holds:

𝐻`,a(𝑥, 𝑦) +
= 𝐻` (𝑥 | a) + 𝐻a(𝑦 | 𝑥, 𝐻` (𝑥 | a), `).

Proof. To prove the inequality +
< define𝐺`,a(𝑥, 𝑦, 𝑚) = min𝑖≥𝑚 𝑖+𝐻a(𝑦 | 𝑥, 𝑖, `).

This function is upper semicomputable and increasing in 𝑚. Therefore function

𝐺`,a(𝑥, 𝑦) = 𝐺`,a(𝑥, 𝑦, 𝐻` (𝑥 | a))

is also upper semicomputable since it is obtained by substituting an upper semi-
computable function for 𝑚 in 𝐺`,a(𝑥, 𝑦, 𝑚). Lemma 4.5.7 implies

𝐺`,a(𝑥, 𝑦, 𝑚) +
= 𝑚 + 𝐻a(𝑦 | 𝑥, 𝑚, `),

𝐺`,a(𝑥, 𝑦) +
= 𝐻` (𝑥 | a) + 𝐻a(𝑦 | 𝑥, 𝐻` (𝑥 | a), `).

Now, we have

a𝑦2−𝑚−𝐻a (𝑦 | 𝑥,𝑚,`) ≤ 2−𝑚,
a𝑦2−𝐺`,a (𝑥,𝑦) ∗

< 2−𝐻` (𝑥 | `) .

Integrating over 𝑥 by ` gives `𝑥a𝑦2−𝐺 ∗
< 1, implying 𝐻`,a(𝑥, 𝑦)

+
< 𝐺`,a(𝑥, 𝑦) by

the minimality property of 𝐻`,a(𝑥, 𝑦). This proves the
+
< half of the theorem.

To prove the inequality +
> let 𝑓a(𝑥, 𝑦, `) = 2−𝐻`,a (𝑥,𝑦) . Proposition 4.5.5

implies that there is a constant 𝑐 with a𝑦 𝑓a(𝑥, 𝑦, `) ≤ 2−𝐻` (𝑥 | a)+𝑐. Let

𝐹a(𝑥, `) = 𝐻` (𝑥 | a).

Proposition 4.5.8 gives (substituting 𝑦 for 𝑥 and (𝑥, `) for 𝑦):

𝐻`,a(𝑥, 𝑦) = − log 𝑓a(𝑥, 𝑦, `)
+
> 𝐹a(𝑥, `) + 𝐻a(𝑦 | 𝑥, 𝐹a(𝑥, `), `),

which is what needed to be proved. �
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4. Generalizations

The function 𝐻` (𝜔) behaves quite differently for different kinds of measures
`. Recall the following property of complexity:

𝐾 ( 𝑓 (𝑥) | 𝑦) +
< 𝐾 (𝑥 | 𝑔(𝑦)) +

< 𝐾 (𝑥). (4.5.8)

for any computable functions 𝑓 , 𝑔. This implies

𝐾 (𝑦) +
< 𝐾 (𝑥, 𝑦).

In contrast, if ` is a probability measure then

𝐻a(𝑦)
+
> 𝐻`,a(𝜔, 𝑦).

This comes from the fact that 2−𝐻a (𝑦) is a test for ` × a.

4.5.4 Information

Mutual information has been defined in Definition 3.1.9 as 𝐼∗(𝑥 : 𝑦) = 𝐾 (𝑥) +
𝐾 (𝑦)−𝐾 (𝑥, 𝑦). By the Addition theorem, we have 𝐼∗(𝑥 : 𝑦) +

= 𝐾 (𝑦)−𝐾 (𝑦 | 𝑥, 𝐾 (𝑥)) +
=

𝐾 (𝑥) − 𝐾 (𝑥 | 𝑦, 𝐾 (𝑦)). The two latter expressions show that in some sense,
𝐼∗(𝑥 : 𝑦) is the information held in 𝑥 about 𝑦 as well as the information held
in 𝑦 about 𝑥. (The terms 𝐾 (𝑥), 𝐾 (𝑦) in the conditions are logarithmic-sized
corrections to this idea.) Using (4.3.5), it is interesting to view mutual informa-
tion 𝐼∗(𝑥 : 𝑦) as a deficiency of randomness of the pair (𝑥, 𝑦) in terms of the
expression d`, with respect to m ×m:

𝐼∗(𝑥 : 𝑦) = 𝐾 (𝑥) + 𝐾 (𝑦) − 𝐾 (𝑥, 𝑦) = dm×m(𝑥, 𝑦).

Taking m as a kind of “neutral” probability, even if it is not quite such, allows
us to view 𝐼∗(𝑥 : 𝑦) as a “deficiency of independence”. Is it also true that
𝐼∗(𝑥 : 𝑦) +

= dm×m(𝑥)? This would allow us to deduce, as Levin did, “information
conservation” laws from randomness conservation laws.2

Expression dm×m(𝑥) must be understood again in the sense of compactifica-
tion, as in Section 4.3. There seem to be two reasonable ways to compactify the
space N×N: we either compactify it directly, by adding a symbol∞, or we form
the product N × N. With either of them, preserving Theorem 4.6.1, we would
have to check whether 𝐾 (𝑥, 𝑦 |m × m) +

= 𝐾 (𝑥, 𝑦). But, knowing the function
m(𝑥) × m(𝑦) we know the function 𝑥 ↦→ m(𝑥) ∗

= m(𝑥) × m(0), hence also
the function (𝑥, 𝑦) ↦→ m(𝑥, 𝑦) = m(〈𝑥, 𝑦〉). Using this knowledge, it is possi-
ble to develop an argument similar to the proof of Theorem 4.3.2, showing that
𝐾 (𝑥, 𝑦 |m ×m) +

= 𝐾 (𝑥, 𝑦) does not hold.
2We cannot use the test t` for this, since it can be shown easily that it does not to obey

randomness conservation.
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4.6. Randomness and complexity

Question 1 Is there a neutral measure 𝑀 with the property that 𝐼∗(𝑥 : 𝑦) =

d𝑀×𝑀 (𝑥, 𝑦)? Is this true maybe for all neutral measures 𝑀? If not, how far apart
are the expressions d𝑀×𝑀 (𝑥, 𝑦) and 𝐼∗(𝑥 : 𝑦) from each other?

4.6 Randomness and complexity

We have seen in the discrete case that complexity and randomness are closely
related. The connection is more delicate technically in the continuous case, but
its exploration led to some nice results.

4.6.1 Discrete space

It is known that for computable `, the test d` (𝑥) can be expressed in terms of
the description complexity of 𝑥 (we will prove these expressions below). Assume
that X is the (discrete) space of all binary strings. Then we have

d` (𝑥) = − log `(𝑥) − 𝐾 (𝑥) + 𝑂(𝐾 (`)). (4.6.1)

The meaning of this equation is the following. The expression − log `(𝑥) is an
upper bound (within 𝑂(𝐾 (`))) of the complexity 𝐾 (𝑥), and nonrandomness of
𝑥 is measured by the difference between the complexity and this upper bound.
Assume that X is the space of infinite binary sequences. Then equation (4.6.1)
must be replaced with

d` (𝑥) = sup
𝑛

(
− log `(𝑥≤𝑛) − 𝐾 (𝑥≤𝑛) + 𝑂(𝐾 (`))

)
. (4.6.2)

For noncomputablemeasures, we cannot replace𝑂(𝐾 (`)) in these relations with
anything finite, as shown in the following example. Therefore however attractive
and simple, exp(− log `(𝑥)−𝐾 (𝑥)) is not a universal uniform test of randomness.
Proposition 4.6.1 There is a measure ` over the discrete space X of binary strings
such that for each 𝑛, there is an 𝑥 with d` (𝑥) = 𝑛−𝐾 (𝑛) and − log `(𝑥) −𝐾 (𝑥) +

<

0.

Proof. Let us treat the domain of our measure ` as a set of pairs (𝑥, 𝑦). Let
𝑥𝑛 = 0𝑛, for 𝑛 = 1, 2, . . .. For each 𝑛, let 𝑦𝑛 be some binary string of length 𝑛
with the property 𝐾 (𝑥𝑛, 𝑦𝑛) > 𝑛. Let `(𝑥𝑛, 𝑦𝑛) = 2−𝑛, and 0 elsewhere. Then
− log `(𝑥𝑛, 𝑦𝑛) − 𝐾 (𝑥𝑛, 𝑦𝑛) ≤ 𝑛 − 𝑛 = 0. On the other hand, let 𝑡` (𝑥, 𝑦) be the
test nonzero only on pairs of strings (𝑥, 𝑦) of the form (𝑥𝑛, 𝑦):

𝑡` (𝑥𝑛, 𝑦) =
m(𝑛)∑

𝑧∈B𝑛 `(𝑥𝑛, 𝑧)
.
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4. Generalizations

The form of the definition ensures semicomputability and we also have∑︁
𝑥,𝑦

`(𝑥, 𝑦)𝑡` (𝑥, 𝑦) ≤
∑︁
𝑛

m(𝑛) < 1,

therefore 𝑡` is indeed a test. Hence t` (𝑥, 𝑦)
∗
> 𝑡` (𝑥, 𝑦). Taking logarithms,

d` (𝑥𝑛, 𝑦𝑛)
+
> 𝑛 − 𝐾 (𝑛). �

The same example shows that the test defined as exp(− log `(𝑥) − 𝐾 (𝑥))
over discrete sets, does not satisfy the randomness conservation property.

Proposition 4.6.2 The test defined as 𝑓` (𝑥) = exp(− log `(𝑥) − 𝐾 (𝑥)) over dis-
crete spaces X does not obey the conservation of randomness.

Proof. Let us use the example of Proposition 4.6.1. Consider the function
𝜋 : (𝑥, 𝑦) ↦→ 𝑥. The image of the measure ` under the projection is
(𝜋`) (𝑥) =

∑
𝑦 `(𝑥, 𝑦). Thus, (𝜋`) (𝑥𝑛) = `(𝑥𝑛, 𝑦𝑛) = 2−𝑛. Then we have

seen that log 𝑓` (𝑥𝑛, 𝑦𝑛) ≤ 0. On the other hand,

log 𝑓𝜋` (𝜋(𝑥𝑛, 𝑦𝑛)) = − log(𝜋`) (𝑥𝑛) − 𝐾 (𝑥𝑛) +
= 𝑛 − 𝐾 (𝑛).

Thus, the projection 𝜋 takes a random pair (𝑥𝑛, 𝑦𝑛) into an object 𝑥𝑛 that is very
nonrandom (when randomness is measured using the test 𝑓`). �

In the example, we have the abnormal situation that a pair is random but
one of its elements is nonrandom. Therefore even if we would not insist on
universality, the test exp(− log `(𝑥) − 𝐾 (𝑥)) is unsatisfactory.
Looking into the reasons of the nonconservation in the example, we will

notice that it could only have happened because the test 𝑓` is too special. The
fact that − log(𝜋`) (𝑥𝑛)−𝐾 (𝑥𝑛) is large should show that the pair (𝑥𝑛, 𝑦𝑛) can be
enclosed into the “simple” set {𝑥𝑛} × Y of small probability; unfortunately, this
observation does not reflect on − log `(𝑥, 𝑦) − 𝐾 (𝑥, 𝑦) (it does for computable
`).
It is a natural idea to modify equation (4.6.1) in such a way that the complex-

ity 𝐾 (𝑥) is replaced with 𝐾 (𝑥 | `). However, this expression must be understood
properly. We need to use the definition of 𝐾 (𝑥) as − logm(𝑥) directly, and not
as prefix complexity.
Let us mention the following easy fact:

Proposition 4.6.3 If ` is a computable measure then 𝐾 (𝑥 | `) +
= 𝐾 (𝑥). The con-

stant in +
= depends on the description complexity of `.
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4.6. Randomness and complexity

Theorem 4.6.1 If X is the discrete space Σ∗ then we have

d` (𝑥) +
= − log `(𝑥) − 𝐾 (𝑥 | `). (4.6.3)

Note that in terms of the algorithmic entropy notation introduced in (4.5.2),
this theorem can be expressed as

𝐻` (𝑥) +
= 𝐾 (𝑥 | `) + log `(𝑥).

Proof. In exponential notation, equation (4.6.3) can bewritten as t` (𝑥) ∗
= m(𝑥 | `)/`(𝑥).

Let us prove ∗
> first. We will show that the right-hand side of this inequality is a

test, and hence ∗
< t` (𝑥). However, the right-hand side is clearly lower semicom-

putable in (𝑥, `) and when we “integrate” it (multiply it by `(𝑥) and sum it),
its sum is ≤ 1; thus, it is a test.
Let us prove ∗

< now. The expression t` (𝑥)`(𝑥) is clearly lower semicom-
putable in (𝑥, `), and its sum is ≤ 1. Hence, it is +

< m(𝑥 | `). �

Remark 4.6.4 It important not to consider relative computation with respect to
` as oracle computation in the ordinary sense. Theorem 4.3.1 below will show
the existence of a measure with respect to which every element is random. If
randomness is defined using ` as an oracle then we can always find elements
nonrandom with respect to `.
For similar reasons, the proof of the Coding Theorem does not transfer to

the function 𝐾 (𝑥 | `) since an interpreter function should have the property of
intensionality, depending only on ` and not on the sequence representing it.
(It does transfer without problem to an oracle version of 𝐾` (𝑥).) The Coding
Theorem still may hold, at least in some cases: this is currently not known. Until
we know this, we cannot interpret 𝐾 (𝑥 | `) as description complexity in terms
of interpreters and codes.
(Thanks to Alexander Shen for this observation: this remark corrects an error

in the paper [21].) y

4.6.2 Non-discrete spaces

For non-discrete spaces, unfortunately, we can only provide a less intuitive ex-
pression.

Proposition 4.6.5 let X = (𝑋, 𝑑, 𝐷, 𝛼) be a complete computable metric space, and
let E be the enumerated set of bounded Lipschitz functions introduced in (A.1.3),
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but for the spaceM(X)×X. The uniform test of randomness t` (𝑥), can be expressed
as

t` (𝑥) ∗
=
∑︁
𝑓 ∈E

𝑓 (`, 𝑥) m( 𝑓 | `)
` 𝑦 𝑓 (`, 𝑦) . (4.6.4)

Proof. For ∗
>, we will show that the right-hand side of the inequality is a test,

and hence ∗
< t` (𝑥). For simplicity, we skip the notation about the enumeration

of E and treat each element 𝑓 as its own name. Each term of the sum is clearly
lower semicomputable in ( 𝑓 , 𝑥, `), hence the sum is lower semicomputable in
(𝑥, `). It remains to show that the `-integral of the sum is ≤ 1. But, the `-
integral of the generic term is ≤ m( 𝑓 | `), and the sum of these terms is ≤ 1 by
the definition of the function m(· | ·). Thus, the sum is a test.
For ∗

<, note that (`, 𝑥) ↦→ t` (𝑥), as a lower semicomputable function, is the
supremum of functions in E. Denoting their differences by 𝑓𝑖(`, 𝑥), we have
t` (𝑥) =

∑
𝑖 𝑓𝑖(`, 𝑥). The test property implies

∑
𝑖 `

𝑥 𝑓𝑖(`, 𝑥) ≤ 1. Since the
function (`, 𝑖) ↦→ `𝑥 𝑓𝑖(`, 𝑥) is lower semicomputable, this implies `𝑥 𝑓𝑖(`, 𝑥)

∗
<

m(𝑖 | `), and hence
𝑓𝑖(`, 𝑥)

∗
< 𝑓𝑖(`, 𝑥)

m(𝑖 | `)
`𝑥 𝑓𝑖(`, 𝑥)

.

It is easy to see that for each 𝑓 ∈ E we have∑︁
𝑖: 𝑓𝑖= 𝑓

m(𝑖 | `) ≤ `( 𝑓 | `),

which leads to (4.6.4). �

Remark 4.6.6 If we only want the ∗
> part of the result, then E can be replaced

with any enumerated computable sequence of bounded computable functions.
y

4.6.3 Infinite sequences

In case of the space of infinite sequences and a computable measure, Theo-
rem 2.3.4 gives a characterization of randomness in terms of complexity. This
theorem does not seem to transfer to a more general situation, but under some
conditions, at least parts of it can be extended.
For arbitrary measures and spaces, we can say a little less:
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Proposition 4.6.7 For all measures ` ∈ M𝑅 (𝑋), for the deficiency of randomness
d` (𝑥), we have

d` (𝑥)
+
> sup

𝑛

(
− log `(𝑥≤𝑛) − 𝐾 (𝑥≤𝑛 | `)

)
. (4.6.5)

Proof. Consider the function

𝑓` (𝑥) =
∑︁
𝑠

1Γ𝑠 (𝑥)
m(𝑠 | `)
`(Γ𝑠)

=
∑︁
𝑛

m(𝑥≤𝑛 | `)
`(𝑥≤𝑛) ≥ sup

𝑛

m(𝑥≤𝑛 | `)
`(𝑥≤𝑛) .

The function (`, 𝑥) ↦→ 𝑓` (𝑥) is clearly lower semicomputable and satisfies
`𝑥 𝑓` (𝑥) ≤ 1, and hence

d` (𝑥)
+
> log 𝑓 (𝑥) +

> sup
𝑛

(
− log `(𝑥≤𝑛) − 𝐾 (𝑥≤𝑛 | `)

)
.

�

Definition 4.6.8 LetM𝑅 (𝑋) be the set of measures ` with `(𝑋) = 𝑅. y

We will be able to prove the +
> part of the statement of Theorem 2.3.4 in a

more general space, and without assuming computability. Assume that a sepa-
rating sequence 𝑏1, 𝑏2, . . . is given as defined in Subsection 4.7, along with the
set 𝑋0. For each 𝑥 ∈ 𝑋0, the binary sequence 𝑥1, 𝑥2, . . . has been defined. Let

`(Γ𝑠) = 𝑅 −
∑︁

{`(Γ𝑠′) : 𝑙(𝑠) = 𝑙(𝑠′), 𝑠′ ≠ 𝑠}.

Then (𝑠, `) ↦→ `(Γ𝑠) is lower semicomputable, and (𝑠, `) ↦→ `(Γ𝑠) is upper
semicomputable. And, every time that the functions 𝑏𝑖(𝑥) form a partition with
`-continuity, we have `(Γ𝑠) = `(Γ𝑠) for all 𝑠.
Theorem 4.6.2 Suppose that the space 𝑋 is effectively compact. Then for all com-
putable measures ` ∈ M0

𝑅 (𝑋), for the deficiency of randomness d` (𝑥), the charac-
terization (2.3.3) holds.

