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Abstract

This manuscript defines monotonic description complexity and algorithmic prob-
ability, and then gives a proof that the former is not within an additive constant of
the logarithm of the latter. It is a more detailed exposition of the proof given in the
original paper, and also incorporates Adam Day’s ideas that led to an improved lower
bound for the binary case.

1 Introduction
This manuscript defines monotonic description complexity and algorithmic probability, and
then gives a proof that the former is not within an additive constant of the logarithm of
the latter. It is a more detailed exposition of the proof given in the paper [3], and also
incorporates Adam Day’s ideas from [2] that led to an improved lower bound for the binary
case. On the other hand, the reader is sent to the original paper and its references for the
motivation of the chosen definitions of complexity and algorithmic probability.

Notation 1.1 All logarithms and exponentials in this paper are to the base 2. Probabilities
will be denoted by P{·}.

Let Q denote the set of rational numbers, let N be the set of natural numbers, and
B = {0, 1}. Let Λ denote the empty string. For a set A let An denote the set of strings
(x(1), . . . , x(n)) with elements in A, A0 = {Λ}, A∗ =

⋃∞
i=0A

i. Let l(x) denote the length of
a finite or infinite sequence x, and let x(≤ n) = (x(1), . . . , x(n)). Normally, we will write the
concatenation of two strings x, y just as xy. If this leads to misunderstanding we will write
x · y. Similarly, if x ∈ A∗ and a ∈ A then xa will denote the string obtained by appending a
to x.

For strings x ∈ N∗, y ∈ N∗ ∪ NN, we write x v y to denote that x is a prefix of y. For
(pi,xi) ∈ N∗ × N∗ let (p1,x1) v (p2,x2) mean p1 v p2 and x1 v x2. Two objects x,y are



compatible if there is a z with x v z, y v z. If the elements of a set A ⊂ N∗ are pairwise
incompatible, this set will also be called prefix-free.

We say that two sets A,B ⊆ N∗ are mutually incompatible if every pair a ∈ A, b ∈ B is.
For string x ∈ N∗ let xNN = {η ∈ NN : x v η}. For a set A ⊆ N∗ let ANN =

⋃
a∈A aNN.

For an infinite binary sequence π = (p(1), p(2), . . . ) ∈ BN let [π] denote the real number
0.p(1)p(2) . . . in the interval [0, 1] in binary notation. (The function [·] is not a one-to-one
correspondence between real numbers and infinite strings, since binary rational numbers
have two different representation. But this need not concern us.) For p ∈ B∗ let [p] = {[η] :
η ∈ pBN}. For example, [101] is the interval [5/8, 6/8]. For A ⊆ B∗ let [A] =

⋃
p∈A[p]. Note

that A,B are mutually incompatible if and only if [A] and [B] are disjoint.
For a set E ⊆ N∗, we define its bottom as

E ′ = {x ∈ E : ∀y ∈ E y v x⇒ y = x}.

Note that E ′ is prefix-free and still E ′NN = ENN.
For two sets E,F ⊆ N∗ we will write E ≤ F if for all x ∈ E there is a y ∈ F with y v x.

The relation E ≤ F implies ENN ⊆ FNN, but the converse is not true.
Let [[·]] : N∗ → N be some standard one-to-one encoding function with partial inverses

[[·]]i. For example if z = [[x, y]] then y = [[z]]2.

The relations f
∗
< g, f

+

< g denote f = O(g), and f = g + O(1) respectively. We write

f
+
= g if both f

+

< g and f
+

> g holds. y

The following proposition is immediate from the definitions.

Proposition 1.2 For binary strings p,q we have p v q if and only if [p] ⊇ [q]. And p,q
are incompatible if and only if [p] and [q] are disjoint.

Let us define the description complexity K(y | x) of a string y ∈ N∗, conditional on
a string x ∈ N∗ as the length of the shortest program p telling a certain universal Turing
machine T to output y, when x is also given as argument. For technical reasons of the
characterization of random sequences, it is advantageous to require the output y of machine
in question to depend on the program p in a monotonic way: an extension of p should give
an extension of y. A somewhat more general version of the monotonic machine is formulated
in the definition below.

Definition 1.3 (Monotonic interpreter) A r.e. (recursively enumerable) set A ⊆ B∗×N∗×N∗
is called a monotonic interpreter if the following holds: whenever (p1,x1,y1) and (p2,x2,y2)
are in A and (p1,x1) is compatible with (p2,x2) then y1 is compatible with y2. For a
monotonic interpreter, A, let us fix a particular enumeration of the set A and let At be the
subset enumerated in t steps. Of course, the finite set At is also a monotonic interpreter.

An interpreter defines a monotonic (in v) function

A : (B∗ ∪ BN)× (N∗ ∪ NN)→ (N∗ ∪ NN)
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by

A(p,x) = sup
v
{y ∈ N∗ : ∃(p′,x′) v (p,x) (p′,x′,y) ∈ A},

A(p) = A(p,Λ).

Partial inverses are also worth defining:

A(−1)(x,y) = {p ∈ B∗ : ∃y′ w y (p,x,y′) ∈ A},
A−1(x,y) = {p ∈ B∗ : ∃p′ v p, y′ w y (p′,x,y′) ∈ A},
A−1(y) = A−1(Λ,y).

y

Definition 1.4 (Self-delimiting interpreter) A monotonic interpreter is called self-delimiting
if each of the sets A(−1)(x,y) is prefix-free. It is called prefix-stable if A(p,x) = y, p′ w p
implies A(p′,x) = y. y

Definition 1.5 (Monotonic complexity) For a monotonic interpreter A and x,y ∈ N∗ ∪ NN,
we define by

KA(y | x) = min
p∈A−1(x,y)

l(p)

the monotonic complexity of string y conditionally on x, relative to the interpreter A. y

Standard arguments give the following:

Proposition 1.6 (Optimal interpreter) (a) There is an optimal monotonic interpreter U
with respect to which complexity is minimal to within an additive constant. In other
words, for any monotonic interpreter A there is a constant cA such that for all x, y we
have

KU(y | x) ≤ KA(y | x) + cA.

(b) Similarly, there is an optimal prefix-free interpreter V .

Definition 1.7 Let us fix an optimal interpreter U and write

K(y | x) = KU(y | x), K(x) = K(x | Λ).

Let us also fix an optimal prefix-free interpreter V and write KP (y | x) = KV (y | x). y

Remark 1.8 For a set A ∈ N∗, let A′ be the set of strings in A that have no prefixes in A. If
recursively enumerable a set of strings A is prefix-free then the set B = AΣ∗ is recursively
enumerable, closed under extensions with B′ = A. But if a recursively enumerable set B is
closed under extension, it may happen that B′ is not recursively enumerable. This suggests
that the prefix complexity KP defined above via self-delimiting interpreters may be greater
than a version of complexity defined using prefix-stable interpreters. But this is not the case,
as the Coding Theorem below constructs a prefix-free interpreter. y
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Clearly we have KP (y | x)
+

> K(y | x). The more exact relation

KP (y | x)
+
= K([[y]] | x)

will be established by the Coding Theorem 1 below.
Here are some typical orders of magnitude. For natural numbers n (sequences of length

1) we have K(n)
+

< 2 log n, moreover

K(n)
+

< log n+K(blog nc). (1.1)

It can be shown that this last estimate is sharp for most numbers k ≤ n.
Let us define algorithmic probability now.