Proof. The proof of part +
> of the inequality follows directly from Proposition 4.6.7,

just as in the proof of Theorem 2.3.4.
The proof of +

< is also similar to the proof of that theorem. The only part
that needs to be reproved is the statement that for every lower semicomputable
function 𝑓 over 𝑋 , there are computable sequences 𝑦𝑖 ∈ N∗ and 𝑞𝑖 ∈ Q with
𝑓 (𝑥) = sup𝑖 𝑞𝑖1𝑦𝑖 (𝑥). This follows now, since according to Proposition 4.7.7, the
cells Γ𝑦 form a basis of the space 𝑋 . �
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4.6.4 Bernoulli tests

In this part, we will give characterize Bernoulli sequences in terms of their com-
plexity growth.
Recall Definition 4.2.11: A function 𝑓 : B∗ → R is a combinatorial Bernoulli

test if
a) It is lower semicomputable.
b) It is monotonic with respect to the prefix relation.
c) For all 0 ≤ 𝑘 ≤ 𝑛 we have

∑
𝑥∈B(𝑛,𝑘) 𝑓 (𝑥) ≤

(𝑛
𝑘

)
.

According to Theorem 4.2.3, a sequence b is nonrandom with respect to all
Bernoulli measures if and only if sup𝑛 𝑏(b≤𝑛) = ∞, where 𝑏(𝑥) is a combinatorial
Bernoulli test.
We need some definitions.

Definition 4.6.9 For a finite or infinite sequence 𝑥 let 𝑆𝑛(𝑥) =
∑𝑛
𝑖=1 𝑥 (𝑖).

For 0 ≤ 𝑝 ≤ 1 and integers 0 ≤ 𝑘 ≤ 𝑛, denote 𝐵𝑝(𝑛, 𝑘) =
(𝑛
𝑘

)
𝑝𝑘 (1 − 𝑝)𝑛−𝑘.

An upper semicomputable function 𝐷 : N2 → N, defined for 𝑛 ≥ 1, 0 ≤ 𝑘 ≤
𝑛 will be called a gap function if∑︁

𝑛≥1

𝑛∑︁
𝑘=0

𝐵𝑝(𝑛, 𝑘)2−𝐷(𝑛,𝑘) ≤ 1 (4.6.6)

holds for all 0 ≤ 𝑝 ≤ 1. A gap function 𝐷(𝑛, 𝑘) is optimal if for every other gap
function 𝐷′(𝑛, 𝑘) there is a 𝑐𝐷′ with 𝐷(𝑛, 𝑘) ≤ 𝐷′(𝑛, 𝑘) + 𝑐𝐷′. y

Proposition 4.6.10 There is an optimal gap function 𝐷(𝑛, 𝑘) +
< 𝐾 (𝑛).

Proof. The existence is proved using the technique of Theorem 4.1.1. For the
inequality it is sufficient to note that 𝐾 (𝑛) is a gap function. Indeed, we have∑︁

𝑛≥1

𝑛∑︁
𝑘=0

𝐵𝑝(𝑛, 𝑘)2−𝐾 (𝑛) =
∑︁
𝑛≥1
2−𝐾 (𝑛) ≤ 1. �

Definition 4.6.11 Let us fix an optimal gap function and denote it by Δ(𝑛, 𝑘).
y

Now we can state the test characterization theorem for Bernoulli tests.

Theorem 4.6.3 Denoting by 𝑏(b) the universal class test for the Bernoulli sequen-
ces, we have 𝑏(b) ∗

= 𝑏(b), where

log 𝑏(b) = sup
𝑛
log

(
𝑛

𝑘

)
− 𝐾 (b≤𝑛 | 𝑛, 𝑘, Δ(𝑛, 𝑘)) − Δ(𝑛, 𝑘),
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with 𝑘 = 𝑆𝑛(b).

Proof. Let 𝛿(𝑛, 𝑘) = 2−Δ(𝑛,𝑘) .
Claim 4.6.12 Consider lower semicomputable functions 𝛾 : B∗ → R+ such that
for all 𝑛, 𝑘 we have ∑︁

𝑦∈B(𝑛,𝑘)
𝛾(𝑦) ≤ 2−Δ(𝑛,𝑘) .

Among these functions there is one that is optimal (maximal to within a multiplica-
tive constant). Calling it 𝛿(𝑦) we have

𝛿(𝑦) ∗
= 𝛿(𝑛, 𝑘) ·m(𝑦 | 𝑛, 𝑘, Δ(𝑛, 𝑘)).

Thus, the right-hand side is equal, within amultiplicative constant, to a lower
semicomputable function of 𝑦.

Proof. This follows immediately from Proposition 4.5.8. with a = # (the count-
ing measure) over the sets B(𝑛, 𝑘). �

Let us show 𝑏(b) ∗
< 𝑏(b). We have with 𝑘 = 𝑆𝑛(b) in the first line:

𝑏(b) = sup
𝑛≥1

(
𝑛

𝑘

)
m(b≤𝑛 | 𝑛, 𝑘, Δ(𝑛, 𝑘))𝛿(𝑛, 𝑘)

= sup
𝑛≥1

𝑛∑︁
𝑘=0

(
𝑛

𝑘

)
𝛿(𝑛, 𝑘)

∑︁
𝑦∈B(𝑛,𝑘)

1𝑦 (b)m(𝑦 | 𝑛, 𝑘, Δ(𝑛, 𝑘))

≤
∑︁
𝑛≥1

𝑛∑︁
𝑘=0

(
𝑛

𝑘

) ∑︁
𝑦∈B(𝑛,𝑘)

1𝑦 (b)𝛿(𝑛, 𝑘)m(𝑦 | 𝑛, 𝑘, Δ(𝑛, 𝑘))

∗
=
∑︁
𝑛≥1

𝑛∑︁
𝑘=0

(
𝑛

𝑘

) ∑︁
𝑦∈B(𝑛,𝑘)

1𝑦 (b)𝛿(𝑦),

using the notation of Claim 4.6.12 above. Let 𝑡(b) denote the right-hand side
here, which is thus a lower semicomputable function. We have for all 𝑝:

𝐵
b
𝑝𝑡(b) ∗

=
∑︁
𝑛≥1

𝑛∑︁
𝑘=0

𝐵𝑝(𝑛, 𝑘)𝛿(𝑛, 𝑘)
∑︁

𝑦∈B(𝑛,𝑘)
m(𝑦 | 𝑛, 𝑘, Δ(𝑛, 𝑘)) ≤ 1,

so 𝑡(b) ∗
> 𝑏(b) is a Bernoulli test, showing 𝑏(b) ∗

< 𝑏(b).
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To show 𝑏(b) ∗
< 𝑏(b) we will follow the method of the proof of Theo-

rem 2.3.4. Replace 𝑏(b) with a rougher version:

𝑏′(b) = 1
2
max{2𝑛 : 2𝑛 < 𝑏(b) },

then we have 2𝑏′ < 𝑏. There are computable sequences 𝑦𝑖 ∈ B∗ and 𝑘𝑖 ∈ N with
𝑏′(b) = sup𝑖 2𝑘𝑖1𝑦𝑖 (b) with the property that if 𝑖 < 𝑗 and 1𝑦𝑖 (b) = 1𝑦 𝑗 (b) = 1
then 𝑘𝑖 < 𝑘 𝑗. As in the imitated proof, we have 2𝑏′(b) ≥ ∑

𝑖 2𝑘𝑖1𝑦𝑖 (b). The
function 𝛾(𝑦) = ∑

𝑦𝑖=𝑦
2𝑘𝑖 is lower semicomputable. We have

𝑏 ≥ 2𝑏′(b) ≥
∑︁
𝑖

2𝑘𝑖1𝑦𝑖 (b) =
∑︁
𝑦∈N∗

1𝑦 (b)𝛾(𝑦) =
∑︁
𝑛

𝑛∑︁
𝑘=0

∑︁
𝑦∈B(𝑛,𝑘)

1𝑦 (b)𝛾(𝑦).

(4.6.7)

By Theorem 4.2.3 we can assume
∑

𝑦∈B(𝑛,𝑘) 𝛾(𝑦) ≤
(𝑛
𝑘

)
. Let

𝛿′(𝑦) = 𝛾(𝑦)
(
𝑛

𝑘

)−1
≤ 1,

𝛿′(𝑛, 𝑘) =
∑︁

𝑦∈B(𝑛,𝑘)
𝛿′(𝑦).

Since 1 ≥ 𝐵𝑝𝑏 ≥ 𝐵𝑝(2𝑏′) for all 𝑝, we have

1 ≥
∑︁
𝑛

𝑛∑︁
𝑘=0

∑︁
𝑦∈B(𝑛,𝑘)

𝛾(𝑦)𝐵b𝑝1𝑦 (b) =
∑︁
𝑛

𝑛∑︁
𝑘=0

𝑝𝑘 (1 − 𝑝)𝑛−𝑘
∑︁

𝑦∈B(𝑛,𝑘)
𝛾(𝑦)

=
∑︁
𝑛

𝑛∑︁
𝑘=0

𝐵𝑝(𝑛, 𝑘)
∑︁

𝑦∈B(𝑛,𝑘)
𝛿′(𝑦) =

∑︁
𝑛

𝑛∑︁
𝑘=0

𝐵𝑝(𝑛, 𝑘)𝛿′(𝑛, 𝑘).

Thus 𝛿′(𝑛, 𝑘) is a gap function, hence 𝛿′(𝑛, 𝑘) ∗
< 2−Δ(𝑛,𝑘) , and by Claim 4.6.12

we have

𝛾(𝑦)
(
𝑛

𝑘

)−1
= 𝛿′(𝑦) ∗

< 𝛿(𝑦) ∗
= 𝛿(𝑛, 𝑘) ·m(𝑦 | 𝑛, 𝑘, Δ(𝑛, 𝑘)).

Substituting back into (4.6.7) finishes the proof of 𝑏(b) ∗
< 𝑏(b). �

4.7 Cells

This section allows to transfer some of the results on sequence spaces to more
general spaces, by encoding the elements into sequences. The reader who is
only interested in sequences can skip this section.
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4.7.1 Partitions

The coordinates of the sequences into which we want to encode our elements
will be obtained via certain partitions.
Recall from Definition A.2.33 that a measurable set 𝐴 is said to be a `-

continuity set if `(𝜕𝐴) = 0 where 𝜕𝐴 is the boundary of 𝐴.
Definition 4.7.1 (Continuity partition) Let 𝑓 : 𝑋 → R be a bounded com-
putable function, and let 𝛼1 < · · · < 𝛼𝑘 be rational numbers, and let ` be a
computable measure with the property that ` 𝑓−1(𝛼 𝑗) = 0 for all 𝑗.
In this case, we will say that 𝛼 𝑗 are `-continuity points of 𝑓 . Let 𝛼0 = −∞,

𝛼𝑘+1 = ∞, and for 𝑗 = 0, . . . , 𝑘, let Let 𝑈 𝑗 = 𝑓−1(( 𝑗, 𝑗+1)). The sequence of dis-
joint computably enumerable open sets (𝑈0, . . . , 𝑈𝑘) will be called the partition
generated by 𝑓 , 𝛼1, . . . , 𝛼𝑘.
If we have several partitions (𝑈𝑖0, . . . , 𝑈𝑖,𝑘), generated by different functions

𝑓𝑖 (𝑖 = 1, . . . , 𝑚) and cutoff sequences (𝛼𝑖 𝑗 : 𝑗 = 1, . . . , 𝑘𝑖) made up of `-
continuity points of 𝑓𝑖 then we can form a new partition generated by all possible
intersections

𝑉 𝑗1,..., 𝑗𝑛 = 𝑈1, 𝑗1 ∩ · · · ∩ 𝑈𝑚, 𝑗𝑚 .

A partition of this kind will be called a continuity partition. The sets 𝑉 𝑗1,..., 𝑗𝑛 will
be called the cells of this partition. y

The following is worth noting.

Proposition 4.7.2 In a partition as given above, the values `𝑉 𝑗1,..., 𝑗𝑛 are comput-
able from the names of the functions 𝑓𝑖 and the cutoff points 𝛼𝑖 𝑗.

Proof. Straightforward. �

Let us proceed to defining cells.

Definition 4.7.3 (Separating sequence) Assume that a computable sequence of
functions 𝑏1(𝑥), 𝑏2(𝑥), . . . over 𝑋 is given, with the property that for every pair
𝑥1, 𝑥2 ∈ 𝑋 with 𝑥1 ≠ 𝑥2, there is a 𝑗 with 𝑏 𝑗(𝑥1) · 𝑏 𝑗(𝑥2) < 0. Such a sequence
will be called a separating sequence. Let us give the correspondence between the
set BN of infinite binary sequences and elements of the set

𝑋0 = {𝑥 ∈ 𝑋 : 𝑏 𝑗(𝑥) ≠ 0, 𝑗 = 1, 2, . . .}.

For a binary string 𝑠1 · · · 𝑠𝑛 = 𝑠 ∈ B∗, let

Γ𝑠
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be the set of elements of 𝑋 with the property that for 𝑗 = 1, . . . , 𝑛, if 𝑠 𝑗 = 0 then
𝑏 𝑗(𝜔) < 0, otherwise 𝑏 𝑗(𝜔) > 0.
The separating sequence will be called `-continuity sequence if `(𝑋0) =

0. y

This correspondence has the following properties.
a) ΓΛ = 𝑋 .

b) For each 𝑠 ∈ B, the sets Γ𝑠0 and Γ𝑠1 are disjoint and their union is contained
in Γ𝑠.

c) For 𝑥 ∈ 𝑋0, we have {𝑥} = ⋂
𝑥∈Γ𝑠 Γ𝑠.

Definition 4.7.4 (Cells) If string 𝑠 has length 𝑛 then Γ𝑠 will be called a canonical
𝑛-cell, or simply canonical cell, or 𝑛-cell. From now on, whenever Γ denotes a
subset of 𝑋 , it means a canonical cell. We will also use the notation

𝑙(Γ𝑠) = 𝑙(𝑠).

y

The three properties above say that if we restrict ourselves to the set 𝑋0 then
the canonical cells behave somewhat like binary subintervals: they divide 𝑋0

in half, then each half again in half, etc. Moreover, around each point, these
canonical cells become “arbitrarily small”, in some sense (though, they may not
be a basis of neighborhoods). It is easy to see that if Γ𝑠1 , Γ𝑠2 are two canonical
cells then they either are disjoint or one of them contains the other. If Γ𝑠1 ⊂ Γ𝑠2
then 𝑠2 is a prefix of 𝑠1. If, for a moment, we write Γ0𝑠 = Γ𝑠 ∩ 𝑋0 then we have
the disjoint union Γ0𝑠 = Γ0𝑠0 ∪ Γ0𝑠1.
Let us use the following notation.

Definition 4.7.5 For an 𝑛-element binary string 𝑠, for 𝑥 ∈ Γ𝑠, we will write

𝑠 = 𝑥≤𝑛 = 𝑥1 · · · 𝑥𝑛, `(𝑠) = `(Γ𝑠).

The 2𝑛 cells (some of them possibly empty) of the form Γ𝑠 for 𝑙(𝑠) = 𝑛 form a
partition

P𝑛

of 𝑋0. y

Thus, for elements of 𝑋0, we can talk about the 𝑛-th bit 𝑥𝑛 of the description
of 𝑥: it is uniquely determined.

Examples 4.7.6
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1. If X is the set of infinite binary sequences with its usual topology, the functions
𝑏𝑛(𝑥) = 𝑥𝑛 − 1/2 generate the usual cells, and X0 = X.

2. If X is the interval [0, 1], let 𝑏𝑛(𝑥) = − sin(2𝑛𝜋𝑥). Then cells are open inter-
vals of the form (𝑘 · 2−𝑛, (𝑘 + 1) · 2𝑛), the correspondence between infinite
binary strings and elements of 𝑋0 is just the usual representation of 𝑥 as the
binary decimal string 0.𝑥1𝑥2 . . ..

y

When we fix canonical cells, we will generally assume that the partition cho-
sen is also “natural”. The bits 𝑥1, 𝑥2, . . . could contain information about the
point 𝑥 in decreasing order of importance from a macroscopic point of view.
For example, for a container of gas, the first few bits may describe, to a rea-
sonable degree of precision, the amount of gas in the left half of the container,
the next few bits may describe the amounts in each quarter, the next few bits
may describe the temperature in each half, the next few bits may describe again
the amount of gas in each half, but now to more precision, etc. From now on,
whenever Γ denotes a subset of 𝑋 , it means a canonical cell. From now on, for
elements of 𝑋0, we can talk about the 𝑛-th bit 𝑥𝑛 of the description of 𝑥: it is
uniquely determined.
The following observation will prove useful.

Proposition 4.7.7 Suppose that the space X is effectively compact3 and we have a
separating sequence 𝑏𝑖(𝑥) as given above. Then the cells Γ𝑠 form a basis of the space
X.

Proof. We need to prove that for every ball 𝐵(𝑥, 𝑟), the there is a cell 𝑥 ∈ Γ𝑠 ⊂
𝐵(𝑥, 𝑟). Let 𝐶 be the complement of 𝐵(𝑥, 𝑟). For each point 𝑦 of 𝐶, there is an
𝑖 such that 𝑏𝑖(𝑥) · 𝑏𝑖(𝑦) < 0. In this case, let 𝐽0 = {𝑧 : 𝑏𝑖(𝑧) < 0}, 𝐽1 = {𝑧 :
𝑏𝑖(𝑧) > 0}. Let 𝐽 (𝑦) = 𝐽 𝑝 such that 𝑦 ∈ 𝐽 𝑝. Then 𝐶 ⊂ ⋃

𝑦 𝐽 (𝑦), and com-
pactness implies that there is a finite sequence 𝑦1, . . . , 𝑦𝑘 with 𝐶 ⊂ ⋃𝑘

𝑗=1 𝐽 (𝑦 𝑗).
Clearly, there is a cell

𝑥 ∈ Γ𝑠 ⊂ 𝐵(𝑥, 𝑟) \
𝑘⋃
𝑗=1

𝐽 (𝑦 𝑗).

�

3It was noted by Hoyrup and Rojas that the qualification “effectively” is necessary here.
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4. Generalizations

4.7.2 Computable probability spaces

If a separating sequence is given in advance, we may restrict attention to the
class of measures that make our sequence a `-continuity sequence:

Definition 4.7.8 LetM0(𝑋) be the set of those probability measures ` inM(𝑋)
for which `(𝑋 \ 𝑋0) = 0. y

On the other hand, for each computable measure `, a computable separating
sequence can be constructed that is a `-continuity sequence. Recall that 𝐵(𝑥, 𝑟)
is the ball of center 𝑥 and radius 𝑟. Let 𝐷 = {𝑠1, 𝑠2, . . . } = {𝛼(1), 𝛼(2), . . . } be
the canonical enumeration of the canonical dense set 𝐷.

Theorem 4.7.1 (Hoyrup-Rojas) There is a sequence of uniformly computable reals
(𝑟𝑛)𝑛∈N such that (𝐵(𝑠𝑖, 𝑟𝑛))𝑖,𝑛 is a basis of balls that are `-continuity sets. This
basis is constructively equivalent to the original one, consisting of all balls 𝐵(𝑠𝑖, 𝑟),
𝑟 ∈ Q.
Corollary 4.7.9 There is a computable separating sequence with the `-continuity
property.

Proof. Let us list all balls 𝐵(𝑠𝑖, 𝑟𝑛) into a single sequence 𝐵(𝑠𝑖𝑘 , 𝑟𝑛𝑘). The func-
tions

𝑏𝑘 (𝑥) = 𝑑(𝑠𝑖𝑘 , 𝑥) − 𝑟𝑛𝑘

give rise to the desired sequence. �

For the proof of the theorem, we use some preparation. Recall from Defini-
tion A.2.5 that an atom is a point with positive measure.

Lemma 4.7.10 Let 𝑋 be R or R+ or [0, 1]. Let ` be a computable probability
measure on 𝑋 . Then there is a sequence of uniformly computable reals (𝑥𝑛)𝑛 which
is dense in 𝑋 and contains no atoms of `.

Proof. Let 𝐼 be a closed rational interval. We construct 𝑥 ∈ 𝐼 with `({𝑥}) = 0.
To do this, we construct inductively a nested sequence of closed intervals 𝐽𝑘 of
measure < 2−𝑘+1, with 𝐽0 = 𝐼. Suppose 𝐽𝑘 = [𝑎, 𝑏] has been constructed, with
`(𝐽𝑘) < 2−𝑘+1. Let 𝑚 = (𝑏− 𝑎)/3: one of the intervals [𝑎, 𝑎+𝑚] and [𝑏−𝑚, 𝑏]
must have measure < 2−𝑘, and we can find it effectively—let it be 𝐽𝑘+1.
From a constructive enumeration (𝐼𝑛)𝑛 of all the dyadic intervals, we can

construct 𝑥𝑛 ∈ 𝐼𝑛 uniformly. �
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4.7. Cells

Corollary 4.7.11 Let (X, `) be a computable metric space with a computable mea-
sure and let ( 𝑓𝑖)𝑖 be a sequence of uniformly computable real valued functions on
𝑋 . Then there is a sequence of uniformly computable reals (𝑥𝑛)𝑛 that is dense in R
and such that each 𝑥𝑛 is a `-continuity point of each 𝑓𝑖.

Proof. Consider the uniformly computable measures `𝑖 = ` ◦ 𝑓−1
𝑖
and define

a =
∑
𝑖 2−𝑖`𝑖. It is easy to see that a is a computable measure and then, by

Lemma 4.7.10, there is a sequence of uniformly computable reals (𝑥𝑛)𝑛 which
is dense in R and contains no atoms of a. Since a(𝐴) = 0 iff `𝑖(𝐴) = 0 for all 𝑖,
we get `({ 𝑓−1

𝑖
(𝑥𝑛)}) = 0 for all 𝑖, 𝑛. �

Proof of Theorem 4.7.1. Apply Corollary 4.7.11 to 𝑓𝑖(𝑥) = 𝑑(𝑠𝑖, 𝑥).
Since every ball 𝐵(𝑠𝑖, 𝑟) can be expressed as a computably enumerable union

of the balls of the type 𝐵(𝑠𝑖, 𝑟𝑛) just constructed, the two bases are constructively
equivalent. �
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5 Exercises and problems

Exercise 1 Define, for any two natural numbers 𝑟, 𝑠, a standard encoding cnv𝑟𝑠
of base 𝑟 strings 𝑥 into base 𝑠 strings with the property

|cnv𝑟𝑠 (𝑥) | ≤ |𝑥 | log 𝑟
log 𝑠

+ 1. (5.0.1)

Solution. We will use X = 𝑁𝑁 ,X𝑟 = 𝑍𝑁𝑟 for the sets of infinite strings of natural
numbers and 𝑟-ary digits respectively. For a sequence 𝑝 ∈ X𝑟, let [𝑝]𝑟 denote
the real number in the interval [0, 1] which 0.𝑝 denotes in the base 𝑟 number
system. For 𝑝 in S𝑟, let [𝑝]𝑟 = { [𝑝𝑞]𝑟 : 𝑞 ∈ X𝑟 }.
For the 𝑟-ary string 𝑥, let 𝑣 be the size of the largest 𝑠-ary intervals [𝑦] 𝑠

contained in the 𝑟-ary interval [𝑥]𝑟. If [𝑧] 𝑠 is the leftmost among these intervals,
then let cnv𝑟𝑠 (𝑥) = 𝑧. This is a one-to-one encoding. We have 𝑟−|𝑥 | < 2𝑠𝑣, since
any 2𝑠 consecutive 𝑠-ary intervals of length 𝑣 contain an 𝑠-ary interval of length
𝑠𝑣. Therefore

|𝑧 | = − log𝑠 𝑣 < |𝑥 | log 𝑟
log 𝑠

+ 1 + log 2
log 𝑠

hence, since 2 ≤ 𝑠 and |𝑥 | is integer, we have the inequality (5.0.1). �

Exercise 2 A function 𝐴 from S𝑟 × S to S is called an 𝑟-ary interpreter. Prove
the following generalization of the Invariance Theorem. For any 𝑠, there is a
p.r. 𝑠-ary interpreter 𝑈 such that for any p.r. interpreter 𝐴 there is a constant
𝑐 < ∞ such that for all 𝑥, 𝑦 we have

𝐶𝑈 (𝑥 | 𝑦) ≤ 𝐶𝐴 (𝑥 | 𝑦) + 𝑐. (5.0.2)

Solution. Let 𝑉 : Z∗
𝑠 × Z∗

𝑠 × S → S be a partial recursive function which is
universal: such that for any p.r. 𝑠-ary interpreter 𝐴, there is a string 𝑎 such that
for all 𝑝, 𝑥, we have 𝐴(𝑝, 𝑥) = 𝑉 (𝑎, 𝑝, 𝑥).
The machine computing 𝑈 (𝑝, 𝑥) tries to decompose 𝑝 into 𝑢𝑜𝑣 and outputs

𝑉 (𝑢, 𝑣, 𝑥). Let us verify that 𝑈 is optimal. Let 𝐴 be a p.r. 𝑟-ary interpreter, 𝐵 an
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5. Exercises and problems

𝑠-ary p.r. interpreter such that 𝐵(cnv𝑟𝑠 (𝑝), 𝑥) = 𝐴(𝑝, 𝑥) for all 𝑝, 𝑥, 𝑎 a binary
string such that 𝐵(𝑝, 𝑥) = 𝑈 (𝑎, 𝑝, 𝑥) for all 𝑝, 𝑥. Let 𝑥, 𝑦 be two strings. If
𝐶𝐴 (𝑥 | 𝑦) = ∞, then the inequality (5.0.2) holds trivially. Otherwise, let 𝑝 be a
binary string of length 𝐶𝐴 (𝑥 | 𝑦)/log 𝑟 with 𝐴(𝑝, 𝑦) = 𝑥. Then

𝑈 (𝑎𝑜cnv𝑟𝑠 (𝑝), 𝑦) = 𝑉 (𝑎, cnv𝑟𝑠 (𝑝), 𝑦) = 𝐵(cnv𝑟𝑠 (𝑝), 𝑦) = 𝐴(𝑝, 𝑦) = 𝑥.

Since
|cnv𝑟𝑠 (𝑝) | ≤ |𝑝| log 𝑟/log 𝑠 + 1 = 𝐶𝐴 (𝑥 | 𝑦)/log 𝑠 + 1,

we have

𝐶𝑈 (𝑥 | 𝑦) ≤ (2|𝑎| + 𝐶𝐴 (𝑥 | 𝑦)/log 𝑠 + 1) log 𝑠 = 𝐶𝐴 (𝑥 | 𝑦) + (2|𝑎|) + 1) log 𝑠.

�

Exercise 3 (𝑆𝑚𝑛 -theorem) Prove that there is a binary string 𝑏 such that𝑈 (𝑝, 𝑞, 𝑥) =
𝑈 (𝑏𝑜𝑝𝑜𝑞, 𝑥) holds for all binary strings 𝑝, 𝑞 and arbitrary strings x.
Exercise 4 (Schnorr) Notice that, apart from the conversion between represen-
tations, what our optimal interpreter does is the following. It treats the program
𝑝 as a pair (𝑝(1), 𝑝(2)) whose first member is the Gödel number of some in-
terpreter for the universal p.r. function 𝑉 (𝑝1, 𝑝2, 𝑥), and the second argument
as a program for this interpreter. Prove that indeed, for any recursive pairing
function 𝑤(𝑝, 𝑞), if there is a function 𝑓 such that |𝑤(𝑝, 𝑞) | ≤ 𝑓 (𝑝) + |𝑞| then 𝑤
can be used to define an optimal interpreter.

Exercise 5 Refute the inequality 𝐶(𝑥, 𝑦) +
< 𝐶(𝑥) + 𝐶(𝑦).

Exercise 6 Prove the following sharpenings of Theorem 1.4.2.

𝐶(𝑥, 𝑦) +
< 𝐽 (𝐶(𝑥)) + 𝐶(𝑦 | 𝑥, 𝐶(𝑥)),

𝐶(𝑥, 𝑦) +
< 𝐶(𝑥) + 𝐽 (𝐶(𝑦 | 𝑥, 𝐶(𝑥))).

Prove Theorem 1.4.2 from here.

Exercise 7 (Schnorr) Prove 𝐶(𝑥+𝐶(𝑥)) +
= 𝐶(𝑥). Can you generalize this result?

Exercise 8 (Schnorr) Prove that if 𝑚 < 𝑛 then 𝑚 + 𝐶(𝑚) +
< 𝑛 + 𝐶(𝑛).

Exercise 9 Prove

log
(
𝑛

𝑘

)
+
= 𝑘 log

𝑛

𝑘
+ (𝑛 − 𝑘) log 𝑛

𝑛 − 𝑘
+ 1
2
log

𝑛

𝑘(𝑛 − 𝑘) .
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Exercise 10 (Kamae) Prove that for any natural number 𝑘 there is a string 𝑥
such that for for all but finitely many strings 𝑦, we have

𝐶(𝑥) − 𝐶(𝑥 | 𝑦) ≥ 𝑘.

In other words, there are some strings 𝑥 such that almost any string 𝑦 contains
a large amount of information about them.

Solution. Strings 𝑥 with this property are for example the ones which contain
information obtainable with the help of any sufficiently large number. Let 𝐸 be a
r.e. set of integers. Let 𝑒0𝑒1𝑒2 . . . be the infinite string which is the characteristic
function of 𝐸, and let 𝑥 (𝑘) = 𝑒0 . . . 𝑒2𝑘 . We can suppose that 𝐶(𝑥 (𝑘)) ≥ 𝑘. Let
𝑛1, 𝑛2, . . . be a recursive enumeration of 𝐸 without repetition, and let 𝛼(𝑘) =

max{𝑖 : 𝑛𝑖 ≤ 2𝑘}. Then for any number 𝑡 ≥ 𝛼(𝑘) we have 𝐶(𝑥 (𝑘) | 𝑡) +
< log 𝑘.

Indeed, a binary string of length 𝑘 describes the number 𝑘. Knowing 𝑡 we can
enumerate 𝑛1, . . . , 𝑛𝑡 and thus learn 𝑥 (𝑘). Therefore with any string 𝑦 of length
≥ 𝛼(𝑘) we have 𝐶(𝑥) − 𝐶(𝑥 | 𝑦) +

> 𝑘 − log 𝑘. �

Exercise 11 a) Prove that a real function 𝑓 is computable iff there is a recursive
function 𝑔(𝑥, 𝑛) with rational values, and | 𝑓 (𝑥) − 𝑔(𝑥, 𝑛) | < 1/𝑛.

b) Prove that a function 𝑓 is semicomputable iff there exists a recursive function
with rational values, (or, equivalently, a computable real function) 𝑔(𝑥, 𝑛)
nondecreasing in 𝑛, with 𝑓 (𝑥) = lim𝑛→∞ 𝑔(𝑥, 𝑛).

Exercise 12 Prove that in Theorem 1.5.2 one can write “semicomputable” for
“partial recursive”.

Exercise 13 (Levin) Show that there is an upper semicomputable function𝐺(𝑝, 𝑥, 𝑦)
which for different finite binary strings 𝑝 enumerates all upper semicomputable
functions 𝐹(𝑥, 𝑦) satisfying the inequality (1.5.1). Prove

𝐶(𝑥 | 𝑦) +
= inf

𝑝
𝐺(𝑝, 𝑥, 𝑦) + 𝐽 ( |𝑝|).

Exercise 14 Prove ∑︁
𝑝∈B𝑛

m(𝑝) ∗
= m(𝑛).

Exercise 15 (Solovay) Show that we cannot find effectively infinitely many
places where some recursive upper bound of 𝐾 (𝑛) is sharp. Moreover, suppose
that 𝐹(𝑛) is a recursive upper bound of 𝐾 (𝑛). Then there is no recursive function
D(𝑛) ordering to each 𝑛 a finite set of natural numbers (represented for exam-
ple as a string) larger than 𝑛 such that for each 𝑛 there is an 𝑥 in D(𝑛) with
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5. Exercises and problems

𝐹(𝑥) ≤ 𝐾 (𝑥). Notice that the function log 𝑛 (or one almost equal to it) has this
property for 𝐶(𝑛).

Solution. Suppose that such a function exists. Then we can select a sequence
𝑛1 < 𝑛2 < . . . of integers with the property that the sets D(𝑛𝑖) are all disjoint.
Let

𝑎(𝑛) =
∑︁

𝑥∈D(𝑛)
2−𝐹 (𝑥) .

Then the sequence 𝑎(𝑛𝑘) is computable and
∑
𝑘 𝑎(𝑛𝑘) < 1. It is now easy to

construct a computable subsequence 𝑚𝑖 = 𝑛𝑘𝑖 of 𝑛𝑘 and a computable sequence
𝑏𝑖 such that 𝑏𝑖/𝑎(𝑚𝑖) → ∞ and ∑𝑖 𝑏𝑖 < 1. Let us define the semimeasure `
setting

`(𝑥) = 2−𝐹 (𝑥)𝑏𝑖/𝑎(𝑚𝑖)
for any 𝑥 in D(𝑚𝑖) and 0 otherwise. Then for any 𝑥 in D(𝑚𝑖) we have 𝐾 (𝑥)

+
<

− log `(𝑥) = 𝐹(𝑥) − log 𝑐𝑖 where 𝑐𝑖 = 𝑏𝑖/𝑎(𝑚𝑖) → ∞, so we arrived a contradic-
tion with the assumption. �

Exercise 16 Prove that there is a recursive upper bound 𝐹(𝑛) of 𝐾 (𝑛) and a
constant 𝑐 with the property that there are infinitely many natural numbers 𝑛
such that for all 𝑘 > 0, the quantity of numbers 𝑥 ≤ 𝑛 with 𝐾 (𝑥) < 𝐹(𝑥) − 𝑘 is
less than 𝑐𝑛2−𝑘.

Solution. Use the upper bound 𝐺 found in Theorem 1.7.4 and define 𝐹(𝑛) =

log 𝑛+𝐺(blog 𝑛c). The property follows from the facts that log 𝑛+ 𝐾 (blog 𝑛c) is
a sharp upper bound for 𝐾 (𝑥) for “most” 𝑥 less than 𝑛 and that 𝐺(𝑘) is infinitely
often close to 𝐾 (𝑘). �

Exercise 17 Give an example of a computable sequence 𝑎𝑛 > 0 of with the
property that

∑
𝑛 𝑎𝑛 < ∞ but for any other computable sequence 𝑏𝑛 > 0, if

𝑏𝑛/𝑎𝑛 → 𝑖𝑛 𝑓 𝑡𝑦 then
∑
𝑛 𝑏𝑛 = ∞.

Hint: Let 𝑟𝑛 be a recursive, increasing sequence of rational numbers with lim𝑛 𝑟𝑛 =∑
𝑥 m(𝑥) and let 𝑎𝑛 = 𝑟𝑛+1 − 𝑟𝑛. �

Exercise 18 (Universal coding, Elias) Let 𝑓 (𝑛) = log2 𝑛 + 2 log2 log2 𝑛. Show
that when 𝑃 runs over all nonincreasing probability distributions over 𝑁 then

lim
𝐾 (𝑃)→∞

𝐾 (𝑃)−1
∑︁
𝑛

𝑃(𝑛) 𝑓 (𝑛) = 1.

128



Exercise 19 (T. Cover) Let log∗2 𝑛 = log2 𝑛+ log2 log2 𝑛+ . . . (all positive terms).
Prove that ∑︁

𝑛

2− log
∗
2 𝑛 < ∞,

hence 𝐾 (𝑛) +
< log∗2 𝑛. For which logarithm bases does 𝐾 (𝑛)

+
< log∗2 𝑛 hold?

Exercise 20 Prove that Kamae’s result in Exercise 10 does not hold for 𝐾 (𝑥 | 𝑦).
Exercise 21 Prove that for each Y there is an 𝑚 such that if H(𝑃) > 𝑚 then
|∑𝑥 𝑃(𝑥)𝐾 (𝑥)/H(𝑃) − 1| < Y.

Exercise 22 If a finite sequence 𝑥 of length 𝑛 has large complexity then its bits
are certainly not predictable. Let ℎ(𝑘, 𝑛) = −(𝑘/𝑛)𝑙𝑜𝑔(𝑘/𝑛)−(1−(𝑘/𝑛))𝑙𝑜𝑔(1−
(𝑘/𝑛)). A quantitative relation of this sort is the following. If, for some 𝑘 > 𝑛/2,
a program of length 𝑚 can predict 𝑥𝑖 from 𝑥1, . . . , 𝑥𝑖−1 for at least 𝑛 − 𝑘 values
of 𝑖 then 𝐶(𝑥) < 𝑚 + 𝑛ℎ(𝑘, 𝑛) + 𝑜(𝑛).
Exercise 23 This is a more open-ended problem, having to do with the converse
of the previous exercise. Show (if true) that for each 𝑐 there is a 𝑑 such that
predictability of 𝑥 at significantly more than 𝑛/2 + 𝑐 places is equivalent to the
possibility to enclose 𝑥 into a set of complexity 𝑜(𝑛) and size 𝑛 − 𝑑𝑛.
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A Background frommathematics

A.1 Topology

In this section, we summarize the notions and results of topology that are needed
in the main text.