Definition 1.9 (Algorithmic probability) Let Z = (Z(1), Z(2), . . . ) be an infinite sequence
of identically distributed random variables with P{Z(i) = 0} = P{Z(i) = 1} = 1/2. The
number

M(x) = P{U(Z) w x}

is called the algorithmic probability of x. is the probability that our optimal interpreter
outputs a continuation of x when given an infinite coin-tossing sequence as input.

Let H(x) = − logM(x). y

We can express this probability in more elementary notation and contrast it with com-
plexity:

M(x) =
∑

p∈(A−1(x))′

2−l(p),

2−K(x) = max
p∈(A−1(x))′

2−l(p) = max
p∈A−1(x)

2−l(p).
(1.2)

The function M(x) also has a certain optimality property. To express it we introduce the
notion of semimeasure.

Definition 1.10 A nonnegative real function ν : N∗ → R is a semimeasure if ν(Λ) ≤ 1 and
for all x ∈ N∗ we have ∑

n≥0

ν(xn) ≤ ν(x). (1.3)

A semimeasure is a measure if equality holds here, a probability measure if also ν(Λ) = 1.
When ν(x) = 0 on sequences of length > 1 then the requirement (1.3) simplifies to∑
n ν(n) ≤ 1.
The Lebesgue measure over B∗ is defined by λ(p) = 2−l(p). Over subsets of the real line,

it retains the usual meaning. y

It is easy to check that the function M(x) is a semimeasure. It is not computable, but
has a certain weaker computability property.
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Definition 1.11 A real function f : N∗ → R is said to be lower semicomputable if there exists
a recursive function g : N∗ × N → Q monotonically increasing in its second argument, such
that f(x) = limt→∞ g(x, t).

A real function f is upper semicomputable if −f is lower semicomputable. It is computable
if it is both lower and upper semicomputable. y

Definition 1.12 Let the interpreter Ut be defined as the one obtained from the first t steps
of approximation of the optimal interpreter U . y

The algorithmic probability is semicomputable since it can be written asM(x) = limtMt(x),
with

Mt(x) = P{Ut(Z) w x}.

The following is easy to see.

Proposition 1.13 If a probability measure is lower semicomputable then it is computable.

Of course, for each lower semicomputable semimeasure there is a program e enumerating
it. Moreover, the following is also known (and not difficult to prove).

Proposition 1.14 There is a lower semicomputable function ψ : N × N∗ → R such that for
each fixed e ∈ N the function

ψe(x) = ψ(e,x)

is a semimeasure. The algorithmic probability M(x) majorizes all lower semicomputable
semimeasures within a multiplicative constant, moreover the following more exact relation
holds:

ψe(x)
∗
< M(x)/M(e).

Thus, for semimeasure ψe the multiplicative constant of majorization is O(1/M(e)). In
additive notation the relation says

H(x)
+

< − logψe(x)−H(e). (1.4)

The paper [3] (relying on several earlier papers of Levin) lists several reasons why H(x)
can be viewed as a kind of complexity. Note first of all that the relation

H(x) ≤ K(x)

follows immediately from the expressions (1.2). We are interested in the sharpness of this
inequality. The above papers list also the important subsets of N∗ on which these two
quantities differ only within an additive constant. In particular, the following result is
equivalent to the so-called “coding theorem” of algorithmic information theory (see [4]).

Theorem 1 (Coding) For e ∈ N let We be the recursively enumerable prefix-free set of N∗
given with a “program” e. Then on the elements x of We the following relation holds:

KP (x)
+
= K(x)

+

< H(x) +K(e).
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Corollary 1.15 We have KP (x)
+
= KP ([[x]])

+
= K([[x]]).

Proof. The first relation holds since x 7→ [[x]] is a recursive invertible function. The second
relation holds since [[x]] is in the set of one-element strings, which is a prefix-free set.

As a consequence, we have the following bound.

Corollary 1.16

H(x)
+

< K(x)
+

< H(x) +K(l(x)). (1.5)

Proof. Indeed, for each n there is a program with complexity
+

< K(n) listing all strings of
length n.

From (1.5) and (1.1) we have for example for x of length n:

K(x)
+

< H(x) + log n+ 2 log log n.

As an even simpler consequence, restricting attention to sequences of length 1, that is natural
numbers, we get

K(n)
+

< H(n). (1.6)

Here is an easy reformulation of this result in a form that we need:

Proposition 1.17 For an upper semicomputable function g : N→ N the following properties
are equivalent:

(a)
∑

n 2−g(n) <∞.

(b)
∑

n 2−g(n)
∗
< 1.

(c) ∃c∀n g(n) ≥ K(n)− c .

(d) ∃c∀n g(n) ≥ H(n)− c .

In view of the above proposition let us use the following terminology.

Definition 1.18 An upper semicomputable function g : N → N is said to be sub-K, if∑
n 2−g(n) =∞. y

The main theorem of this paper shows that the bound (1.5) is in some sense sharp.

Theorem 2 For any upper semicomputable function g : N→ N satisfying for all x

K(x)−H(x) ≤ g(l(x))

there is a constant cg with the property g(n) ≥ K(n)− cg for all n.

In view of the proposition above, the following corollary is an equivalent reformulation
of the theorem.
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Corollary 1.19 For any upper semicomputable function g : N → N with
∑

n 2−g(n) = ∞
there is an x with

K(x) > H(x) + g(l(x)).

In particular, since for each c the function g(n) = dlog ne + c is upper semicomputable
with

∑
n 2−g(n) =∞ it follows that for each c there is an x with

K(x) > H(x) + log(l(x)) + c.

The original proof of the theorem gave only a poor lower bound for binary sequences.
Using the work of Adam Day from [2], we also prove the following.

Theorem 3 For every ε > 0, binary sequences the inequality

K(x)−H(x) ≥ (1− ε) log log l(x)

holds for infinitely many strings x.

2 The coding theorem
Theorem 2 essentially states that the assertion corresponding to the Coding Theorem 1 is
false when x is allowed to run over all strings in N∗. We will first review a proof of the Coding
Theorem in order to understand what problems prevent its application in the general case.
In the presentation of the proof we will not strive for conciseness and elegance, since we want
to introduce the elements of later constructions.

It is easy to see that the general proposition is equivalent to its special case (1.6). Let

a : N→ R be a lower semicomputable semimeasure. We will prove the inequality KP (x)
+

<
− log a(x) by defining a self-delimiting interpreter A with the property

KA(x)
+

< − log a(x).

Since the semimeasure a(x) is lower semicomputable, it can be represented as

a(x) = lim
t→∞

a(x, t)

where a(x, t) ∈ {0} ∪ {2−k : k ∈ N}, and (x, t) 7→ a(x, t) is is recursive and increasing in t.
This motivates the following definition.

Definition 2.1 (Accumulation sequence) Let X be a set of natural numbers. A sequence
a : X ×N→ Q+ is called a accumulation sequence over X if it has the following properties.