A.1.1 Topological spaces

A topological space is a set of points with some kind of—not quantitatively
expressed—closeness relation among them.

Definition A.1.1 A topology on a set 𝑋 is defined by a class 𝜏 of its subsets called
open sets. It is required that the empty set and 𝑋 are open, and that arbitrary
union and finite intersection of open sets is open. The pair (𝑋, 𝜏) is called a
topological space. A set is called closed if its complement is open. y

Having a set of open and closed sets allows us to speak about closure opera-
tions.

Definition A.1.2 A set 𝐵 is called the neighborhood of a set 𝐴 if 𝐵 contains an
open set that contains 𝐴. We denote by 𝐴, 𝐴o the closure (the intersection of all
closed sets containing 𝐴) and the interior of 𝐴 (the union of all open sets in 𝐴)
respectively. Let

𝜕𝐴 = 𝐴 \ 𝐴o

denote the boundary of set 𝐴. y

An alternative way of defining a topological space is via a basis.

Definition A.1.3 A basis of a topological space is a subset 𝛽 of 𝜏 such that every
open set is the union of some elements of 𝛽. A neighborhood of a point is a
basis element containing it. A basis of neighborhoods of a point 𝑥 is a set 𝑁 of
neighborhoods of 𝑥 with the property that each neighborhood of 𝑥 contains an
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element of 𝑁. A subbasis is a subset 𝜎 of 𝜏 such that every open set is the union
of finite intersections from 𝜎. y

Examples A.1.4
1. Let 𝑋 be a set, and let 𝛽 be the set of all points of 𝑋 . The topology with basis

𝛽 is the discrete topology of the set 𝑋 . In this topology, every subset of 𝑋 is
open (and closed).

2. Let 𝑋 be the real line R, and let 𝛽R be the set of all open intervals (𝑎, 𝑏). The
topology 𝜏R obtained from this basis is the usual topology of the real line.
When we refer to R as a topological space without qualification, this is the
topology we will always have in mind.

3. Let 𝑋 = R = R ∪ {−∞,∞}, and let 𝛽
R
consist of all open intervals (𝑎, 𝑏) and

in addition of all intervals of the forms [−∞, 𝑎) and (𝑎,∞]. It is clear how
the space R+ is defined.

4. Let 𝑋 be the real line R. Let 𝛽>
R
be the set of all open intervals (−∞, 𝑏). The

topology with basis 𝛽>
R
is also a topology of the real line, different from the

usual one. Similarly, let 𝛽<
R
be the set of all open intervals (𝑏,∞).

5. Let Σ be a finite or countable alphabet. On the space ΣN of infinite sequences
with elements in Σ, let 𝜏𝐶 = {𝐴ΣN : 𝐴 ⊆ Σ∗} be called the topology of the
Cantor space (over Σ). Note that if a set 𝐸 has the form 𝐸 = 𝐴ΣN where 𝐴 is
finite then 𝐸 is both open and closed.

y

Starting from open sets, we can define some other kinds of set that are still
relatively simple:

Definition A.1.5 A set is called a 𝐺𝛿 set if it is a countable intersection of open
sets, and it is an 𝐹𝜎 set if it is a countable union of closed sets. y

Different topologies over the same space have a natural partial order relation
among them:

Definition A.1.6 A topology 𝜏′ on 𝑋 is called larger, or finer than 𝜏 if 𝜏′ ⊇ 𝜏.
For two topologies 𝜏1, 𝜏2 over the same set 𝑋 , we define the topology 𝜏1 ∨ 𝜏2 =

𝜏1 ∩ 𝜏2, and 𝜏1 ∧ 𝜏2 as the smallest topology containing 𝜏1 ∪ 𝜏2. In the example
topologies of the real numbers above, we have 𝜏R = 𝜏<

R
∧ 𝜏>

R
. y

Most topologies used in practice have some separion property.

Definition A.1.7 A topology is said to have the 𝑇0 property if every point is
determined by the class of open sets containing it. This is the weakest one of a
number of other possible separation y
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Both our above example topologies of the real line have this property. All
topologies considered in this survey will have the 𝑇0 property. A stronger such
property is the following:

Definition A.1.8 A space is called a Hausdorff space, or 𝑇2 space, if for every
pair of different points 𝑥, 𝑦 there is a pair of disjoint open sets 𝐴, 𝐵 with 𝑥 ∈ 𝐴,
𝑦 ∈ 𝐵. y

The real line with topology 𝜏>
R
in Example A.1.4.4 above is not a Hausdorff

space. A space is Hausdorff if and only if every open set is the union of closures
of basis elements.

A.1.2 Continuity

We introduced topology in order to be able to speak about continuity:

Definition A.1.9 Given two topological spaces (𝑋𝑖, 𝜏𝑖) (𝑖 = 1, 2), a function
𝑓 : 𝑋1 → 𝑋2 is called continuous if for every open set 𝐺 ⊆ 𝑋2 its inverse image
𝑓−1(𝐺) is also open. If the topologies 𝜏1, 𝜏2 are not clear from the context then
we will call the function (𝜏1, 𝜏2)-continuous. Clearly, the property remains the
same if we require it only for all elements 𝐺 of a subbasis of 𝑋2.
If there are two continuous functions between 𝑋 and 𝑌 that are inverses of

each other then the two spaces are called homeomorphic.
We say that function 𝑓 is continuous at point 𝑥 if for every neighborhood 𝑉

of 𝑓 (𝑥) there is a neighborhood 𝑈 of 𝑥 with 𝑓 (𝑈) ⊆ 𝑉. y

Clearly, function 𝑓 is continuous if and only if it is continuous in each point.
There is a natural sense in which every subset of a topological space is also

a topological space:

Definition A.1.10 A subspace of a topological space (𝑋, 𝜏) is defined by a subset
𝑌 ⊆ 𝑋 , and the topology 𝜏𝑌 = {𝐺 ∩ 𝑌 : 𝐺 ∈ 𝜏}, called the induced topology
on 𝑌 . This is the smallest topology on 𝑌 making the identity mapping 𝑥 ↦→ 𝑥

continuous. A partial function 𝑓 : 𝑋 → 𝑍 with dom( 𝑓 ) = 𝑌 is continuous iff
𝑓 : 𝑌 → 𝑍 is continuous. y

Given some topological spaces, we can also form larger ones using for exam-
ple the product operation:

Definition A.1.11 For two topological spaces (𝑋𝑖, 𝜏𝑖) (𝑖 = 1, 2), we define the
product topology on their product 𝑋 × 𝑌 : this is the topology defined by the
subbasis consisting of all sets𝐺1×𝑋2 and all sets 𝑋1×𝐺2 with𝐺𝑖 ∈ 𝜏𝑖. The product
topology is the smallest topology making the projection functions (𝑥, 𝑦) ↦→ 𝑥,

133



A. Background frommathematics

(𝑥, 𝑦) ↦→ 𝑦 continuous. Given topological spaces 𝑋, 𝑌, 𝑍 we call a two-argument
function 𝑓 : 𝑋 × 𝑌 ↦→ 𝑍 continuous if it is continuous as a function from 𝑋 × 𝑌
to 𝑍. The product topology is defined similarly for the product

∏
𝑖∈𝐼 𝑋𝑖 of an

arbitrary number of spaces, indexed by some index set 𝐼. We say that a function
is (𝜏1, . . . , 𝜏𝑛, `)-continuous if it is (𝜏1 × · · · × 𝜏𝑛, `)-continuous. y

Examples A.1.12
1. The space R × R with the product topology has the usual topology of the
Euclidean plane.

2. Let 𝑋 be a set with the discrete topology, and 𝑋N the set of infinite sequences
with elements from 𝑋 , with the product topology. A basis of this topology is
provided by all sets of the form 𝑢𝑋N where 𝑢 ∈ 𝑋∗. The elements of this basis
are closed as well as open. When 𝑋 = {0, 1} then this topology is the usual
topology of infinite binary sequences.

y

In some special cases, one of the topologies in the definition of continuity is
fixed and known in advance:

Definition A.1.13 A real function 𝑓 : 𝑋1 → R is called continuous if it is
(𝜏1, 𝜏R)-continuous. y

A.1.3 Semicontinuity

For real functions, a restricted notion of continuity is often useful.

Definition A.1.14 A function 𝑓 : 𝑋 → R is lower semicontinuous if the set
{ (𝑥, 𝑟) ∈ 𝑋 × R : 𝑓 (𝑥) > 𝑟} is open. The definition of upper semicontinuity is
similar. Lower semicontinuity on subspaces is defined similarly to continuity on
subspaces. y

Clearly, a real function 𝑓 is continuous if and only if it is both lower and upper
semicontinuous. The requirement of lower semicontinuity of 𝑓 is equivalent to
saying that for each 𝑟 ∈ R, the set {𝑥 : 𝑓 (𝑥) > 𝑟} is open. This can be seen to
be equivalent to the following characterization.

Proposition A.1.15 A real function 𝑓 over X = (𝑋, 𝜏) is lower semicontinuous if
and only if it is (𝜏, 𝜏<

R
)-continuous.

Example A.1.16 The indicator function 1𝐺 (𝑥) of an arbitrary open set𝐺 is lower
semicontinuous. y

The following is easy to see.
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Proposition A.1.17 The supremum of any set of lower semicontinuous functions
is lower semicontinuous.

The following representation is then also easy to see.

Proposition A.1.18 Let 𝑋 be a topological space with basis 𝛽. The function 𝑓 :
𝑋 → R+ is lower semicontinuous if and only if there is a function 𝑔 : 𝛽 → R+ with
𝑓 (𝑥) = sup𝑥∈𝛽 𝑔(𝛽).

Corollary A.1.19 Let 𝑋 be a topological space with basis 𝛽 and 𝑓 : 𝑋 → R+ a
lower semicontinuous function defined on a subset 𝐷 of 𝑋 . Then 𝑓 can be extended
in a lower semicontinuous way to the whole space 𝑋 .

Proof. Indeed by the above proposition there is a function 𝑔 : 𝛽 → R+ with
𝑓 (𝑥) = sup𝑥∈𝛽 𝑔(𝛽) for all 𝑥 ∈ 𝐷. Let us define 𝑓 by this same formula for all
𝑥 ∈ 𝑋 . �

In the important special case of Cantor spaces, the basis is given by the set
of finite sequences. In this case we can also require the function 𝑔(𝑤) to be
monotonic in the words 𝑤:

Proposition A.1.20 Let 𝑋 = ΣN be a Cantor space as defined in Example A.1.4.5.
Then 𝑓 : 𝑋 → R+ is lower semicontinuous if and only if there is a function 𝑔 :
Σ∗ → R+ monotonic with respect to the relation 𝑢 v 𝑣, with 𝑓 (b) = sup𝑢vb 𝑔(𝑢).

A.1.4 Compactness

There is an important property of topological spaces that, when satisfied, has
many useful implications.

Definition A.1.21 Let (𝑋, 𝜏) be a topological space, and 𝐵 a subset of 𝑋 . An
open cover of 𝐵 is a family of open sets whose union contains 𝐵. A subset 𝐾 of 𝑋
is said to be compact if every open cover of 𝐾 has a finite subcover. y

Compact sets have many important properties: for example, a continuous
function over a compact set is bounded.

Example A.1.22
1. Every finite discrete space is compact. An infinite discrete space X = (𝑋, 𝜏)
is not compact, but it can be turned into a compact space X by adding a new
element called ∞: let 𝑋 = 𝑋 ∪ {∞}, and 𝜏 = 𝜏 ∪ {𝑋 \ 𝐴 : 𝐴 ⊂ 𝑋 closed }.
More generally, this simple operation can be performed with every space that
is locally compact, that each of its points has a compact neighborhood.
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2. In a finite-dimensional Euclidean space, every bounded closed set is compact.

3. It is known that if (X𝑖)𝑖∈𝐼 is a family of compact spaces then their direct prod-
uct is also compact.

y

There are some properties that are equivalent to compactness in simple cases,
but not always:

Definition A.1.23 A subset 𝐾 of 𝑋 is said to be sequentially compact if every
sequence in 𝐾 has a convergent subsequence with limit in 𝐾. The space is locally
compact if every point has a compact neighborhood. y

A.1.5 Metric spaces

Metric spaces are topological spaces with more structure: in them, the close-
ness concept is quantifiable. In our examples for metric spaces, and later in our
treatment of the space of probability measures, we refer to [5].

Definition A.1.24 A metric space is given by a set 𝑋 and a distance function
𝑑 : 𝑋 × 𝑋 → R+ satisfying the triangle inequality 𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧)
and also property that 𝑑(𝑥, 𝑦) = 0 implies 𝑥 = 𝑦. For 𝑟 ∈ R+, the sets

𝐵(𝑥, 𝑟) = { 𝑦 : 𝑑(𝑥, 𝑦) < 𝑟}, 𝐵(𝑥, 𝑟) = { 𝑦 : 𝑑(𝑥, 𝑦) ≤ 𝑟}

are called the open and closed balls with radius 𝑟 and center 𝑥.
A metric space is bounded when 𝑑(𝑥, 𝑦) has an upper bound on 𝑋 . y

A metric space is also a topological space, with the basis that is the set of all
open balls. Over this space, the distance function 𝑑(𝑥, 𝑦) is obviously continu-
ous.
Eachmetric space is a Hausdorff space; moreover, it has the following stronger

property.

Definition A.1.25 A topological space is said to have the 𝑇3 property if for every
pair of different points 𝑥, 𝑦 there is a continuous function 𝑓 : 𝑋 → R with
𝑓 (𝑥) ≠ 𝑓 (𝑦). y

To see that metric spaces are 𝑇3, take 𝑓 (𝑧) = 𝑑(𝑥, 𝑧).
Definition A.1.26 A topological space is called metrizable if its topology can be
derived from some metric space. y

It is known that a topological space is metrizable if and only if it has the 𝑇3
property.
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Notation A.1.27 For an arbitrary set 𝐴 and point 𝑥 let

𝑑(𝑥, 𝐴) = inf
𝑦∈𝐴

𝑑(𝑥, 𝑦),

𝐴Y = {𝑥 : 𝑑(𝑥, 𝐴) < Y}. (A.1.1)

y

Examples A.1.28
1. A discrete topological space 𝑋 can be turned into a metric space as follows:

𝑑(𝑥, 𝑦) = 0 if 𝑥 = 𝑦 and 1 otherwise.

2. The real line with the distance 𝑑(𝑥, 𝑦) = |𝑥 − 𝑦 | is a metric space. The
topology of this space is the usual topology 𝜏R of the real line.

3. The space R × R with the Euclidean distance gives the same topology as the
product topology of R × R.

4. An arbitrary set 𝑋 with the distance 𝑑(𝑥, 𝑦) = 1 for all pairs 𝑥, 𝑦 of different
elements, is a metric space that induces the discrete topology on 𝑋 .

5. Let 𝑋 be a bounded metric space, and let 𝑌 = 𝑋N be the set of infinite se-
quences 𝑥 = (𝑥1, 𝑥2, . . . ) with distance function 𝑑N(𝑥, 𝑦) =

∑
𝑖 2−𝑖𝑑(𝑥𝑖, 𝑦𝑖).

The topology of this space is the same as the product topology defined in
Example A.1.12.2.

6. Specializing the above example, if Σ is the discrete space defined in Example 1
above then we obtain a metrization of the Cantor space of Example A.1.45.
For every finite sequence 𝑥 ∈ Σ∗ and every infinite sequence b w 𝑥 the ball
𝐵(b, 2−𝑙 (𝑥) ) is equal to a basis element that is the open-closed cylinder set
𝑥ΣN.

7. Let 𝑋 be a metric space, and let 𝑌 = 𝑋N be the set of infinite bounded se-
quences 𝑥 = (𝑥1, 𝑥2, . . . ) with distance function 𝑑(𝑥, 𝑦) = sup𝑖 𝑑(𝑥𝑖, 𝑦𝑖).

8. Let 𝑋 be a topological space, and let 𝐶(𝑋) be the set of bounded continuous
functions over 𝑋 with distance function 𝑑 ′( 𝑓 , 𝑔) = sup𝑥 𝑑( 𝑓 (𝑥), 𝑔(𝑥)). A
special case is 𝐶 [0, 1] where the interval [0, 1] of real numbers has the usual
topology.

9. Let 𝑙2 be the set of infinite sequences 𝑥 = (𝑥1, 𝑥2, . . . ) of real numbers with
the property that

∑
𝑖 𝑥
2
𝑖
< ∞. The metric is given by the distance 𝑑(𝑥, 𝑦) =

(∑𝑖 |𝑥𝑖 − 𝑦𝑖 |2)1/2.
y
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In metric spaces, certain previously defined topological objects have richer
properties.

Examples A.1.29 Each of the following facts holds in metric spaces and is rel-
atively easy to prove.
1. Every closed set is a 𝐺𝛿 set (and every open set is an 𝐹𝜎 set).

2. A set is compact if and only if it is sequentially compact.

3. A set is compact if and only if it is closed and for every Y, there is a finite set
of Y-balls (balls of radius Y) covering it.

y

In metric spaces, the notion of continuity can be strengthened.

Definition A.1.30 A function 𝑓 : 𝑋 → 𝑌 between metric spaces 𝑋, 𝑌 is uni-
formly continuous if for each Y > 0 there is a 𝛿 > 0 such that 𝑑𝑋 (𝑎, 𝑏) < 𝛿

implies 𝑑𝑌 ( 𝑓 (𝑎), 𝑓 (𝑏)) < Y. y

It is known that over a compact metric space, every continuous function is
uniformly continuous.

Definition A.1.31 (Lipschitz) Given a function 𝑓 : 𝑋 → 𝑌 between met-
ric spaces and 𝛽 > 0, let Lip𝛽 (𝑋, 𝑌 ) denote the set of functions (called the
Lipschitz(𝛽) functions, or simply Lipschitz functions) satisfying

𝑑𝑌 ( 𝑓 (𝑥), 𝑓 (𝑦)) ≤ 𝛽𝑑𝑋 (𝑥, 𝑦). (A.1.2)

Let Lip(𝑋) = Lip(𝑋,R) =
⋃

𝛽 Lip𝛽 be the set of real Lipschitz functions over
𝑋 . y

As an example, every differentiable real function 𝑓 (𝑥) with | 𝑓 ′(𝑥) | ≤ 1 ev-
erywhere is a Lipschitz(1) function.
All these functions are uniformly continuous.
We introduce a certain fixed, enumerated sequence of Lipschitz functions

that will be used frequently as “building blocks” of other functions.

Definition A.1.32 (Hat functions) Let

𝑔𝑢,𝑟,Y(𝑥) = |1 − |𝑑(𝑥, 𝑢) − 𝑟 |+/Y|+.