(a) For each t the function a(·, t) is a semimeasure.

(b) a(x, t) is nondecreasing in t.
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For any set S ⊆ X let

a(S, t) =
∑
x∈S

a(x, t).

If X = N then we may omit mentioning it. y

Definition 2.2 An accumulation sequence will be called systematic if it also has the property
that for each t there is an element xt such that a(x, t + 1) = a(x, t) for all x 6= xt, and
a(xt, t) ≤ 2a(xt, t). y

Now the following is easy to show.

Proposition 2.3 A lower semicomputable semimeasure can be represented as the limit of a
computable systematic accumulation sequence.

Using the characterization (1.2)—which holds for arbitrary KA—and going to multiplica-
tive notation, we want to find an algorithm A with the property

max
p∈A−1(x)

2−l(p)
∗
> a(x).

It is convenient to work with the function x 7→ A−1(x) instead of the function p 7→ A(p).
The function

B(x) = A−1(x)

has certain properties worth analyzing.

Definition 2.4 (Allocation over N) Let us call a function

x ∈ N 7→ B(x) ⊆ B∗

an allocation function on X it has the following properties.

(i) The sets B(x) are prefix-free.

(ii) For x 6= y, the sets B(x), B(y) are mutually incompatible, that is [B(x)] and [B(y)]
are disjoint.

If the set {(p, x) : p ∈ B(x)} is recursively enumerable then the allocation function will be
called lower semicomputable.

If X = N then we may omit mentioning it. y

The following observation is immediate.

Proposition 2.5 If A is a self-delimiting interpreter then B(x) = A−1(x) defines a lower
semicomputable allocation function.

Conversely, to each lower semicomputable allocation function x 7→ B(x) the set A =
{(p, x) : p ∈ B(x)} defines a self-delimiting interpreter with B(x) = A−1(x).
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We will define the sets B(x) as a limit

B(x) =
⋃
t

B(x, t),

where the function (x, t) 7→ B(x, t) is recursive and nondecreasing in t. This gives rise to
the following definition.

Definition 2.6 A function B(x, t) will be called a monotonic allocation sequence on X if it
satisfies the following conditions.

(i) For each t the function B(·, t) is an allocation function on X.

(ii) It is monotonic in t: B(x, t) ⊆ B(x, t+ 1).

(iii) The set
⋃
xB(x, t) is finite for each t.

For the given sequence B(x, t) define

B(X, t) =
⋃
x∈X

B(x, t),

b(x, t) = λ(B(x, t)),

b(X, t) = λ(B(X, t)) =
∑
x∈X

b(x, t).

y

Now the above observation can be formulated by saying that a lower semicomputable
allocation function is the limit of a computable monotonic allocation sequence.

Instead of binary sequences p, it is helpful to think of the binary subintervals [p] of the
interval [0, 1] that they correspond to. Let us introduce some terminology.

Definition 2.7 For a binary sequence p of length r, the binary interval [p] will be called an
r-bin. We will say that an r-bin [p] is allocated to x ∈ N at time t if [p] ⊆ [B(x, t)], else it
is free (they it is also disjoint from [B(x, t)]). The allocatedness relation is monotonic in t,
since B(x, t) is increasing. y

Definition 2.8 Assume that both an accumulation sequence a(x, t) and a monotonic alloca-
tion sequence B(x, t) are given. Let

c(x, t) = max
p∈B(x,t)

λ([p]),

C(x, t) =
⋃

p∈B(x,t)
l(p)=c(x,t)

[p],

C(X, t) =
⋃
x∈X

C(x, t),

c(X, t) = λ(C(X, t)).

y

9



Now the Coding Theorem is implied from the following.

Theorem 4 For every computable accumulation sequence a(x, t) there is a computable mono-
tonic allocation sequence B(x, t) with c(x, t) ≥ a(x, t)/4 for all x, t.

With the above definitions, an algorithm for B(x, t) is given in Algorithm 2.1.

Algorithm 2.1: Construction for the Coding Theorem

input : An accumulation sequence (x, t) 7→ a(x, t). Only the part for time ≤ t is
given at time t.

output: A monotonic allocation function (x, t) 7→ B(x, t).

B(x, 0)← ∅
for t = 0 to ∞ do

foreach x 6= xt do
B(x, t+ 1)← B(x, t)

r ← b− log a(xt, t)c
if b− log a(xt, t+ 1)c = r then

B(xt, t+ 1)← B(xt, t)
(In all other cases b− log a(xt, t+ 1)c = r − 1.)
else if there are free r-bins at time t then

[p]← the first one
B(xt, t+ 1)← B(xt, t)

⋃
{p}

else
give up

If it never gives up, this algorithm guarantees

KA(x) ≤ − log a(x) + 2.

Indeed, with s = b− log a(x)c there is a t with b− log a(x, t)c ≤ s+ 1, so B(x, t) will contain
an (s+ 2)-bin, and hence KA(x) ≤ s+ 2 ≤ − log a(x) + 2.

Let us show that it indeed never gives up. The following lemma is immediate from the
definition of the algorithm.

Lemma 2.9 Suppose that b(x, t) is constructed by Algorithm 2.1. For all x, t, r if a(x, t) <
2−(r−1) then b(x, t) < 2−r. In particular, b(x, t) < a(x, t).

Proof. For each s < r we increased b(x, t) by 2s when a(x, t) exceeded 2−(s−1). The sum of
all these increases is < 2−r.

This lemma implies that at the time t when the algorithm is looking for an r-bin, we
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have ∑
x 6=xt

b(x, t) <
∑
x 6=xt

a(x, t) =
∑
x 6=xt

a(x+ 1),

2−r + b(x, t) < 2−(r−1) < a(xt, t+ 1),

2−r + b(N, t) ≤ a(N, t) ≤ 1.

The following lemma provides the required free bin.

Lemma 2.10 (Pippenger, see [1]) The union of all free bins at time t can be written as a
finite union

⋃n
i=1[pi] where [pi] appears after [pi−1] in the interval [0, 1] and the length of

strings pi is strictly decreasing. Therefore 1−b(N, t) ≥ 2−r implies that there is a free r-bin.

Proof. Immediate from the observation of the algorithm.

This concludes the proof of the coding theorem.

3 A memory-allocation game on integers
In the above proof of the Coding Theorem, the allocation function B(x, t) was defined
sequentially, depending on the definition of the function a(x, t). You can view it as a strategy
followed in a certain game.

Definition 3.1 (Game 1) Let g > 0 be a real number called the redundancy. Game1(g) has
two players, Client and Server, or Csilla and Sandor (so that we can refer to them by “she”
and “he”). In each each step t = 1, 2, . . ., it is Client’s step first and Server’s next. In step
t, Client defines a(·, t) for a systematic accumulation sequence a(x, t), after which Server
defines B(·, t) for a monotonic allocation sequence B(x, t) over natural numbers.

As is usual in games, we allow the choice of a(x, t) to depend on the values of B(·, u) for
all u < t, and the choice of B(x, t) to depend on the values of a(·, u) for all u ≤ t.

Server loses unless for each r, x, t, an r-bin will be allocated to x at time t if a(x, t) ≥
2−r+g, after he made his step. y

The following simple observation is immediate.

Proposition 3.2 Server obeys a redundancy requirement given by g if and only if we have

c(x, t) > 2−g−1a(x, t)

for all x, t.

So, Server’s goal is that if the measure a(x, t) is large then B(x, t) should contain a large
bin, while Client is trying to cause as much fragmentation for Server as possible.

The proof of the Coding Theorem gives Server a strategy to survive in Game 1 if the
redundancy is allowed to be at least 2. We will give a lower bound on redundancy needed for
Server. What we will use later is not the theorem itself but its proof technique, in particular
Client’s strategy and the main lemma.
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Theorem 5 For every g < log 3
2
, Server loses in Game1(g).

To prepare the proof, we define a strategy for Client. For at least some x and r, she wants
to prevent Server from slowly filling in an r-bin as a(x, t) increases. When Server started
filling in an r-bin, we can say he has “reserved” it. Let us formalize this.

Definition 3.3 (Reservation) For any allocation function B(·), we will say that it reserves a
bin [p] for number x if [p] intersects [B(x)] but is disjoint from all other [B(y)] for y 6= x.
We will say that an allocation sequence B(·, ·) reserves [p] at time t for x if B(·, t) reserves
it for x. If the sequence B(·, ·) is clear from the context then we will just say that [p] is
reserved for x at time t. Let

Br(x, t)

denote the union of r-bins reserved for x at time t, with

br(x, t) = λ(Br(x, t)).

y

Note that Br(x, t) is not necessarily monotonic in t.

Remark 3.4 In what follows when we speak about a strategy of Client, this may be like a
“procedure” in a computer program: we allow it to have some parameters and to start at
some intermediate stage of the game, under some conditions. y

The following idea will provide a strategy for Client:

1. Fix some r.

2. Repeatedly, find the first object x that has no r-bin reserved for it, and increase a(x, t)
by a tiny amount.

3. Stop at some time when you made Server waste enough space.

The following lemma implements this idea.

Lemma 3.5 Suppose that we are given a set X ⊆ N, and some parameters as follows: g > 0,
0 < ε < 1/2, 0 < ρ ≤ 1, and an integer r with

2−r ≤ ε2ρ. (3.1)

Then in Game1(g), Client has a strategy

inflate-ints(X, r, g, ρ, ε)

that, when started at a time t0 with a(N, t0) ≤ 1−ρ and a(X, t0) = 0, provides the following.

(a) The accumulation a(x, t) will only be increased for elements x of X and each increase
is by an amount in the range [ε22−r, ε2−r].

(b) The strategy stops at a time t′ > t0 with

ερ ≤ a(X, t′) ≤ ρ,

λ(C(X, t′) ∪Br(X, t
′)) ≥ (3/2− 5ε)2−ga(X, t′).

(3.2)
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Definition 3.6 Denote by

stopcond-ints(t′, X, r, g, ρ, ε, ).

the stopping condition (3.2) above. y

We postpone the proof of Lemma 3.5, but define the strategy for Client in Algorithm 3.1
that will be used in it.

Algorithm 3.1: Client’s strategy inflate-ints(X, r, g, ρ, ε)

r′ = r′(r, ε)← r + g + dlog(1/ε)e
m′ ← bρ2r/ε2c
for t = t0 to m′ do

if stopcond-ints(t,X, r, g, ρ, ε) then
return

xt ← the smallest integer in X for which no r-bin has been reserved

a(xt, t+ 1)← a(xt, t) + 2−r
′+g

It is easy to check that r′ satisfies ε22−r ≤ 2−r
′+g ≤ ε2−r and is therefore an allowed

increment according to requirement (a) in Lemma 3.5.
Before proving the lemma, let us use it to prove Theorem 5.

Proof of Theorem 5. Choose some parameters ρ, ε, r to be used in Lemma 3.5.

m =

⌊
1

ερ

⌋
.

We will define a strategy for Client that applies the strategy inflate-ints() repeatedly, on a
sequence

X0, X2, . . . , Xm−1

of disjoint infinite sets of integers, to lowerbound on the volume of the sets

Bi = C(Xi, t
′
i) ∪Bri(Xi, t

′
i).

There is a problem with this application, though, that is at the core of the inefficiency of
our later client strategies. In order to derive a lower bound on the volume of B0∪· · ·∪Bm−1
conveniently, we would need these sets to be disjoint. But reservation is not monotonic in
time: in stage i + 1 Server might allocate some of the set C(Xi+1, t) inside Bri(Xi, t

′
i). To

prevent this, we will make the sequence ri decreasing, in such a way that for any element in
stage i+1 the allocation will require a bin that is bigger than 2−ri . This way the unallocated

13



Algorithm 3.2: Client’s strategy in Game 1

for i = 0 to m− 1 do
(we are at time ti)
if a(N, ti) > 1− ρ then

return
ri ← r + (m− i)(g + dlog(1/ε)e)
run strategy inflate-ints(Xi, ri, g, ρ, ε) until it stops at some time ti+1

parts of ri-bins reserved in stage i cannot be allocated in any useful way in stage i+ 1. We
will set

ri = r′(ri+1, ε)

where the function r′(r, ε) was introduced in the strategy of Algorithm 3.1. Define now the
strategy of Client in 3.2.

After the end of part i, at time t′i, Lemma 3.5 gives

λ(Bi) ≥ (3/2− 5ε)2−ga(Xi, t
′
i).

where we used the abbreviation Bi = C(Xi, t
′
i) ∪Bri(Xi, t

′
i).

Claim 3.7 For i < j the sets Bi and Bj are disjoint.

Proof. The reserved set Br(Xj, t
′
j) cannot intersect Bi, since the latter is allocated or reserved

to elements of set Xi which is disjoint from Xj.
The allocated set C(Xj, t

′
j) cannot intersect C(Xi, t

′
i) for the same reason.

The allocated set C(Xj, t
′
j) cannot intersect Bri(Xi, t

′
i) either. Indeed, for x ∈ Xj we

have

a(x, t′j) = 2−r
′(rj ,ε)+g = 2−rj−1+g,

hence C(Xj, t
′
j) consists of s-bins of some s ≤ rj−1 ≤ ri allocated to Xj.

It follows, with n′ as the iteration i at which the algorithm returns:

1 ≥ λ(
⋃
i

Bi) =
∑
i

λ(Bi) ≥ 2−g(3/2− 5ε)
∑
i

a(Xi, t
′
i)

= 2−g(3/2− 5ε)a(N, t′n′) > 2−g(3/2− 5ε)(1− ε) since Client stopped,

2g ≥ (3/2− 5ε)(1− ε).

If 2g < 3/2 we get a contradiction with ε chosen sufficiently small.

14



In the proof of the lemma, for later applications, will also use a parameter γ which now
we set to

γ = 2−g.

The proof of Lemma 3.5 will be divided into the following lemmas.

Lemma 3.8 There is a time t′ during the application of strategy inflate-ints(·) with ερ ≤
a(X, t′) ≤ ρ and

br(X, t
′) ≥ (1− 4ε)2−ga(X, t′).