This is a continuous function that is 1 in the ball 𝐵(𝑢, 𝑟), it is 0 outside the ball
𝐵(𝑢, 𝑟+Y), and takes intermediate values in between. It is clearly a Lipschitz(1/Y)
function.
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If a dense set 𝐷 is fixed, let F0 = F0(𝐷) be the set of functions of the form
𝑔𝑢,𝑟,1/𝑛 where 𝑢 ∈ 𝐷, 𝑟 is rational, 𝑛 = 1, 2, . . .. Let F1 = F1(𝐷) be the maxi-
mum of a finite number of elements of F0(𝐷). Each element 𝑓 of F1 is bounded
between 0 and 1. Let

E = E(𝐷) = {𝑔1, 𝑔2, . . . } ⊃ F1 (A.1.3)

be the smallest set of functions containing F0 and the constant 1, and closed
under ∨, ∧ and rational linear combinations. For each element of E, from its
definition we can compute a bound 𝛽 such that 𝑓 ∈ Lip𝛽. y

For the effective representation of points in a topological space the following
properties are important.

Definition A.1.33 A topological space has the first countability property if each
point has a countable basis of neighborhoods. y

Every metric space has the first countability property since we can restrict
ourselves to balls with rational radius.

Definition A.1.34 Given a topological space (𝑋, 𝜏) and a sequence 𝑥 =

(𝑥1, 𝑥2, . . . ) of elements of 𝑋 , we say that 𝑥 converges to a point 𝑦 if for ev-
ery neighborhood 𝐺 of 𝑦 there is a 𝑘 such that for all 𝑚 > 𝑘 we have 𝑥𝑚 ∈ 𝐺.
We will write 𝑦 = lim𝑛→∞ 𝑥𝑛. y

It is easy to show that if spaces (𝑋𝑖, 𝜏𝑖) (𝑖 = 1, 2) have the first countabil-
ity property then a function 𝑓 : 𝑋 → 𝑌 is continuous if and only if for every
convergent sequence (𝑥𝑛) we have 𝑓 (lim𝑛 𝑥𝑛) = lim𝑛 𝑓 (𝑥𝑛).
Definition A.1.35 A topological space has the second countability property if the
whole space has a countable basis. y

For example, the space R has the second countability property for all three
topologies 𝜏R, 𝜏<R, 𝜏

>
R
. Indeed, we also get a basis if instead of taking all intervals,

we only take intervals with rational endpoints. On the other hand, the metric
space of Example A.1.28.7 does not have the second countability property.

Definition A.1.36 In a topological space (𝑋, 𝜏), a set 𝐵 of points is called dense
at a point 𝑥 if it intersects every neighborhood of 𝑥. It is called everywhere dense,
or dense, if it is dense at every point. A metric space is called separable if it has
a countable everywhere dense subset. y

It is easy to see that a metric space is separable if and only if as a topological
space it has the second countability property.
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Example A.1.37 In Example A.1.28.8, for 𝑋 = [0, 1], we can choose as our
everywhere dense set the set of all polynomials with rational coefficients, or
alternatively, the set of all piecewise linear functions whose graph has finitely
many nodes at rational points.
More generally, let 𝑋 be a compact separable metric space with a dense set

𝐷. Then it can be shown that in the metric space 𝐶(𝑋), the set of functions
E(𝐷) introduced in Definition A.1.32 is dense, and turns it into a complete (not
necessarily compact!) separable metric space. y

Definition A.1.38 In a metric space, let us call a sequence 𝑥1, 𝑥2, . . . a Cauchy
sequence if for all 𝑖 < 𝑗 we have 𝑑(𝑥𝑖, 𝑥 𝑗) < 2−𝑖. y

It is easy to see that if an everywhere dense set 𝐷 is given then every element
of the space can be represented as the limit of a Cauchy sequence of elements of
𝐷. But not every Cauchy sequence needs to have a limit.

Definition A.1.39 A metric space is called complete if every Cauchy sequence in
it has a limit. y

For example, if 𝑋 is the real line with the point 0 removed then 𝑋 is not
complete, since there are Cauchy sequences converging to 0, but 0 is not in 𝑋 .
It is well-known that every metric space can be embedded (as an everywhere

dense subspace) into a complete space.

Example A.1.40 Consider the set 𝐷[0, 1] of functions over [0, 1] that are right
continuous and have left limits everywhere. The book [5] introduces two differ-
ent metrics for them: the Skorohod metric 𝑑 and the 𝑑0 metric. In both metrics,
two functions are close if a slight monotonic continuous deformation of the co-
ordinates makes them uniformly close. But in the 𝑑0 metric, the slope of the
deformation must be close to 1. It is shown that the two metrics give rise to the
same topology; however, the space with metric 𝑑 is not complete, and the space
with metric 𝑑0 is. y

We will develop the theory of randomness over separable complete metric
spaces. This is a wide class of spaces encompassing most spaces of practical
interest. The theory would be simpler if we restricted it to compact or locally
compact spaces; however, some important spaces like 𝐶 [0, 1] (the set of contin-
uouos functions over the interval [0, 1], with the maximum difference as their
distance) are not locally compact.
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A.2 Measures

For a survey of measure theory, see for example [40].

A.2.1 Set algebras

Event in a probability space are members of a class of sets that is required to be
a so-called 𝜎-algebra (sigma-algebra).

Definition A.2.1 A (Boolean set-) algebra is a set of subsets of some set 𝑋 closed
under intersection and complement (and then, of course, under union). It is a
𝜎-algebra (sigma-algebra) if it is also closed under countable intersection (and
then, of course, under countable union). A semialgebra is a set L of subsets of
some set 𝑋 closed under intersection, with the property that the complement of
every element of L is the disjoint union of a finite number of elements of L. y

If L is a semialgebra then the set of finite unions of elements of L is an
algebra.

Examples A.2.2
1. The set L1 of left-closed intervals of the line (including intervals of the form

(−∞, 𝑎)) is a semialgebra.
2. The set L2 of all intervals of the line (which can be open, closed, left-closed
or right-closed), is a semialgebra.

3. In the set {0, 1}N of infinite 0-1-sequences, the set L3 of all subsets of the
form 𝑢{0, 1}N with 𝑢 ∈ {0, 1}∗, is a semialgebra.

4. The 𝜎-algebra B generated by L1, is the same as the one generated by L2,
and is also the same as the one generated by the set of all open sets: it is
called the family of Borel sets of the line. The Borel sets of the extended real
line R are defined similarly.

5. More generally, the class of Borel sets in an arbitrary topological space is the
smallest 𝜎-algebra containing all open sets.

6. Given 𝜎-algebras A,B in sets 𝑋, 𝑌 , the product 𝜎-algebra A ×B in the space
𝑋 × 𝑌 is the one generated by all elements 𝐴 × 𝑌 and 𝑋 × 𝐵 for 𝐴 ∈ A and
𝐵 ∈ B.

y

A.2.2 Measures

Probability is an example of the more general notion of a measure.
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Definition A.2.3 A measurable space is a pair (𝑋, S) where S is a 𝜎-algebra of
sets of 𝑋 . A measure on a measurable space (𝑋, S) is a function ` : 𝐵 → R+ that
is 𝜎-additive: this means that for every countable family 𝐴1, 𝐴2, . . . of disjoint
elements of S we have `(⋃𝑖 𝐴𝑖) =

∑
𝑖 `(𝐴𝑖). A measure ` is 𝜎-finite if the whole

space is the union of a countable set of subsets whose measure is finite. It is
finite if `(𝑋) < ∞. It is a probability measure if `(𝑋) = 1. y

Example A.2.4 (Delta function) For any point 𝑥, the measure 𝛿𝑥 is defined as
follows:

𝛿𝑥 (𝐴) =
{
1 if 𝑥 ∈ 𝐴,

0 otherwise.

y

Definition A.2.5 If ` is a measure, a point 𝑥 is called an atom if `(𝑥) > 0. y

Generally, we will consider measures over either a countable set (a discrete
measure for which the union of atoms has total measure) or an uncountable one,
with no atoms. But mixed cases are possible.
It is important to understand how ameasure can be defined in practice. Alge-

bras are generally simpler to grasp constructively than 𝜎-algebras; semialgebras
are yet simpler. Suppose that ` is defined over a semialgebra L and is additive.
Then it can always be uniquely extended to an additive function over the algebra
generated by L. The following is an important theorem of measure theory.

Proposition A.2.6 (Caratheodory’s extension theorem) Suppose that a nonneg-
ative set function defined over a semialgebraL is 𝜎-additive. Then it can be extended
uniquely to the 𝜎-algebra generated by L.

Examples A.2.7
1. Let 𝑥 be point and let `(𝐴) = 1 if 𝑥 ∈ 𝐴 and 0 otherwise. In this case, we
say that ` is concentrated on the point 𝑥.

2. Consider the the line R, and the algebra L1 defined in Example A.2.2.1. Let
𝑓 : R → R be a monotonic real function. We define a set function over L1
as follows. Let [𝑎𝑖, 𝑏𝑖), (𝑖 = 1, . . . , 𝑛) be a set of disjoint left-closed intervals.
Then `(⋃𝑖 [𝑎𝑖, 𝑏𝑖)) =

∑
𝑖 𝑓 (𝑏𝑖) − 𝑓 (𝑎𝑖). It is easy to see that ` is additive. It

is 𝜎-additive if and only if 𝑓 is left-continuous.

3. Let 𝐵 = {0, 1}, and consider the set 𝐵N of infinite 0-1-sequences, and the
semialgebra L3 of Example A.2.2.3. Let ` : 𝐵∗ → R+ be a function. Let us
write `(𝑢𝐵N) = `(𝑢) for all 𝑢 ∈ 𝐵∗. Then it can be shown that the following
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conditions are equivalent: ` is 𝜎-additive over L3; it is additive over L3; the
equation `(𝑢) = `(𝑢0) + `(𝑢1) holds for all 𝑢 ∈ 𝐵∗.

4. The nonnegative linear combination of any finite number of measures is also
a measure. In this way, it is easy to construct arbitrary measures concentrated
on a finite number of points.

5. Given two measure spaces (𝑋,A, `) and (𝑌,B, a) it is possible to define the
product measure ` × a over the measureable space (𝑋 × 𝑌,A × B). The
definition is required to satisfy `×a(𝐴×𝐵) = `(𝐴)×a(𝐵), and is determined
uniquely by this condition. If a is a probability measure then, of course,
`(𝐴) = ` × a(𝐴 × 𝑌 ).

y

Let us finally define measureable functions.

Definition A.2.8 (Measureable functions) Let (𝑋,A), (𝑌,B) be two measure-
able spaces. A function 𝑓 : 𝑋 → 𝑌 is calledmeasureable if and only if 𝑓−1(𝐸) ∈ A

for all 𝐸 ∈ B. y

The following is easy to check.

Proposition A.2.9 Let (𝑋,A) be a measureable space and (R,B) be the measure-
able space of the real numbers, with the Borel sets. Then 𝑓 : 𝑋 → R is measureable
if and only if all sets of the form 𝑓−1((𝑟,∞)) = {𝑥 : 𝑓 (𝑥) > 𝑟} are measureable,
where 𝑟 is a rational number.

Remark A.2.10 Example A.2.7.3 shows a particularly attractive way to define
measures. Keep splitting the values `(𝑢) in an arbitrary way into `(𝑢0) and
`(𝑢1), and the resulting values on the semialgebra define a measure. Exam-
ple A.2.7.2 is less attractive, since in the process of defining ` on all intervals and
only keeping track of finite additivity, we may end up with a monotonic function
that is not left continuous, and thus with a measure that is not 𝜎-additive. In the
subsection on probability measures over a metric space, we will find that even
on the real line, there is a way to define measures in a step-by-step manner, and
only checking for consistency along the way. y

A probability space, according to the axioms introduced by Kolmogorov, is
just a measureable space with a normed measure.

Definition A.2.11 A probability space is a triple (𝑋, S, 𝑃) where (𝑋, S) is a mea-
surable space and 𝑃 is a probability measure over it.
Let (𝑋𝑖, S𝑖) (𝑖 = 1, 2) be measurable spaces, and let 𝑓 : 𝑋 → 𝑌 be a mapping.

Then 𝑓 is measurable if and only if for each element 𝐵 of S2, its inverse image
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𝑓−1(𝐵) is in S1. If `1 is a measure over (𝑋1, S1) then `2 defined by `2(𝐴) =

`1( 𝑓−1(𝐴)) is a measure over 𝑋2 called the measure induced by 𝑓 . y

A.2.3 Integral

The notion of integral also generalizes to arbitrary measures, and is sometimes
also used to define measures.
First we define integral on very simple functions.

Definition A.2.12 A measurable function 𝑓 : 𝑋 → R is called a step function if
its range is finite.
The set of step functions is closed with respect to linear combinations and

also with respect to the operations ∧,∨. Any such set of functions is called a
Riesz space. y

Definition A.2.13 Given a step function 𝑓 which takes values 𝑥𝑖 on sets 𝐴𝑖, and
a finite measure `, we define

`( 𝑓 ) = ` 𝑓 =

∫
𝑓 𝑑` =

∫
𝑓 (𝑥)`(𝑑𝑥) =

∑︁
𝑖

𝑥𝑖`(𝐴𝑖).

y

This is a linear positive functional on the set of step functions. Moreover, it
can be shown that it is continuous onmonotonic sequences: if 𝑓𝑖 ↘ 0 then ` 𝑓𝑖 ↘
0. The converse can also be shown: Let ` be a linear positive functional on step
functions that is continuous on monotonic sequences. Then the set function
`(𝐴) = `(1𝐴) is a finite measure.
Proposition A.2.14 Let E be any Riesz space of functions with the property that
1 ∈ E. Let ` be a positive linear functional on E continuous onmonotonic sequences,
with `1 = 1. The functional ` can be extended to the set E+ of monotonic limits
of nonnegative elements of E, by continuity. In case when E is the set of all step
functions, the set E+ is the set of all nonnegative measurable functions.

Now we extend the notion of integral to a wider class of functions.

Definition A.2.15 Let us fix a finite measure ` over a measurable space (𝑋, S).
A measurable function 𝑓 is called integrable with respect to ` if ` | 𝑓 |+ < ∞ and
` | 𝑓 |− < ∞. In this case, we define ` 𝑓 = ` | 𝑓 |+ − ` | 𝑓 |−. y

The set of integrable functions is a Riesz space, and the positive linear func-
tional ` on it is continuous with respect to monotonic sequences. The continuity
over monotonic sequences also implies the following theorem.
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Proposition A.2.16 (Bounded convergence theorem) Suppose that functions 𝑓𝑛
are integrable and | 𝑓𝑛 | < 𝑔 for some integrable function 𝑔. Then 𝑓 = lim𝑛 𝑓𝑛 is
integrable and ` 𝑓 = lim𝑛 ` 𝑓𝑛.

Definition A.2.17 Two measurable functions 𝑓 , 𝑔 are called equivalent with re-
spect to measure ` if `( 𝑓 − 𝑔) = 0. y

For two-dimensional integration, the following theorem holds.

Proposition A.2.18 (Fubini theorem) Suppose that function 𝑓 (·, ·) is integrable
over the space (𝑋 × 𝑌,A ×B, ` × a). Then for `-almost all 𝑥, the function 𝑓 (𝑥, ·)
is integrable over (𝑌,B, a), and the function 𝑥 ↦→ a𝑦 𝑓 (𝑥, 𝑦) is integrable over
(𝑋,A, `) with (` × a) 𝑓 = `𝑥` 𝑦 𝑓 .

To express a continuity property ofmeasures, we can say the following (recall
the definition of 𝐶(𝑋) in Example A.1.28.8).
Proposition A.2.19 Let 𝑋 be a metric space and ` a measure. Then ` is a bounded
(and thus continuous) linear functional over the space 𝐶(𝑋).

A.2.4 Density

When does one measure have a density function with respect to another?

Definition A.2.20 Let `, a be two measures over the same measurable space.
We say that a is absolutely continuous with respect to `, or that ` dominates a,
if for each set 𝐴, `(𝐴) = 0 implies a(𝐴) = 0. y

Every nonnegative integrable function 𝑓 defines a new measure a via the
formula a(𝐴) = `( 𝑓 · 1𝐴). This measure a is absolutely continuous with respect
to `. The Radon-Nikodym theorem says that the converse is also true.

Proposition A.2.21 (Radon-Nikodym theorem) If a is dominated by ` then
there is a nonnegative integrable function 𝑓 such that a(𝐴) = `( 𝑓 · 1𝐴) for all
measurable sets 𝐴. The function 𝑓 is defined uniquely to within equivalence with
respect to `.

Definition A.2.22 The function 𝑓 of the Radom-Nikodym Theorem above is
called the density of a with respect to `. We will denote it by

𝑓 (𝑥) = `(𝑑𝑥)
a(𝑑𝑥) =

𝑑`

𝑑a
.

y

The following theorem is also standard.
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Proposition A.2.23 (Chain rule and inverse function)
1. Let `, a, [ be measures such that [ is absolutely continuous with respect to `

and ` is absolutely continuous with respect to a. Then the “chain rule” holds:

𝑑[

𝑑a
=
𝑑[

𝑑`

𝑑`

𝑑a
. (A.2.1)

2. If a(𝑑𝑥)
` (𝑑𝑥) > 0 for all 𝑥 then ` is also absolutely continuous with respect to a and

` (𝑑𝑥)
a(𝑑𝑥) =

(
a(𝑑𝑥)
` (𝑑𝑥)

)−1
.

There is a natural distance to be used between measures, though later we
will see that it is not the preferred one in metric spaces.

Definition A.2.24 (Total variation distance) Let `, a be two measures, then
both are dominated by some measure [ (for example by [ = ` + a). Let their
densities with respect to [ be 𝑓 and 𝑔. Then we define the total variation distance
of the two measures as

𝐷(`, a) = [( | 𝑓 − 𝑔 |).
It is independent of the dominating measure [. y

Example A.2.25 Suppose that the space 𝑋 can be partitioned into disjoint sets
𝐴, 𝐵 such that a(𝐴) = `(𝐵) = 0. Then 𝐷(`, a) = `(𝐴)+a(𝐵) = `(𝑋)+a(𝑋). y

A.2.5 Random transitions

What is just a transition matrix in case of a Markov chain also needs to be defined
more carefully in the non-discrete cases. We follow the definition given in [40].