Lemma 3.9 The following holds for all t during the application of strategy inflate-ints(·):

λ(C(X, t) ∪Br(X, t)) ≥ (γ/2)a(X, t) + (1− ε)br(X, t). (3.3)

Proof of Lemma 3.5. Using the two claims gives

λ(B(X, t′) ∪Br(X, t
′)) ≥ a(X, t′)

(
γ/2 + 2−g(1− ε)(1− 4ε)

)
≥ a(X, t′)

(
γ/2 + 2−g(1− 5ε)

)
.

But γ was defined as 2−g, so this finishes the proof.

Proof of Lemma 3.8. Let us start with a simple observation.

Claim 3.10 During the algorithm inflate-ints(·) we have a(x, t) ≤ 2−r(2g + ε) for all x ∈ X.

Proof. If the algorithm increases a(x, t) then it does not have an r-bin reserved, so it does
not have an r-bin allocated either. Since Server must satisfy the redundancy condition we
have still a(x, t) ≤ 2−r+g. The right-hand side grows by at most ε2−r in the very step after
which x gets an r-bin allocated.

Let u be the first step t at which a(X, t) > ερ, and let v be the step t in which a(X, t)
would exceed the bound ρ if Client did not halt before. Define

m = max
t∈[u,v]

|Br(X, t)|,

and let X = {y1, y2, . . .} in increasing order. For u ≤ t ≤ v Client always increases some
a(yi, t) for i ≤ m+ 1. We have hence

a(X, v)− a(X, u) ≤ (m+ 1) max
i≤m+1

a(yi, v)

≤ (m+ 1)2−r(2g + ε) by Claim 3.10,

m2−r ≥ 2−g(a(X, v)− a(X, u))

1 + ε
− 2−r. (3.4)
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The maximum m is achieved for some t′ ∈ [u, v]. We can estimate

a(X, v)− a(X, u)

a(X, v)
≥ 1− ερ

ρ− ε2−r
> 1− ε

1− ε3
by (3.1),

> 1− 2ε.

This can be used for a(X, v)− a(X, u) ≥ (1− 2ε)a(X, t′), allowing with (3.4) to conclude

br(X, t
′) = m2−r ≥ 2−g(1− 2ε)a(X, t′)

1 + ε
− 2−r

≥ 2−ga(X, t′)

(
1− 2ε

1 + ε
− 2−r

ερ

)
by a(X, t′) ≥ ερ,

≥ 2−ga(X, t′)

(
1− 2ε

1 + ε
− ε
)

by (3.1),

≥ 2−ga(X, t′)(1− 4ε).

Proof of Lemma 3.9. For each x ∈ X, if no r-bin is reserved for x at time t then Br(x, t) = ∅
and C(x, t) ∪ Br(x, t) = C(x, t). In this case, the right-hand side above is (γ/2)a(X, t) and
the inequality follows from Proposition 3.2.

Suppose that there are some r-bins reserved for x at time t, namely n of them, and let
u ≤ t be the earliest time one of them has been reserved. Then a(x, t) = a(x, u). We have

λ(C(x, t) ∪Br(x, t)) ≥ λ(C(x, u− 1) ∪Br(x, t)).

The set Br(x, t) of new r-bins reserved by time t for x is disjoint from B(x, u − 1), so we
have

λ(C(x, u− 1) ∪Br(x, t)) ≥ c(x, u− 1) + n2−r ≥ (γ/2)a(x, u− 1) + n2−r (3.5)

by Proposition 3.2. Now a(x, u− 1) ≥ a(x, u)− ε2−r = a(x, t)− ε2−r, the right-hand side of
(3.5) is therefore greater than

γ(a(x, t)− ε2−r) + n2−r ≥ γa(x, t) + n2−r(1− ε).

Summing over x ∈ X concludes the proof.

4 Game on strings
Let us return to the problem of semimeasures and description complexity on strings. The
following definition is a straightforward generalization for the one over integers.

Definition 4.1 (Accumulation sequence on strings) A sequence a : N∗ ×N→ Q+ is called a
accumulation sequence if it has the following properties.
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(a) For each t the function a(·, t) is a semimeasure over N∗.
(b) a(x, t) is nondecreasing in t.

y

Definition 4.2 (Allocation over N∗ ) Let us call a function

x ∈ wN∗ 7→ B(x) ⊆ B∗

an allocation function on wN∗ if it has the following properties.

(i) For x v y we have B(x) ≤ B(y).

(ii) For incompatible strings x,y, the sets B(x), B(y) are mutually incompatible, that is
[B(x)] and [B(y)] are disjoint.

If w is the empty string we may omit mentioning it.
If the set {(p,x) : p ∈ B(x)} is recursively enumerable then the allocation function B(·)

will be called lower semicomputable. y

The following observation is immediate.

Proposition 4.3 If A is a monotonic interpreter then B(x) = A−1(x) defines a lower semi-
computable allocation function over N∗ .

Conversely, to each lower semicomputable allocation function x 7→ B(x) over N∗, the set
A = {(p,x) : p ∈ B(x)} defines a monotonic interpreter with B(x) = A−1(x).

We will define the sets B(x) as a limit

B(x) =
⋃
t

B(x, t),

where the function (x, t) 7→ B(x, t) is recursive and nondecreasing in t. This gives rise to
the following definition.

Definition 4.4 For a string w, a function B(x, t) will be called a monotonic allocation se-
quence on wN∗ if it satisfies the following conditions.

(i) For each t the function B(·, t) is an allocation function over wN∗.
(ii) It is monotonic in t: B(x, t) ⊆ B(x, t+ 1).

(iii) The set
⋃

xB(x, t) is finite for each t.

For the given sequence B(x, t) define b(x, t) = λ(B(x, t)). y

Let us define now the game needed for the proof of Theorem 2.

Definition 4.5 (Game 2) A sequence g : N → R+, n 7→ g(n) is called the redundancy
sequence.

For a redundancy sequence g(·), the game Game2(g(·)) has two players, Client and Server
as the earlier game, and the same alternation of steps. In step t, Client defines a(·, t) for
an accumulation sequence a(x, t) over N∗. Server defines a monotonic allocation sequence
B(x, t) over N∗.
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Server loses in step t unless the inequality

c(x, t) > 2−g(l(x))−1a(x, t)

holds for all x after he made his step. y

Suppose that Server has a strategy to survive Game2(g(·)). Then, just as from Game 1
the coding theorem, we could conclude

K(x)
+

< H(x) + g(l(x)).

It is less obvious whether a corresponding statement follows from a strategy of Client, but
this is what the next proposition shows.

Definition 4.6 Recall Definition 1.18. We say that Client has a strategy against all sub-K
redundancy sequences if there is a recursive function

S : N→ N

with the following property. Whenever e can be interpreted (in a standard way) as the
program of a sub-K sequence ge(n) then the integer S(e) can be interpreted as the program of
a recursive strategy of Client that defeats Server in the game using the redundancy sequence
ge(n). y

Our main tool is the following:

Theorem 6 Client has a strategy against all sub-K redundancy sequences.

It will be much work to prove this theorem, so let us show first how it helps achieve our
original goal.

Proposition 4.7 If Client has a strategy against all sub-K redundancy sequences then Theo-
rem 2 holds.

Proof. In view of Proposition 1.17, it is sufficient to show that for all sub-K redundancy
sequences g(n) there is an x with K(x) > H(x) + g(l(x)).

Let the computable monotonic allocation sequence B(x, t) be defined as

B(x, t) = {p : x v Ut(p)}

where the interpreter Ut was defined in Definition 1.12 above.
Let g be a sub-K redundancy sequence and define gk(n) = g(n)+k. Then gk is also a sub-

K redundancy sequence. If Client has a strategy against all sub-K redundancy sequences
then there is a recursive function S0(k) that assigns to each k the program of a recursive
strategy of Client defeating Server on redundancy function gk.

Strategy S0(k) of Client computes from Server’s strategy B(x, t) a recursive accumulation
sequence ak(x, t) on which Server fails with redundancy sequence gk(n): in other words, there
is an xk with

K(x) > − log ak(xk) + gk(l(xk)) = − log ak(xk) + g(l(xk)) + k.
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Let us use (1.4) noting ak(x) = ψf(k)(x) for a recursive function f(k). It gives

H(xk)
+

< − log ak(xk) +H(f(k))
+

< − log ak(xk) +H(k),

− log ak(xk)
+

> H(xk)−H(k),

K(xk)
+

> H(xk) + g(l(xk)) + k −H(k).

For sufficiently large k this implies K(xk) > H(xk) + g(l(xk)).

Theorem (5) suggests that, at least, a certain naive application of Server’s strategy of
Game 1 will increase redundancy too much. Suppose that in Game 2, Server proceeds as
follows.

1. On strings of form x = x(1) · · ·x(n), Client applies the strategy of Algorithm 3.2 to the
accumulation sequence a(x(1), t).

2. At the same time, for each value z1 of x(1) he applies the same strategy to the accumu-
lation sequence a(z1x(2), t), but of course allocating only in B(z1, t).

3. At the same time, for each value z2 of x(2) he applies the same strategy to the accumu-
lation sequence a(z1z2x(3), t), but of course allocating only in B(z1z2, t).

And so on. A naive calculation suggests that the redundancies of the different levels add
up (we lose a factor 2−g on each level). Since by Theorem 5 Server needs redundancy of at
least log 3

2
, if the game is played on n levels we would need redundancy proportional to n

(the factors 2−g would multiply to 2−ng).
This reasoning is misleading, however, since we know from Corollary 1.16 that the actual

redundancy is bounded by K(n) and not n.
We will nevertheless use a version of Client’s strategy inflate-ints(·) and an appropriate

variant of Lemma 3.5. Note that the lemma’s conclusion is by itself quite weak, since it is a
lower bound on (at least partly) reservation, not on allocation.

For future use, let us define reservation on strings: it is completely analogous to that on
integers, but we add a variant dependent on time.

Definition 4.8 (Reservation on strings) For any allocation function B(·), we will say that it
reserves an r-bin [p] for string x if [p] intersects [B(x)] but is disjoint from all other [B(y)]
for y incompatible with x.

We will say that an allocation sequence B(·, ·) reserves [p] at time t for x if B(·, t) reserves
it for x. If the sequence B(·, ·) is clear from the context then we will just say that [p] is
reserved for x at time t. Let again

Br(x, t)

denote the union of r-bins reserved for x at time t, and

Br(W, t) =
⋃

w∈W

Br(w, t)
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for a prefix-free set of strings W . For s1 ≤ s2, t1 ≤ t2 let

B
s2
s1

(x, t1, t2) =
⋃

t1≤u<t2
s1≤r≤s2

Br(x, u)

denote the union of r-bins with s1 ≤ r ≤ s2 which have been reserved for x during the time
interval (t1, t2]. (They may or may not be still reserved for x at time t2.) Define the same
way B

s2
s1

(W, t1, t2) for a prefix-free set of strings W . Denote

b
s

r(x, t, u) = λ(B
s

r(x, t, u)),

with a similar notation for prefix-free sets. y

Though B
s

r(x, t, u) is monotonic in u, the sets B
s1
r1

(x, t1, u1) and B
s2
r2

(y, t2, u2) are not
necessarily disjoint for incompatible x,y. However, the following holds.

Lemma 4.9 Let t2 ≥ u1, r1 ≥ s2 and let W be a prefix-free set of strings. We have

B
s1
r1

(W, t1, u1) ∩B
s2
r2

(W, t2, u2) = ∅.

Proof. An r-bin once reserved for string x, even if then abandoned, cannot be reserved later
for any string incompatible with x.

5 Proof of the main theorem
We will prove that if g(·) is a sub-K redundancy sequence then Client has a winning strategy.
So, we know

∑∞
n=0 2−g(n) =∞. Assume without loss of generality

∞∑
i=0

2−g(2i+1) =∞.

Then from any M one can compute a lower approximation gM(·) of g(·) such that

∞∑
i=0

2−gM (2i+1) > M.

To simplify of notation from now on we assume that g(·) is given as such a gM(·), and return
to this at the end of the proof.

Notation 5.1 Denote

γn(m) = 2−g(2n+1) + 2−3
n−1∑

i=n−m

2−g(2i+1).

y
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Lemma 3.5 needs reformulation in order to become usable for multiple levels. We want
to use its conclusion (“output”) as “input” in a renewed application of itself on a higher level
(on shorter sequences). For this, we will recast it into a form where not only the conclusion
speaks about reservation but also the assumption. Also, it will be about Game 2. From now
on assume that a redundancy sequence g(·) has been fixed.

The following definition defines the strings and times when Client has a chance to do
harm:

Definition 5.2 We say that string w is a (r, r′)-virgin at time t if the following holds:

a(w, t) = 0,

B
r′

r (w, t) = ∅.

y

Here is what the recursive strategy of Client needs to achieve.

Definition 5.3 Let 0 ≤ m ≤ n be integers, where n will be fixed. For each m, we say that
Client has an (n,m)-expanding strategy if there is a strategy

inflate-seqs(W, r,m, n),

a computable function r′(r,m, n) with r′ = r′(r,m, n), and for all w and all W ⊆ N2(n−m) a
set

B̂r′

r (w, τ,m;W ) ⊆ B
r′

r (w, τ0, τ) with

b̂r
′

r (w, τ,m;W ) = λ(B̂r′

r (w, τ,m;W )),

such that defining for any prefix-free set S

B̂r′

r (S, τ,m;W ) =
⋃
w∈S

B̂r′

r (w, τ,m;W ),

b̂r
′

r (S, τ,m;W ) = λ(B̂r′

r (S, τ,m;W ))

we have the following properties. Let

η = 8. (5.1)

(a) If an s-bin is contained in B̂r′
r (w, τ,m;W ) then it is contained also in all B̂r′

r (w′, τ,m;W )
for any w′ v w.