Definition A.2.26 Let (𝑋,A), (𝑌,B) be measureable spaces (defined in Sub-
section A.2.2). Suppose that a family of probability measures Λ = {_𝑥 : 𝑥 ∈ 𝑋 }
on B is given. We call it a probability kernel, (or Markov kernel, or conditional
distribution) if the map 𝑥 ↦→ _𝑥𝐵 is measurable for each 𝐵 ∈ B. y

When 𝑋, 𝑌 are finite sets then _ is a Markov transition matrix. The following
theorem shows that _ assigns a joint distribution over the space (𝑋 × 𝑌,A ×B)
to each input distribution `.

Proposition A.2.27 For each nonnegativeA×B-measureable function 𝑓 over 𝑋×𝑌 ,
1. The function 𝑦 ↦→ 𝑓 (𝑥, 𝑦) is B-measurable for each fixed 𝑥.

2. The function 𝑥 ↦→ _
𝑦
𝑥 𝑓 (𝑥, 𝑦) is A-measurable.

3. The integral 𝑓 ↦→ `𝑥_
𝑦
𝑥 𝑓 (𝑥, 𝑦) defines a measure on A × B.
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The above proposition allows to define a mapping over measures.

Definition A.2.28 According to the above proposition, given a probability ker-
nel Λ, to each measure ` over A corresponds a measure over A × B. We will
denote its marginal over B as

Λ∗`. (A.2.2)

For every measurable function 𝑔(𝑦) over 𝑌 , we can define the measurable funct-
ion 𝑓 (𝑥) = _𝑥𝑔 = _

𝑦
𝑥 𝑔(𝑦): we write

𝑓 = Λ𝑔. (A.2.3)

y

The operator Λ is linear, and monotone with Λ1 = 1. By these definitions,
we have

`(Λ𝑔) = (Λ∗`)𝑔. (A.2.4)

An example is the simple case of a deterministic mapping:

Example A.2.29 Let ℎ : 𝑋 → 𝑌 be a measureable function, and let _𝑥 be the
measure 𝛿ℎ(𝑥) concentrated on the point ℎ(𝑥). This operator, denoted Λℎ is, in
fact, a deterministic transition, and we have Λℎ𝑔 = 𝑔 ◦ ℎ. In this case, we will
simplify the notation as follows:

ℎ∗` = Λ∗
ℎ.

y

A.2.6 Probability measures over a metric space

We follow the exposition of [5]. Whenever we deal with probability measures on
a metric space, we will assume that our metric space is complete and separable
(Polish space).
Let X = (𝑋, 𝑑) be a complete separable metric space. Then X gives rise to a

measurable space, where the measurable sets are its Borel sets. It can be shown
that, if 𝐴 is a Borel set and ` is a finite measure then there are sets 𝐹 ⊆ 𝐴 ⊆ 𝐺

where 𝐹 is an 𝐹𝜎 set, 𝐺 is a 𝐺𝛿 set, and `(𝐹) = `(𝐺).
It can be shown that a measure is determined by its values on the elements

of any a basis of open sets closed under intersections. The following proposition
follows then essentially from Proposition A.2.6.

Proposition A.2.30 LetB be a basis of open sets closed under intersections. LetB∗

be the set algebra generated by this basis and let ` be any 𝜎-additive set function
on B∗ with `(𝑋) = 1. Then ` can be extended uniquely to a probability measure.
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Weak topology

One can introduce the notion of convergence of measures in a number of ways.
We have already introduced the total variation distance in Definition A.2.24
above. But in some cases, the requirement of being close in this distance is
too strong. Let

M(X)
be the set of probability measures on the metric space X. Let 𝑥𝑛 be a sequence
of points converging to point 𝑥 but with 𝑥𝑛 ≠ 𝑥. We would like to say that the
delta measure 𝛿𝑥𝑛 (concentrated on point 𝑥𝑛, see Example A.2.4) converges to
𝛿𝑥 . But the total variation distance 𝐷(𝛿𝑥𝑛 , 𝛿𝑥) is 2 for all 𝑛.
Definition A.2.31 (Weak convergence) We say that a sequence of probability
measures `𝑛 over a metric space (𝑋, 𝑑) weakly converges to measure ` if for all
bounded continuous real functions 𝑓 over 𝑋 we have `𝑛 𝑓 → ` 𝑓 .
For a bounded continuous function 𝑓 and real numbers 𝑐 let

𝐴 𝑓 ,𝑐 = {` : ` 𝑓 < 𝑐}

y

A topology of weak convergence (M, 𝜏𝑤) can be defined using a number of dif-
ferent subbases. The one used in the original definition is the subbasis consisting
of all sets of the form 𝐴 𝑓 ,𝑐 above.
We also get a subbasis (see for example [40]) if we restrict ourselves to the

set Lip(𝑋) of Lipschitz functions defined in (A.1.2). Another possible subbasis
giving rise to the same topology consists of all sets of the form

𝐵𝐺,𝑐 = {` : `(𝐺) > 𝑐} (A.2.5)

for open sets 𝐺 and real numbers 𝑐. Let us find some countable subbases. Since
the space X is separable, there is a sequence 𝑈1, 𝑈2, . . . of open sets that forms
a basis of X. Then we can restrict the subbasis of the space of measures to those
sets 𝐵𝐺,𝑐 where 𝐺 is the union of a finite number of basis elements𝑈𝑖 of X and 𝑐 is
rational. This way, the space (M, 𝜏𝑤) itself has the second countability property.
It is more convenient to define a countable subbasis using bounded contin-

uous functions 𝑓 , since the function ` ↦→ ` 𝑓 is continuous on such functions,
while ` ↦→ `𝑈 is typically not continuous when 𝑈 is an open set.

Example A.2.32 If X = R and 𝑈 is the open interval (0, 1), the sequence of
probability measures 𝛿1/𝑛 (concentrated on 1/𝑛) converges to 𝛿0, but 𝛿1/𝑛(𝑈) =
1, and 𝛿0(𝑈) = 0. y
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For some fixed dense set 𝐷, let F1 = F1(𝐷) be the set of functions introduced
in Definition A.1.32.

Definition A.2.33 We say that a set 𝐴 is a continuity set of measure ` if `(𝜕𝐴) =
0: the boundary of 𝐴 has measure 0. y

Proposition A.2.34 The following conditions are equivalent:
1. `𝑛 weakly converges to `.

2. `𝑛 𝑓 → ` 𝑓 for all 𝑓 ∈ F1.

3. For every Borel set 𝐴, that is a continuity set of `, we have `𝑛(𝐴) → `(𝐴).
4. For every closed set 𝐹, lim inf𝑛 `𝑛(𝐹) ≥ `(𝐹).
5. For every open set 𝐺, lim sup𝑛 `𝑛(𝐺) ≤ `(𝐺).
Definition A.2.35 To define the topological spaceM(𝑋) of the set of measures
over the metric space 𝑋 , we choose as subbasis

𝜎M (A.2.6)

the sets {` : ` 𝑓 < 𝑟} and {` : ` 𝑓 > 𝑟} for all 𝑓 ∈ F1 and 𝑟 ∈ Q. y

The simple functions we introduced can also be used to define measure and
integral in themselves. Recall the definition of the set E in (A.1.3).T This set is
a Riesz space as defined in Subsection A.2.3. A reasoning combining Proposi-
tions A.2.6 and A.2.14 gives the following.

Proposition A.2.36 Suppose that a positive linear functional ` with `1 = 1 is
defined on E that is continuous with respect to monotone convergence. Then ` can
be extended uniquely to a probability measure over X with ` 𝑓 =

∫
𝑓 (𝑥)`(𝑑𝑥) for

all 𝑓 ∈ E.

Having a topology over the set of measures we can also extend Proposi-
tion A.2.19:

Proposition A.2.37 Let 𝑋 be a complete separable metric space and M(𝑋) the
space of bounded measures over 𝑋 with the weak topology. The function (`, 𝑓 ) ↦→
` 𝑓 is a continuous function M(𝑋) × 𝐶(𝑋) → R.

As mentioned above, for an open set 𝐺 the value `(𝐺) is not a continuous
function of the measure `. We can only say the following:

Proposition A.2.38 Let 𝑋 be a complete separable metric space, and M(𝑋) the
space of bounded measures over 𝑋 with the weak topology, and 𝐺 ⊆ 𝑋 an open set.
The function ` ↦→ `(𝐺) is lower semicontinuous.
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Distances for the weak topology

The definition of measures in the style of Proposition A.2.36 is not sufficiently
constructive. Consider a gradual definition of the measure `, extending it to
more andmore elements of E, while keeping the positivity and linearity property.
It can happen that the function ` we end up with in the limit, is not continuous
with respect to monotone convergence. Let us therefore metrize the space of
measures: then an arbitrary measure can be defined as the limit of a Cauchy
sequence of simple meaures.
One metric that generates the topology of weak convergence is the following.

Definition A.2.39 (Prokhorov distance) The Prokhorov distance 𝜌(`, a) of two
measures is the infimum of all those Y for which, for all Borel sets 𝐴 we have
(using the notation (A.1.1))

`(𝐴) ≤ a(𝐴Y) + Y.

y

It can be shown that this is a metric and it generates the weak topology. In
computer science, it has been reinvented by the name of “earth mover distance”.
The following important result helps visualize it:

Proposition A.2.40 (Coupling Theorem, see [50]) Let `, a be two probability
measures over a complete separable metric space X with 𝜌(`, a) ≤ Y. Then there is
a probability measure P on the space X × X with marginals ` and a such that for
a pair of random variables b, [ having joint distribution P we have

P{𝑑(b, [) > Y} ≤ Y.

Since weak topology has the second countability property, the metric space
defined by the distance 𝜌(·, ·) is separable. This can also be seen directly: let us
define a dense set in weak topology.

Definition A.2.41 For each point 𝑥, let us define by 𝛿𝑥 the measure which con-
centrates its total weight 1 in point 𝑥. Let 𝐷 be a countable everywhere dense set
of points in 𝑋 . Let 𝐷M be the set of finite convex rational combinations of mea-
sures of the form 𝛿𝑥𝑖 where 𝑥𝑖 ∈ 𝐷, that is those probability measures that are
concentrated on finitely many points of 𝐷 and assign rational values to them. y

It can be shown that 𝐷M is everywhere dense in the metric space (M(𝑋), 𝜌);
so, this space is separable. It can also be shown that (M(𝑋), 𝜌) is complete.
Thus, a measure can be given as the limit of a Cauchy sequence of elements
`1, `2, . . . of 𝐷M.

150



A.2. Measures

The definition of the Prokhorov distance uses quantification over all Borel
sets. However, in an important simple case, it can be handled efficiently.

Proposition A.2.42 Assume that measure a is concentrated on a finite set of points
𝑆 ⊂ 𝑋 . Then the condition 𝜌(a, `) < Y is equivalent to the finite set of conditions

`(𝐴Y) > a(𝐴) − Y (A.2.7)

for all 𝐴 ⊂ 𝑆.

Another useful distance formeasures over a bounded space is theWasserstein
distance.

Definition A.2.43 Over a bounded metric space, we define the Wasserstein dis-
tance by

𝑊 (`, a) = sup
𝑓 ∈Lip1 (𝑋)

|` 𝑓 − a 𝑓 |.

y

The Wasserstein distance also has a coupling representation:

Proposition A.2.44 (See [51]) Let `, a be two probability measures over a com-
plete separable metric space X with 𝜌(`, a) ≤ Y. Then there is a probability mea-
sure P on the space X × X with marginals ` and a such that∫

𝑑(𝑥, 𝑦) P(𝑑𝑥𝑑𝑦) =𝑊 (`, a).

Proposition A.2.45 The Prokhorov and Wasserstein metrics are equivalent: the
identity function creates a uniformly continuous homeomorphism between the two
metric spaces.

Proof. Let 𝑀 = sup𝑥,𝑦∈𝑋 𝑑(𝑥, 𝑦). The proof actually shows for Y < 1:

𝜌(`, a) ≤ Y ⇒𝑊 (`, a) ≤ (𝑀 + 1)Y,
𝑊 (`, a) ≤ Y2 ⇒ 𝜌(`, a) ≤ Y.

Suppose 𝜌(`, a) ≤ Y < 1. By the Coupling Theorem (Proposition A.2.40), there
are random variables b, [ over 𝑋 with a joint distribution, and having respectively
the distribution ` and a, such that P{𝑑(b, [) > Y} ≤ Y. Then we have

|` 𝑓 − a 𝑓 | = | E 𝑓 (b) − E 𝑓 ([) | ≤ E | 𝑓 (b) − 𝑓 ([) |
≤ Y P{𝜌(b, [) ≤ Y} + 𝑀 P{𝜌(b, [) > Y} ≤ (𝑀 + 1)Y.
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Now suppose 𝑊 (`, a) ≤ Y2 < 1. For a Borel set 𝐴 define 𝑔𝐴Y (𝑥) = |1 −
𝜌(𝑥, 𝐴)/Y|+. Thenwe have `(𝐴) ≤ `(𝑔𝐴Y ) and a𝑔𝐴Y ≤ a(𝐴Y). Further Y𝑔𝐴Y ∈ Lip1,
and hence 𝑊 (`, a) ≤ Y2 implies Y`(𝑔𝐴Y ) ≤ Ya(Y𝑔𝐴Y ) + Y2. This concludes the
proof by

`(𝐴) ≤ `(𝑔𝐴Y ) ≤ a(Y𝑔𝐴Y ) + Y ≤ a(𝐴Y) + Y.

�

Relative compactness

Convergence over the set of measures, even over a noncompact space, is some-
times obtained via compactness properties.

Definition A.2.46 A set Π of measures in (M(𝑋), 𝜌) is called sequentially com-
pact if every sequence of elements of Π contains a convergent subsequence.
A set of Π of measures is called tight if for every Y there is a compact set 𝐾

such that `(𝐾) > 1 − Y for all ` in Π. y

The following important theorem is using our assumptions of separability
and completeness of the underlying metric space (𝑋, 𝜌).
Proposition A.2.47 (Prokhorov) A set of measures is sequentially compact if and
only if it is tight and if and only if its closure is compact in the metric space
(M(𝑋), 𝜌).
The following, simplest example is interesting in its own right.

Example A.2.48 The one-element set {`} is compact and therefore by Prokhorov’s
theorem tight. Here, tightness says that for each Y a mass of size 1 − Y of ` is
concentrated on some compact set. y

The following theorem strengthens the observation of this example.

Proposition A.2.49 A finite measure ` over a separable complete metric space has
the property

`(𝐵) = sup{`(𝐾) : compact 𝐾 ⊆ 𝐵}

for all Borel sets 𝐵.

In case of compact metric spaces, the following known theorem helps.

Proposition A.2.50 The metric space (M(X), 𝜌) of measures is compact if and
only if the underlying metric space (𝑋, 𝑑) is compact.
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So, if (𝑋, 𝑑) is not compact then the set of measures is not compact. But
still, by Proposition A.2.49, each finite measure is “almost” concentrated on a
compact set.

Semimeasures

Let us generalize then notion of semimeasure for the case of general Polish
spaces. We use Proposition A.2.36 as a starting point.

Definition A.2.51 A function 𝑓 ↦→ ` 𝑓 defined over the set of all bounded con-
tinuous functions is called a semimeasure if it has the following properties:
a) Nonnegative: 𝑓 ≥ 0 implies ` 𝑓 ≥ 0.
b) Positive homogenous: we have `(𝑎 𝑓 ) = 𝑎` 𝑓 for all nonnegative real 𝑎 > 0.

c) Superadditive: `( 𝑓 + 𝑔) ≥ ` 𝑓 + `𝑔.
d) Normed: `1 = 1.

y

Remark A.2.52 The weaker requirement `1 ≤ 1 suffices, but if we have `1 ≤ 1
we can always set simply `1 = 1 without violating the other requirements. y

Functionals of measures

For a deeper study of randomness tests, we will need to characterize certain
functionals of finite measures over a Polish space.

Proposition A.2.53 Let X = (𝑋, 𝑑) be a complete separable metric space with
M̃(X) the set of finite measures over it. A weakly continuous linear function 𝐹 :
M̃(X) → R can always be written as 𝐹(`) = ` 𝑓 for some bounded continuous
function 𝑓 over X.

Proof. Define 𝑓 (𝑥) = 𝐹(𝛿𝑥). The weak continuity of 𝐹 implies that 𝑓 (𝑥) is con-
tinuous. Let us show that it is bounded. Suppose it is not. Then there is a
sequence of distinct points 𝑥𝑛 ∈ 𝑋 , 𝑛 = 1, 2, . . . with 𝑓 (𝑥𝑛) > 2−𝑛. Let ` be the
measure

∑
𝑛 2−𝑛𝛿𝑥𝑛 , then by linearity we have 𝐿(`) =

∑
𝑛 2−𝑛 𝑓 (𝑥𝑛) >

∑
𝑛 1 = ∞,

which is not allowed.
The function ` ↦→ ` 𝑓 is continuous and coincides with 𝐹(`) on the dense

set of points 𝐷M, so they are equal. �
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B Constructivity

B.1 Computable topology

B.1.1 Representations

There are several equivalent ways that notions of computability can be extended
to spaces like real numbers, metric spaces, measures, and so on. We use the the
concepts of numbering (notation) and representation, as defined in [57].

Notation B.1.1 We will denote by N the set of natural numbers and by B the
set {0, 1}.
Given a set (an alphabet) Σ we denote by ΣN = ΣN the set of infinite sequen-

ces with elements in Σ.
If for some finite or infinite sequences 𝑥, 𝑦, 𝑧, 𝑤, we have 𝑧 = 𝑤𝑥𝑦 then we

write 𝑤 v 𝑧 (𝑤 is a prefix of 𝑧) and 𝑥 ⊳ 𝑧. After [57], let us define the wrapping
function ] : Σ∗ → Σ∗ by

](𝑎1𝑎2 · · · 𝑎𝑛) = 110𝑎10𝑎20 · · · 𝑎𝑛011. (B.1.1)

Note that
𝑙(](𝑥)) = (2𝑙(𝑥) + 5) ∨ 6. (B.1.2)

For strings 𝑥, 𝑥𝑖 ∈ Σ∗, 𝑝, 𝑝𝑖 ∈ ΣN, 𝑘 ≥ 1, appropriate tupling functions 〈𝑥1, . . . , 𝑥𝑘〉,
〈𝑥, 𝑝〉, 〈𝑝, 𝑥〉, and so on can be defined with the help of 〈·, ·〉 and ](·). y

Definition B.1.2 Given a countable set 𝐶, a numbering (or notation) of 𝐶 is a
surjective partial mapping 𝛿 : N → 𝐶. Given some finite alphabet Σ ⊇ {0, 1}
and an arbitrary set 𝑆, a representation of 𝑆 is a surjective partial mapping 𝜒 :
ΣN → 𝑆. A naming system is a notation or a representation. y

Here are some standard naming systems:
1. id, the identity over Σ∗ or ΣN.