(b) Let us have some integer r ≥ 0 with r′ = r′(r,m, n). Suppose that all elements w ∈ W
are (r, r′)-virgins at time τ0, and we have enough weight to spend: a(Λ, τ0) ≤ 1−|W |2−r.
Then Client can carry out the strategy. At its end, at time τ ′′, we will have the following,
for all w ∈ W :

2−r−1 ≤ a(w, τ ′′) ≤ 2−r, (5.2)

b̂r
′

r (W, τ ′′,m;W ) ≥ γn(m)a(W, τ ′′), (5.3)

b̂r
′

r (w, τ ′′,m;W ) ≤ ηγn(m)a(w, τ ′′). (5.4)
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Let us show that Definition 5.3 is not empty:

Lemma 5.4 For every n, Client has an (n, 0)-expanding strategy.

Proof. Let
r′ = r′(r, 0, n) = r + g(2n+ 1).

Let us define the (n, 0)-expanding strategy in Algorithm 5.1.

Algorithm 5.1: Client’s strategy inflate-seqs(W, r, 0, n) for W ⊆ N2n

for v ∈ W0{1, . . . , 2g(2n+1)} do
a(v)← 2−r

′

This strategy increases the weight of the string w0j to 2−r
′

and that of w0 to at least
2−r

′+g(2n+1), forcing Server to allocate an r′-bin to w0. With starttime τ0 and endtime
τ ′′ = τ0 + 1 we define B̂r′

r (w0, τ ′′, 0;W ) as just the first r′-bin reserved for w0 at time τ ′′.
Then we have

b̂r
′

r (w, τ ′′, 0;W ) = 2−r
′
= 2−g(2n+1)a(w, τ ′′) = γn(0)a(w, τ ′′),

b̂r
′

r (W, τ ′′, 0;W ) = |W |2−r′ = γn(0)a(W, τ ′′). (5.5)

Lemma 5.5 (Main) If Client has an (n,m)-expanding strategy with m < n then she also has
an (n,m+ 1)-expanding strategy.

Before proving the lemma let us use it to prove Theorem 6.

Proof of Theorem 6. Let us fix some n > 0. Now, Lemma 5.4 gives us an (n, 0)-expanding
strategy. Applying the Main Lemma 5.5 inductively gives us an (n, n)-expanding strategy.
Starting the strategy at time 0 gives us

1 ≥ b
r′

r (Λ, 0, t1) ≥ γn(n)a(Λ, t1) ≥ γn(n)2−r−1 ≥ 2−4−r
n∑
i=0

2−gM (2i+1).

Now recall that for anyM , Client can choose a computable gM(·) and an n with
∑n

i=0 2−gM (2i+1) >
M . With M = 17, r = 0 (and the strategy derived from gM(·)), Client would cause contra-
diction in the last inequality and thus defeat Server.

From now on, denote

γ = γn(m),

g = g(2(n−m)− 1).
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For the proof of Lemma 5.5, we define the bin sizes (and other quantities) for m+ 1 first
(assuming they have been defined for m):

σ = 2−1η−1(γ−1 ∧ 1),

h = h(m,n) = d2g+4/σe,
sh+4 = r,

st = r′(st+1,m, n) for 0 ≤ t < h+ 4,

p = sh,

r′(r,m+ 1, n) = s0,

L = 2p−r−g−1.

(5.6)

This defines the function r′(r,m, n) recursively. Now we define the strategy
inflate-seqs(W, r,m, n) in Algorithm 5.2 for a set of strings W of even length < 2n. This
algorithm incorporates Adam Day’s ideas from [2]:

• Adding a “spend” phase to the “advantage” phase, to guarantee that Server’s wasted space
is identifiable at the end of the procedure.

• Using the added predictability for inflating not just a simple sequence w but a set of
sequences W .

Notation 5.6 Denote Ni = {0, . . . , i− 1}. y

Let

τ ′ = τt1 , τ ′′ = τt2

be the end of the advantage phase and the spend phase respectively. Define the set
B̂r
r′(w, τ,m+ 1;W ) as follows. Let

B̂p =
⋃

v∈V0(τ ′)

u(v), (5.7)

where u(v) is the first p-bin in Bp(v, τ
′). We further define for all τ ≤ τ ′

B̂p(wNL, τ) = Bp(wNL, τ) ∩ B̂p, (5.8)

b̂p(wNL, τ) = λ(B̂p(wNL, τ)).

Let

B̂r′

st(wNLN, τt) =
t−1⋃
u=0

B̂su
su+1

(wNLN, τu+1,m;V1(τu)), (5.9)

B̂r′

r (wNL, τ
′′,m+ 1;W ) = B̂r′

r (w, τ ′′) ∪ B̂p(w, τ
′). (5.10)

This concludes the definition of the strategy.
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Algorithm 5.2: Client’s strategy inflate-seqs(W, r,m+ 1, n) for W ⊆ N2(n−m−1)

for t = 0 to h− 1 do // advantage phase
V0 = V0(τt)← {v ∈ WNL : Bp(v) 6= ∅}
if |V0| ≥ |W |L/2 then break from the loop

for v ∈ WNL \ V0 do
Y (v)← the set of smallest ≤ σ2st−p integers y with a(vy) = 0

V1 = V1(τt)←
⋃

v∈V0 vY (v)

run inflate-seqs(V1, st,m, n)

t1 ← t
for t = t1 to t1 + 3 do // spend phase

W ′ ← {w ∈ W : a(w) < 2−r−1}
if W ′ = ∅ then break from the loop

for w ∈ W ′ do
V2(w)← the smallest 2st−r−1 strings in w(L+ t)N

V1 = V1(τt)←
⋃

w∈W ′ V2(w)
run inflate-seqs(V1, st,m, n)

t2 ← t

Assume that strategy inflate-seqs(W, r,m, n) is (n,m)-expanding. We prove that the
strategy inflate-seqs(W, r,m + 1, n) is (n,m + 1)-expanding. In order to show the main
inequality (5.5), we need to show that the strategy inflate-seqs(·) ends at some time τ ′′ with

b̂r
′

r (W, τ ′′,m+ 1;W ) ≥ a(W, τ ′′)(γ + 2−g−3).

The following observation is similar to the case of integers:

Lemma 5.7 During the advantage phase we have

a(wx) ≤ 2−p(2g + σ), (5.11)

a(w) ≤ 2−r (5.12)

for all w ∈ W , x ∈ N

Proof. When the algorithm increases a(wx) then wx does not have a p-bin reserved, so it
does not have a p-bin allocated either. Since Server must satisfy the redundancy condition
we have still a(wx) ≤ 2−p+g. The right-hand side grows by at most

2st−pσ2−st = 2−pσ

in the very step after which wx gets a p-bin allocated.
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We obtain the second inequality multiplying the first one by L and using g ≥ 0 and
σ ≤ 1:

2p−r−g−12−p(2g + σ) = 2−r−1(1 + σ2−g) ≤ 2−r.

The following lemma corresponds to Lemma 3.8 of the integers case.

Lemma 5.8 At the end of the advantage phase, we have |V0| ≥ L|W |/2 and thus in the
definition of B̂r′

r (w, τ ′′,m+ 1;W ) in (5.10) the contribution of (5.8) is at least

2−p−1L|W | = 2−r−g−2|W |.