2. aN, aZ, aQ for the set of natural numbers, integers and rational numbers.
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3. Cf : ΣN → 2N, the characteristic function representation of sets of natural
numbers, is defined by Cf (𝑝) = { 𝑖 : 𝑝(𝑖) = 1}.

4. En : ΣN → 2N, the enumeration representation of sets of natural numbers, is
defined by En(𝑝) = {𝑛 ∈ N : 110𝑛+111 ⊳ 𝑝}.

5. For Δ ⊆ Σ, EnΔ : ΣN → 2Δ
∗
, the enumeration representation of subsets of Δ∗,

is defined by EnΔ (𝑝) = {𝑤 ∈ Σ∗ : ](𝑤) ⊳ 𝑝}.
Using Turing machines with infinite input tapes, work tapes and output

tapes, one can define names for all computable functions between spaces that
are Cartesian products of terms of the kind Σ∗ and ΣN. (One wonders whether
Σ∗ ∪ ΣN is not needed, since a Turing machine with an infinite input tape may
still produce only a finite output. But in this case one can also encode the result
into an infinite sequence.) Then, the notion of computability can be transferred
to other spaces as follows.

Definition B.1.3 Let 𝛿𝑖 : 𝑌𝑖 → 𝑋𝑖, 𝑖 = 1, 0 be naming systems of the spaces 𝑋𝑖.
Let 𝑓 :⊆ 𝑋1 → 𝑋0, 𝑔 :⊆ 𝑌1 → 𝑌0. We say that function 𝑔 realizes function 𝑓 if

𝑓 (𝛿1(𝑦)) = 𝛿0(𝑔(𝑦)) (B.1.3)

holds for all 𝑦 for which the left-hand side is defined.
Realization of multi-argument functions is defined similarly. We say that a

function 𝑓 : 𝑋1 × 𝑋2 → 𝑋0 is (𝛿1, 𝛿2, 𝛿0)-computable if there is a computable
function 𝑔 :⊆ 𝑌1 × 𝑌2 → 𝑌0 realizing it. In this case, a name for 𝑓 is naturally
derived from a name of 𝑔.1 y

Definition B.1.4 For representations b, [, we write b ≤ [ if there is a comput-
able partial function 𝑓 : ΣN → ΣN with b(𝑥) = [( 𝑓 (𝑥)). In words, we say that b
is reducible to [, or that 𝑓 reduces (translates) b to [. There is a similar definition
of reduction for notations. We write b ≡ [ if b ≤ [ and [ ≤ b. y

B.1.2 Constructive topological space

Let us start with the definition of topology with the help of a subbasis of (possibly
empty) open sets.

Definition B.1.5 A constructive topological space X = (𝑋, 𝜎, a) is a topological
space over a set 𝑋 with a subbasis 𝜎 effectively enumerated (not necessarily with-
out repetitions) as a list 𝜎 = {a(1), a(2), . . .}, and having the 𝑇0 property (thus,
every point is determined uniquely by the subset of elements of 𝜎 containing it).

1Any function 𝑔 realizing 𝑓 via (B.1.3) automatically has a certain extensionality property: if
𝛿1 (𝑦) = 𝛿1 (𝑦′) then 𝑔(𝑦) = 𝑔(𝑦′).
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By definition, a constructive topological space satisfies the second countabil-
ity axiom. We obtain a basis

𝜎∩

of the space X by taking all possible finite intersections of elements of 𝜎. It is
easy to produce an effective enumeration for 𝜎∩ from a. We will denote this
enumeration by a∩. This basis will be called the canonical basis.
For every nonempty subset 𝑌 of the space 𝑋 , the subspace of 𝑋 will naturally

get the same structure Y = (𝑌, 𝜎, a) defined by {𝑉 ∩ 𝑌 : 𝑉 ∈ 𝜎}.
The product operation is defined over constructive topological spaces in the

natural way. y

Remark B.1.6 The definition of a subspace shows that a constructive topological
space is not a “constructive object” by itself, since the set 𝑋 itself is not neces-
sarily given effectively. For example, any nonempty subset of the real line is a
constructive topological space, as a subspace of the real line. y

Examples B.1.7 The following examples will be used later.
1. A discrete topological space, where the underlying set is finite or countably
infinite, with a fixed enumeration.

2. The real line, choosing the basis to be the open intervals with rational end-
points with their natural enumeration. Product spaces can be formed to give
the Euclidean plane a constructive topology.

3. The real line R, with the subbasis 𝜎>
R
defined as the set of all open intervals

(−∞, 𝑏) with rational endpoints 𝑏. The subbasis 𝜎<
R
, defined similarly, leads

to another topology. These two topologies differ from each other and from
the usual one on the real line, and they are not Hausdorff spaces.

4. This is the constructive version of Example A.1.4.5. Let 𝑋 be a set with a
constructive discrete topology, and 𝑋N the set of infinite sequences with ele-
ments from 𝑋 , with the product topology: a natural enumerated basis is also
easy to define.

y

Definition B.1.8 Due to the 𝑇0 property, every point in our space is determined
uniquely by the set of open sets containing it. Thus, there is a representation 𝛾X
of X defined as follows. We say that 𝛾X(𝑝) = 𝑥 if EnΣ (𝑝) = {𝑤 : 𝑥 ∈ a(𝑤) }. If
𝛾X(𝑝) = 𝑥 then we say that the infinite sequence 𝑝 is a complete name of 𝑥: it
encodes all names of all subbasis elements containing 𝑥. From now on, we will
call 𝛾X the complete standard representation of the space X. y
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Remark B.1.9 Here it becomes important that representations are allowed to
be partial functions. y

Definition B.1.10 (Constructive open sets) In a constructive topological space
X = (𝑋, 𝜎, a), a set 𝐺 ⊆ 𝑋 is called constructive open, or lower semicomputable
open in set 𝐵 if there is a computably enumerable set 𝐸with𝐺 =

⋃
𝑤∈𝐸 a

∩(𝑤)∩𝐵.
It is constructife open if it is constructive open in 𝑋 . y

In the special kind of spaces in which randomness has been developed until
now, constructive open sets have a nice characterization:

Proposition B.1.11 Assume that the space X = (𝑋, 𝜎, a) has the form 𝑌1×· · ·×𝑌𝑛
where each 𝑌𝑖 is either Σ∗ or ΣN. Then a set 𝐺 is constructive open iff it is open and
the set { (𝑤1, . . . , 𝑤𝑛) :

⋂
𝑖 a(𝑤𝑖) ⊂ 𝐺} is recursively enumerable.

Proof. The proof is not difficult, but it relies on the discrete nature of the space
Σ∗ and on the fact that the space ΣN is compact and its basis consists of sets that
are open and closed at the same time. �

It is easy to see that if two sets are constructive open then so is their union.
The above remark implies that a space having the form 𝑌1×· · ·×𝑌𝑛 where each 𝑌𝑖
is either Σ∗ or ΣN, also the intersection of two recursively open sets is recursively
open. We will see that this statement holds, more generally, in all computable
metric spaces.

B.1.3 Computable functions

Definition B.1.12 Let X𝑖 = (𝑋𝑖, 𝜎𝑖, a𝑖) be constructive topological spaces, and
let 𝑓 : 𝑋1 → 𝑋0 be a function. As we know, 𝑓 is continuous iff the inverse image
𝑓−1(𝐺) of each open set 𝐺 is open in its domain. Computability is an effective
version of continuity: it requires that the inverse image of basis elements is uni-
formly constructively open. More precisely, 𝑓 : 𝑋1 → 𝑋0 is computable if the
set ⋃

𝑉∈𝜎∩0

𝑓−1(𝑉) × {𝑉}

is a constructive open subset of 𝑋1 × 𝜎∩0 . Here the basis 𝜎
∩
0 of X0 is treated as a

discrete constructive topological space, with its natural enumeration.
A partial function is computable if its restriction to the subspace that is its

domain, is computable. y
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The above definition depends on the enumerations a1, a0. The following the-
orem shows that this computability coincides with the one obtained by transfer
via the representations 𝛾X𝑖 .

Proposition B.1.13 (Hertling) For 𝑖 = 0, 1, let X𝑖 = (𝑋𝑖, 𝜎𝑖, a𝑖) be constructive
topological spaces. Then a function 𝑓 : 𝑋1 → 𝑋0 is computable iff it is (𝛾X1 , 𝛾X0)-
computable for the representations 𝛾X𝑖 defined above.

The notion of computable functions helps define morphisms between con-
structive topological spaces.

Definition B.1.14 Let us call two spaces 𝑋1 and 𝑋0 effectively homeomorphic if
there are computable maps between them that are inverses of each other. In the
special case when 𝑋0 = 𝑋1, we say that the enumerations of subbases a0, a1 are
equivalent if the identity mapping is a effective homeomorphism. This means
that there are recursively enumerable sets 𝐹, 𝐺 such that

a1(𝑣) =
⋃

(𝑣,𝑤) ∈𝐹
a∩0 (𝑤) for all 𝑣, a0(𝑤) =

⋃
(𝑤,𝑣) ∈𝐺

a∩1 (𝑣) for all 𝑤.

y

B.1.4 Computable elements and sequences

Let us define computable elements.

Definition B.1.15 Let U = ({0}, 𝜎0, a0) be the one-element space turned into a
trivial constructive topological space, and let X = (𝑋, 𝜎, a) be another construc-
tive topological space. We say that an element 𝑥 ∈ 𝑋 is computable if the function
0 ↦→ 𝑥 is computable. It is easy to see that this is equivalent to the requirement
that the set {𝑢 : 𝑥 ∈ a(𝑢) } is recursively enumerable. Let X 𝑗 = (𝑋 𝑗, 𝜎 𝑗, a 𝑗),
for 𝑖 = 0, 1 be constructive topological spaces. A sequence 𝑓𝑖, 𝑖 = 1, 2, . . . of
functions with 𝑓𝑖 : 𝑋1 → 𝑋0 is a computable sequence of computable functions if
(𝑖, 𝑥) ↦→ 𝑓𝑖(𝑥) is a computable function. y

It is easy to see that this statement is equivalent to the statement that there is
a recursive function computing from each 𝑖 a name for the computable function
𝑓𝑖. To do this formally, one sometimes using the s-m-n theorem of recursion
theory, or calls the method “currification”.
The notion of computability can be relativized.

Definition B.1.16 Let 𝑋 𝑗, 𝑗 = 1, 2 be two constructive topological spaces (or
more general, representations) and let 𝑥 𝑗 ∈ 𝑋 𝑗 be given. We say that 𝑥2 is 𝑥1-
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computable if there is a computable partial function 𝑓 : 𝑋1 → 𝑋2 with 𝑓 (𝑥1) =
𝑥2. y

Remark B.1.17 The requirement that 𝑓 computes 𝑦 from every representation of
𝑥 makes 𝑥-computability a very different requirement of mere Turing reducibil-
ity of 𝑦 to 𝑥. We will point out an important implication of this difference later,
in the notion of `-randomness. It is therefore preferable not to use the term
“oracle computation” when referring to computations on representations . y

B.1.5 Semicomputability

Lower semicomputability is a constructive version of lower semicontinuity, as
given in Definition A.1.14, but the sets that are required to be open there are
required to be constructive open here. The analogue of Proposition A.1.17 and
Corollary A.1.19 holds also: a lower semicomputable function is the supremum
of simple constant functions defined on basis elements, and a lower semicom-
putable function defined on a subset can always be extended to one over the
whole space.

Definition B.1.18 Let X = (𝑋, 𝜎, a) be a constructive topological space. A par-
tial function 𝑓 : 𝑋 → R+ with domain 𝐷 is called lower semicomputable if the set
{ (𝑥, 𝑟) : 𝑓 (𝑥) > 𝑟} is a constructive open subset of 𝐷 × R+.
We define the notion of 𝑥-lower semicomputable similarly to the notion of

𝑥-computability. y

Let Y = (R+, 𝜎<R, a<R) be the effective topological space introduced in Ex-
ample B.1.7.2, in which a>

R
is an enumeration of all open intervals of the form

(𝑟,∞] with rational 𝑟. The following characterization is analogous to Proposi-
tion A.1.15.

Proposition B.1.19 A function 𝑓 : 𝑋 → R is lower semicomputable if and only if
it is (a, a>

R
)-computable.

As a name of a computable function, we can use the name of the enumeration
algorithm derived from the definition of computability, or the name derivable
using this representation theorem.
The following example is analogous to Example A.1.16.

Example B.1.20 The indicator function 1𝐺 (𝑥) of an arbitrary constructive open
set 𝐺 is lower semicomputable. y

The following fact is analogous to Proposition A.1.17:
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Proposition B.1.21 Let 𝑓1, 𝑓2, . . . be a computable sequence of lower semicom-
putable functions (via their names) over a constructive topological space X. Then
sup𝑖 𝑓𝑖 is also lower semicomputable.

The following fact is analogous to Proposition A.1.18:

Proposition B.1.22 Let X = (𝑋, 𝜎, a) be a constructive topological space with
enumerated basis 𝛽 = 𝜎∩ and 𝑓 : 𝑋 → R+ a lower semicomputable function. Then
there is a lower semicomputable function 𝑔 : 𝛽 → R+ (where 𝛽 is taken with the
discrete topology) with 𝑓 (𝑥) = sup𝑥∈𝛽 𝑔(𝛽).
In the important special case of Cantor spaces, the basis is given by the set

of finite sequences. In this case we can also require the function 𝑔(𝑤) to be
monotonic in the words 𝑤:

Proposition B.1.23 Let 𝑋 = ΣN be a Cantor space as defined in Example B.1.7.4.
Then 𝑓 : 𝑋 → R+ is lower semicomputable if and only if there is a lower semicom-
putable function 𝑔 : Σ∗ → R+ (where Σ∗ is taken as a discrete space) monotonic
with respect to the relation 𝑢 v 𝑣, with 𝑓 (b) = sup𝑢vb 𝑔(𝑢).
Remark B.1.24 In the above representation, we could require the function 𝑔
to be computable. Indeed, we can just replace 𝑔(𝑤) with 𝑔′(𝑤) where 𝑔′(𝑤) =
max𝑣v𝑤 𝑔(𝑣, 𝑙(𝑤)), and 𝑔(𝑣, 𝑛) is as much of 𝑔(𝑣) as can be computed in 𝑛 steps.

y

Upper semicomputability is defined analogously:

Definition B.1.25 We will call a closed set upper semicomputable (co-recursively
enumerable) if its complement is a lower semicomputable (r.e.) open set. y

The proof of the following statement is not difficult.

Proposition B.1.26 Let X𝑖 = (𝑋𝑖, 𝜎𝑖, a𝑖) for 𝑖 = 1, 2, 0 be constructive topological
spaces, and let 𝑓 : 𝑋1 × 𝑋2 → 𝑋0, and assume that 𝑥1 ∈ 𝑋1 is a computable
element.
1. If 𝑓 is computable then 𝑥2 ↦→ 𝑓 (𝑥1, 𝑥2) is also computable.

2. If X0 = R, and 𝑓 is lower semicomputable then 𝑥2 ↦→ 𝑓 (𝑥1, 𝑥2) is also lower
semicomputable.

B.1.6 Effective compactness

Compactness is an important property of topological spaces. In the constructive
case, however, a constructive version of compactness is frequently needed.

161



B. Constructivity

Definition B.1.27 A constructive topological space 𝑋 with canonical basis 𝛽 has
recognizeable covers if the set

{𝑆 ⊆ 𝛽 : 𝑆 is finite and
⋃
𝑈∈𝑆

𝑈 = 𝑋 }

is recursively enumerable.
A compact space with recognizeable covers will be called effectively compact.

y

Example B.1.28 Let 𝛼 ∈ [0, 1] be a real number such that the set of rationals
less than 𝛼 is recursively enumerable but the set of rationals larger than 𝛼 are
not. (It is known that there are such numbers, for example

∑
𝑥∈N 2−𝐾 (𝑥) .) Let 𝑋

be the subspace of the real line on the interval [0, 𝛼], with the induced topology.
A basis of this topology is the set 𝛽 of all nonempty intervals of the form 𝐼∩[0, 𝛼],
where 𝐼 is an open interval with rational endpoints.
This space is compact, but not effectively so. y

The following is immediate.

Proposition B.1.29 In an effectively compact space, in every recursively enumer-
able set of basis elements covering the space one can effectively find a finite covering.

It is known that every closed subset of a compact space is compact. This
statement has a constructive counterpart:

Proposition B.1.30 Every upper semicomputable closed subset 𝐸 of an effectively
compact space 𝑋 is also effectively compact.

Proof. 𝑈1, . . . , 𝑈𝑘 be a finite set covering 𝐸. Let us enumerate a sequence 𝑉𝑖 of
canonical basis elements whose union is the complement of 𝐸. If 𝑈1 ∪ · · · ∪
𝑈𝑘 covers 𝐸 then along with the sequence 𝑉𝑖 it will cover 𝑋 , and this will be
recognized in a finite number of steps. �

On an effectively compact space, computable functions have computable ex-
trema:

Proposition B.1.31 Let 𝑋 be an effectively compact space, let 𝑓 (𝑥) be lower semi-
computable function on 𝑋 . Then the infimum (which is always a minimum) of 𝑓 (𝑥)
is lower semicomputable uniformly from the definition of 𝑋 and 𝑓 .

Proof. For any rational number 𝑟 wemust be able to recognize that the minimum
is greater than 𝑟. For each 𝑟 the set {𝑥 : 𝑓 (𝑥) > 𝑟} is a lower semicomputable
open set. It is the union of an enumerated sequence of canonical basis elements.
If it covers 𝑋 this will be recognized in a finite number of steps. �
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It is known that a continuous function map compact sets into compact ones.
This statement also has a constructive counterpart.

Proposition B.1.32 Let 𝑋 be an effectively compact space, and 𝑓 a computable
function from 𝑋 into another constructive topological space 𝑌 . Then 𝑓 (𝑋) is effec-
tively compact.

Proof. Let 𝛽𝑋 and 𝛽𝑌 be the enumerated bases of the space 𝑋 and 𝑌 respectively.
Since 𝑓 is computable, there is a recursively enumerable set E ⊆ 𝛽𝑋 × 𝛽𝑌 such
that 𝑓−1(𝑉) = ⋃

(𝑈,𝑉) ∈𝐸 𝑈 holds for all 𝑉 ∈ 𝛽𝑌 . Let E𝑉 = {𝑈 : (𝑈,𝑉) ∈ E}, then
𝑓−1(𝑉) = ⋃

E𝑉 .
Consider some finite cover 𝑓 (𝑋) ⊆ 𝑉1 ∪ · · · ∪ 𝑉𝑘 with some 𝑉𝑖 ∈ 𝛽𝑌 . We

will show that it will be recognized. Let U =
⋃

𝑖 E𝑉𝑖 , then 𝑋 ⊆ ⋃
U, and the

whole set U ⊆ 𝛽𝑋 is enumerable. By compactness, there is a finite number of
elements 𝑈1, . . . , 𝑈𝑛 ∈ U with 𝑋 ⊆ ⋃

𝑖 𝑈𝑖. By effective compactness, every one
of these finite covers will be recognized. And any one such recognition will serve
to recognize that 𝑉1, . . . , 𝑉𝑘 is a cover of 𝑓 (𝑋). �

B.1.7 Computable metric space

Following [7], we define a computable metric space as follows.

Definition B.1.33 A constructive metric space is a tuple X = (𝑋, 𝑑, 𝐷, 𝛼) where
(𝑋, 𝑑) is a metric space, with a countable dense subset 𝐷 and an enumeration 𝛼
of 𝐷. It is assumed that the real function 𝑑(𝛼(𝑣), 𝛼(𝑤)) is computable. y

As 𝑥 runs through elements of 𝐷 and 𝑟 through positive rational numbers, we
obtain the enumeration of a countable basis {𝐵(𝑥, 𝑟) : 𝑥 ∈ 𝐷, 𝑟 ∈ Q} (of balls
or radius 𝑟 and center 𝑥) of X, giving rise to a constructive topological space X̃.

Definition B.1.34 Let us call a sequence 𝑥1, 𝑥2, . . . a Cauchy sequence if for all
𝑖 < 𝑗 we have 𝑑(𝑥𝑖, 𝑥 𝑗) ≤ 2−𝑖. To connect to the type-2 theory of computabil-
ity developed above, the Cauchy-representation 𝛿X of the space is defined in a
natural way. y

It can be shown that as a representation of X̃, it is equivalent to 𝛾X̃: 𝛿X ≡ 𝛾X̃.

Examples B.1.35
1. Example A.1.37 is a constructive metric space, with either of the two (equiv-
alent) choices for an enumerated dense set.

2. Consider the metric space of Example A.1.28.6: the Cantor space (𝑋, 𝑑). Let
𝑠0 ∈ Σ be a distinguished element. For each finite sequence 𝑥 ∈ Σ∗ let us
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define the infinite sequence b𝑥 = 𝑥𝑠0𝑠0 . . .. The elements b𝑥 form a (naturally
enumerated) dense set in the space 𝑋 , turning it into a constructive metric
space.

y

Let us point out a property of metric spaces that we use frequently.

Definition B.1.36 For balls 𝐵 𝑗 = 𝐵(𝑥 𝑗, 𝑟 𝑗), 𝑗 = 1, 2 we will say 𝐵1 < 𝐵2 if
𝑑(𝑥1, 𝑥2) < 𝑟2 − 𝑟1. In words, we will say that 𝐵1 is manifestly included in 𝐵2.
This relation is useful since it is an easy way to see 𝐵1 ⊂ 𝐵2. y

The property can be generalized to some constructive topological spaces.

Definition B.1.37 A constructive topological space (𝑋, 𝛽, a) with basis 𝛽 has the
manifest inclusion property if there is a relation 𝑏 < 𝑏′ among its basis elements
with the following properties.
a) 𝑏 < 𝑏′ implies 𝑏 ⊆ 𝑏′.

b) The set of pairs 𝑏 < 𝑏′ is recursively enumerable.

c) For every point 𝑥, and pair of basis elements 𝑏, 𝑏′ containing 𝑥 there is a
basis element 𝑏′′ containing 𝑥 with 𝑏′′ < 𝑏, 𝑏′.

We express this relation by saying that 𝑏 is manifestly included in 𝑏′. In such a
space, a sequence 𝑏1 > 𝑏2 > . . . with

⋂
𝑖 𝑏𝑖 = {𝑥} is called a manifest represen-

tation of 𝑥. y

Note that if the space has the manifest inclusion property then for every pair
𝑥 ∈ 𝑏 there is a manifest representation of 𝑥 beginning with 𝑏.
A constructive metric space has the manifest inclusion property as a topolog-

ical space, and Cauchy representations are manifest.
Similarly to the definition of a computable sequence of computable func-

tions in Subsection B.1.4, we can define the notion of a computable sequence
of bounded computable functions, or the computable sequence 𝑓𝑖 of comput-
able Lipschitz functions: the bound and the Lipschitz constant of 𝑓𝑖 are required
to be computable from 𝑖. The following statement shows, in an effective form,
that a function is lower semicomputable if and only if it is the supremum of a
computable sequence of computable functions.

Proposition B.1.38 Let X be a computable metric space. There is a computable
mapping that to each name of a nonnegative lower semicomputable function 𝑓 as-
signs a name of a computable sequence of computable bounded Lipschitz functions
𝑓𝑖 whose supremum is 𝑓 .
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Proof sketch. Show that 𝑓 is the supremum of a computable sequence of func-
tions 𝑐𝑖1𝐵(𝑢𝑖,𝑟𝑖) where 𝑢𝑖 ∈ 𝐷 and 𝑐𝑖, 𝑟𝑖 > 0 are rational. Clearly, each indicator
function 1𝐵(𝑢𝑖,𝑟𝑖) is the supremum of a computable sequence of computable func-
tions 𝑔𝑖, 𝑗. We have 𝑓 = sup𝑛 𝑓𝑛 where 𝑓𝑛 = max𝑖≤𝑛 𝑐𝑖𝑔𝑖,𝑛. It is easy to see that
the bounds on the functions 𝑓𝑛 are computable from 𝑛 and that they all are in
Lip𝛽𝑛 for a 𝛽𝑛 that is computable from 𝑛. �

The following is also worth noting.

Proposition B.1.39 In a computable metric space, the intersection of two construc-
tive open sets is constructive open.

Proof. Let 𝛽 = {𝐵(𝑥, 𝑟) : 𝑥 ∈ 𝐷, 𝑟 ∈ Q} be a basis of our space. For a pair (𝑥, 𝑟)
with 𝑥 ∈ 𝐷, 𝑟 ∈ Q, let

Γ(𝑥, 𝑟) = { (𝑦, 𝑠) : 𝑦 ∈ 𝐷, 𝑠 ∈ Q, 𝑑(𝑥, 𝑦) + 𝑠 < 𝑟}.
If 𝑈 is a constructive open set, then there is a computably enumerable set 𝑆𝑈 ⊂
𝐷 × Q with 𝑈 =

⋃
(𝑥,𝑟) ∈𝑆𝑈 𝐵(𝑥, 𝑟). Let 𝑆′𝑈 =

⋃{Γ(𝑥, 𝑟) : (𝑥, 𝑟) ∈ 𝑆𝑈 }, then we
have 𝑈 =

⋃
(𝑥,𝑟) ∈𝑆′

𝑈
𝐵(𝑥, 𝑟). Now, it is easy to see

𝑈 ∩ 𝑉 =
⋃

(𝑥,𝑟) ∈𝑆′
𝑈
∩𝑆′

𝑉

𝐵(𝑥, 𝑟).

�

The following theorem is very useful.

Theorem B.1.1 A computable metric space 𝑋 is effectively compact if and only if
from each (rational) Y one can compute a finite set of Y-balls covering 𝑋 .

Proof. Suppose first that the space is effectively compact. For each Y, let 𝐵1, 𝐵2, . . .
be a list of all canonical balls with radius Y. This sequence covers the space, so
already some 𝐵1, . . . , 𝐵𝑛 covers the space, and this will be recognized.
Suppose now that for every rational Y one can find a finite set of Y-balls

covering the space. Let S ⊆ 𝛽 be a finite set of basis elements (balls) covering
the space. For each element 𝐺 = 𝐵(𝑢, 𝑟) ∈ S, let 𝐺Y = 𝐵(𝑢, 𝑟 − Y) be its Y-
interior, and SY = {𝐺Y : 𝐺 ∈ S}. Then 𝐺 =

⋃
Y > 0𝐺Y, and 𝑋 =

⋃
Y>0

⋃
SY.

Compactness implies that there is an Y > 0 such that already S𝑒𝑝𝑠 covers the
space. Let 𝐵1, . . . , 𝐵𝑛 be a finite set of Y/2-balls 𝐵𝑖 = 𝐵(𝑐𝑖, 𝑟𝑖) covering the space
that can be computed from Y. Each of these balls 𝐵𝑖 intersects one of the the sets
𝐺Y = 𝐵(𝑢, 𝑟 − Y), 𝑑(𝑢, 𝑐𝑖) ≤ 𝑟 − Y/2. But then 𝐵𝑖 ⊆ 𝐵(𝑢, 𝑟) in a recognizeable
way. Once all the relations 𝑑(𝑢, 𝑐𝑖) ≤ 𝑟 − Y/2 will be recognized we will also
recognize that S covers the space. �
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We can strengthen now Example A.1.37:

Example B.1.40 (Prove!) Let 𝑋 be an effectively compact computable metric
space. Then the metric space 𝐶(𝑋) with the dense set of functions E(𝐷) intro-
duced in Definition A.1.32 is a computable metric space. y

The structure of a constructive metric space will be inherited on certain sub-
sets:

Definition B.1.41 Let X = (𝑋, d, 𝐷, 𝛼) be a constructive metric space, and 𝐺 ⊂
𝑋 a constructive open subset. Then there is an enumeration 𝛼𝐺 of the set 𝐷 ∩ 𝐺
that creates a constructive metric space G = (𝐺, d, 𝐷, 𝛼𝐺). y

Remark B.1.42 An arbitrary subset of a constructive metric space will inherit
the constructive topology. It will also inherit the metric, but not necessarily the
structure of a constructive metric space. Indeed, first of all it is not necessarily a
complete metric space. It also does not inherit an enumerated dense subset. y

B.2 Constructive measure theory

The basic concepts and results of measure theory are recalled in Section A.2. For
the theory of measures over metric spaces, see Subsection A.2.6. We introduce
a certain fixed, enumerated sequence of Lipschitz functions that will be used
frequently. Let E be the set of functions introduced in Definition A.1.32. The
following construction will prove useful later.

Proposition B.2.1 All bounded continuous functions can be obtained as the limit of
an increasing sequence of functions from the enumerated countable set E of bounded
computable Lipschitz functions introduced in (A.1.3).

The proof is routine.

B.2.1 Space of measures

LetX = (𝑋, 𝑑, 𝐷, 𝛼) be a computablemetric space. In Subsection A.2.6, the space
M(X) ofmeasures overX is defined, alongwith a natural enumeration a = aM for
a subbasis 𝜎 = 𝜎M of the weak topology. This is a constructive topological space
M which can be metrized by introducing, as in A.2.6, the Prokhorov distance
𝜌(`, a). Recall that we defined 𝐷M as the set of those probability measures that
are concentrated on finitely many points of 𝐷 and assign rational values to them.
Let 𝛼M be a natural enumeration of 𝐷M. Then

(M, 𝜌, 𝐷M, 𝛼M) (B.2.1)
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is a computable metric space whose constructive topology is equivalent to M.
Let 𝑈 = 𝐵(𝑥, 𝑟) be one of the balls in X, where 𝑥 ∈ 𝐷X, 𝑟 ∈ Q. The function
` ↦→ `(𝑈) is typically not computable, since as mentioned in (A.2.6), it is not
even continuous. The situation is better with ` ↦→ ` 𝑓 . The following theorem
is the computable strengthening of part of Proposition A.2.37:

Proposition B.2.2 Let X = (𝑋, 𝑑, 𝐷, 𝛼) be a computable metric space, and let
M = (M(X), 𝜎, a) be the constructive topological space of probability measures
over X. If the function 𝑓 : X → R is bounded and computable then ` ↦→ ` 𝑓 is
computable.

Proof sketch. To prove the theorem for bounded Lipschitz functions, we can in-
voke the Strassen coupling theorem A.2.40.
The function 𝑓 can be obtained as a limit of a computable monotone in-

creasing sequence of computable Lipschitz functions 𝑓 >𝑛 , and also as a limit of
a computable monotone decreasing sequence of computable Lipschitz functions
𝑓 <𝑛 . In step 𝑛 of our computation of ` 𝑓 , we can approximate ` 𝑓 >𝑛 from above to
within 1/𝑛, and ` 𝑓 <𝑛 from below to within 1/𝑛. Let these bounds be 𝑎>𝑛 and 𝑎<𝑛 .
To approximate ` 𝑓 to within Y, find a stage 𝑛 with 𝑎>𝑛 − 𝑎<𝑛 + 2/𝑛 < Y. �

Using Example B.1.40, we can extend this as follows:

Proposition B.2.3 (Prove!) Let X be an effectively compact metric space (and thus
𝐶(X) is a computable metric space). Then the mapping (`, 𝑓 ) ↦→ ` 𝑓 over M(X) ×
𝐶(X) is computable.

Talking about open sets, only a weaker statement can be made.

Proposition B.2.4 Let 𝐺 ⊆ 𝑋 be a constructive open set. The function ` ↦→ `(𝐺)
is lower semicomputable.

Remark B.2.5 Using the notion of an enumerative lattice defined by Hoyrup and
Rojas, one canmake this a statement about the two-argument function (`, 𝐺) →
`(𝐺). y

It is known that if our metric space X is compact then so is the spaceM(X)
of measures. This can be strengthened:

Proposition B.2.6 (Prove!) If a complete computable metric space X is effectively
compact then M(X) is also effectively compact.
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B.2.2 Computable and semicomputable measures

A measure ` is called computable if it is a computable element of the space of
measures. Let {𝑔𝑖} be the set of bounded Lipschitz functions over X introduced
in Definition A.1.32.

Proposition B.2.7 Measure ` is computable if and only if so is the function 𝑖 ↦→
`𝑔𝑖.

Proof. The “only if” part follows from Proposition B.2.2. For the “if” part, note
that in order to trap ` within some Prokhorov neighborhood of size Y, it is suf-
ficient to compute `𝑔𝑖 within a small enough 𝛿, for all 𝑖 ≤ 𝑛 for a large enough
𝑛. �

A non-computable density function can lead to a computable measure:

Example B.2.8 Let our probability space be the set R of real numbers with its
standard topology. Let 𝑎 < 𝑏 be two computable real numbers. Let ` be the
probability distribution with density function 𝑓 (𝑥) = 1

𝑏−𝑎1[𝑎,𝑏] (𝑥) (the uniform
distribution over the interval [𝑎, 𝑏]). Function 𝑓 (𝑥) is not computable, since it
is not even continuous. However, the measure ` is computable: indeed, `𝑔𝑖 =
1
𝑏−𝑎

∫ 𝑏

𝑎
𝑔𝑖(𝑥)𝑑𝑥 is a computable sequence, hence Proposition B.2.7 implies that

` is computable. y

The following theorem compensates somewhat for the fact mentioned ear-
lier, that the function ` ↦→ `(𝑈) is generally not computable.
Proposition B.2.9 Let ` be a finite computable measure. Then there is a comput-
able map ℎ with the property that for every bounded computable function 𝑓 with
| 𝑓 | ≤ 1 with the property `( 𝑓−1(0)) = 0, if 𝑤 is the name of 𝑓 then ℎ(𝑤) is the
name of a program computing the value `{𝑥 : 𝑓 (𝑥) < 0}.

Proof. Straightforward. �

Can we construct a measure just using the pattern of Proposition B.2.7? Sup-
pose that there is a computable function (𝑖, 𝑗) ↦→ 𝑚𝑖( 𝑗) with the following prop-
erties:
a) 𝑖 < 𝑗1 < 𝑗2 implies |𝑚𝑖( 𝑗1) − 𝑚𝑖( 𝑗2) | < 2− 𝑗1 .
b) For all 𝑛, there is a probability measure `𝑛 with 𝑚𝑖(𝑛) = `𝑛𝑔𝑖 for all 𝑖 < 𝑛.
Thus, the sequences converge, and for each 𝑛, all values 𝑚𝑖(𝑛) for 𝑖 ≤ 𝑛 are
consistent with coming from a probability measure a𝑛 assigning this value to
𝑔𝑖. Is there a probability measure ` with the property that for each 𝑖 we have
lim 𝑗 𝑚𝑖( 𝑗) = `𝑔𝑖? Not necessarily, if the space is not compact.

168



B.2. Constructive measure theory

Example B.2.10 Let 𝑋 = {1, 2, 3, . . . } with the discrete topology. Define a
probability measure `𝑛 with `𝑛𝑔𝑖 = 0 for 𝑖 < 𝑛 and otherwise arbitrarily. Since
we only posed 𝑛 − 1 linear conditions on a finite number of variables, it is easy
to see that such a `𝑛 exists. Then define 𝑚𝑖(𝑛) = `𝑛(𝑖) for all 𝑖.
Now all the numbers 𝑚𝑖(𝑛) converge with 𝑛 to 0, but ` = 0 is not a proba-

bility measure. y

To guarantee that the sequences 𝑚𝑖( 𝑗) indeed define a probability measure,
progress must be made, for example, in terms of the narrowing of Prokhorov
neighborhoods.

B.2.3 Random transitions

Consider random transitions now.

Definition B.2.11 (Computable kernel) Let X, Y be computable metric spaces,
giving rise to measurable spaces with 𝜎-algebrasA,B respectively. Let Λ = {_𝑥 :
𝑥 ∈ 𝑋 } be a probability kernel from 𝑋 to 𝑌 (as defined in Subsection A.2.5).
Let {𝑔𝑖} be the set of bounded Lipschitz functions over 𝑌 introduced in Defini-
tion A.1.32. To each 𝑔𝑖, the kernel assigns a (bounded) measurable function

𝑓𝑖(𝑥) = (Λ𝑔𝑖) (𝑥) = _
𝑦
𝑥 𝑔𝑖(𝑦).

We will call the kernel Λ computable if so is the assignment (𝑖, 𝑥) ↦→ 𝑓𝑖(𝑥). y

When Λ is computable, each function 𝑓𝑖(𝑥) is of course continuous. The
measure Λ∗` is determined by the values Λ∗𝑔𝑖 = `(Λ𝑔𝑖), which are computable
from (𝑖, `) and so the mapping ` ↦→ Λ∗` is computable.
The following example is the simplest case, when the transition is actually

deterministic.

Example B.2.12 (Computable deterministic kernel) A computable function ℎ :
𝑋 → 𝑌 defines an operator Λℎ with Λℎ𝑔 = 𝑔 ◦ ℎ (as in Example A.2.29). This
is a deterministic computable transition, in which 𝑓𝑖(𝑥) = (Λℎ𝑔𝑖) (𝑥) = 𝑔𝑖(ℎ(𝑥))
is, of course, computable from (𝑖, 𝑥). We define ℎ∗` = Λ∗

ℎ
`. y
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