Proof. Unless the advantage phase ends with |V0| ≥ L|W |/2, its “for” loop runs to the end.
Each iteration pours a weight of at least

(|W |L/2)2st−pσ2−st−1 = σ|W |2−r−g−3

into a(WNL). The total weight is then at least h|W |σ2−r−g−3 which, combined with inequal-
ity (5.12), gives

h|W |σ2−r−g−3 ≤ |W | · 2−r,
hσ2−g−3 ≤ 1,

contradicting the definition of h.

The following lemma corresponds to Lemma 3.9 of the integers case.

Lemma 5.9 The following holds for all stages τt during the application of strategy inflate-seqs(·)
in the advantage phase:

λ
(
B̂r′

st(WNLN, τt) ∪ B̂p(WNL, τt)
)
≥ γa(W, τt) + 2−1b̂p(WNL, τt), (5.13)

λ
(
B̂r′

st(w, τt) ∪ B̂p(w, τt)
)
≤ ηγa(w, τt) + b̂p(w, τt). (5.14)

In particular, we have at the end of this phase:

b̂r
′

p (WNLN, τ ′) ≥ γa(W, τ ′) + 2−1b̂p(WNL, τ
′),

b̂r
′

p (w, τ ′) ≤ ηγa(w, τ ′) + b̂p(w, τ
′).

Proof. The set B̂p(w, τt) defined in (5.8) is the union of those p-bins in the selected set B̂p

that have already been reserved at time τt. As such, it is monotonically increasing in t ≤ t1.
Recall the set B̂r′

st(w, τt) from (5.9). We prove the inequalities by induction on t. Both
inequalities hold for t = 0, when both sides are 0. Suppose they hold for t, we prove them
for t+ 1.
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1. Consider the contribution of s-bins with st+1 ≤ s < st to the left side of (5.13). By
choice of the extensions in the advantage stage, the set B

st
st+1

(WNLN, τt, τt+1) is disjoint
from Bp(WN, τt). The fact that the sequence si is nonincreasing and that all used ex-
tension strings are incompatible, implies via Lemma 4.9 that the set is also disjoint from

B
r′

st(W, τ0, τt), so it is disjoint from B̂r′
st(W, τt) ∪ B̂p(W, τt). Therefore the contribution of

s-bins with st+1 ≤ s < st to the left side of (5.13) is

b̂stst+1
(V1(τt), τt+1,m;V1(τt)),

which is ≥ γa(V1(τt), τt+1) due to the (n,m)-expansion of the strategy that is applied
between times τt and τt+1 to the set V1(τt).

For an upper bound, the same expansion property gives for each v ∈ V1(τt):

b̂sust+1
(v, τt+1,m;V1(τt)) ≤ ηγa(v, τt+1).

2. Now consider the contribution of the p-bins. Take any v ∈ wNL for which a(v, τt+1) −
a(v, τt) 6= 0, and Bp(v, τt+1)∩B̂p 6= ∅. By definition (5.7), the latter set consists of a single

p-bin. It is disjoint from B
r′

st(W, τ0, τt), therefore would increase the left-hand side of (5.13)
by 2−p. However, this contribution overlaps with the already counted contribution of the
s-bins with st+1 ≤ s < st, which by (5.9) is

B̂st
st+1

(vN, τt+1,m;V1(τt)).

The inductive assumptions’ condition (5.4) provides an upper bound for this overlap:

b̂st+1
st (v, τt+1) ≤ ηγ

(
a(v, τt+1)− a(v, τt)

)
≤ ηγσ2−p.

So the total additional contribution of the p-bin newly reserved for v to the left-hand side
of (5.13) is, using the definition of η in (5.1) and the definition of σ in (5.6):

≥ (1− ηγσ)2−p ≥ 2−p−1 = 2−1
(
b̂p(v, τt+1)− b̂p(v, τt)

)
.

For the upper bound of the same contribution we can use

2−p = b̂p(v, τt+1)− b̂p(v, τt).

3. Combining the contributions of the first and second kind shows that the increase on the
left-hand side of (5.13) is at least

γ
(
a(W, τt+1)− a(W, τt)

)
+ 2−1

∑
v∈WNL

b̂p(v, τt+1)− b̂p(v, τt)

= γ
(
a(W, τt+1)− a(W, τt)

)
+ 2−1

(
b̂p(W, τt+1)− b̂p(W, τt)

)
,
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proving the induction step for the inequality (5.13). With a similar combination, the
upper bound for the increase of the left-hand side of (5.14) gives

ηγ
(
a(w, τt+1)− a(w, τt)

)
+
∑

v∈wNL

b̂p(v, τt+1)− b̂p(v, τt)

= ηγ
(
a(w, τt+1)− a(w, τt)

)
+ b̂p(w, τt+1)− b̂p(w, τt),

proving the induction step for the inequality (5.14).

Consider the spend phase now.

Lemma 5.10 For all w ∈ W , at the end of the spend phase we have 2−r−1 ≤ a(w) ≤ 2−r.

Proof. Lemma 5.7 shows that the upper bound holds at the start of the spend phase. For
any particular w ∈ W , suppose that w leaves the set W ′ at a certain point of the iteration
in the spend phase. Then we have a(w) < 2−r−1 before the iteration, which adds at most
2−r−1 to the weight.

Since the iteration adds at least 2−r−2 to the weight of each w, in at most 4 iterations
each string w reaches the desired weight.

Proof of Lemma 5.5. Lemmas 5.9 and 5.8 imply for the advantage phase

b̂r
′

p (WNL, τ
′) ≥ γa(W, τ ′) + 2−1b̂p(WNL, τ

′) ≥ γa(W, τ ′) + 2−r−g−3|W |, (5.15)

b̂r
′

p (w, τ ′) ≤ ηγa(w, τ ′) + b̂p(w, τ
′) ≤ ηγa(w, τ ′) + 2−pL = ηγa(w, τ ′) + 2−r−g−1. (5.16)

The contribution of the spend phase to b̂r
′
r (W, τ ′′) is disjoint from that of the advantage

phase:

b̂r
′

r (WNLN, τ ′′) = b̂r
′

p (WNLN, τ ′) +

t2−1∑
u=t1

b̂susu+1
(WNLN, τu+1,m;V1(τu)).

The inductive assumption gives for the sum the lower bound γ
(
a(W, τ ′′)− a(W, τ ′)

)
. Com-

bining this with (5.15) and the bound of Lemma 5.10 gives

b̂r
′

r (W, τ ′′) ≥ γa(W, τ ′′) + 2−r−g−3|W | ≥ a(W, τ ′′)(γ + 2−g−3),

proving (5.3) for m+ 1.
The upper bound is obtained similarly. Lemma 5.9 gives

b̂r
′

p (w, τ ′) ≤ ηγa(w, τ ′) + 2−r−g−1.

The spend phase adds at most

t2−1∑
u=t1

b̂susu+1
(w, τu+1,m;V1(τu)).
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The inductive assumption gives for the sum the upper bound ηγ
(
a(w, τ ′′)− a(w, τ ′)

)
. Com-

bining this with (5.16), the bound 2−r ≤ 2a(w, τ ′′) of Lemma 5.10 and the definition of η
in (5.1) gives

b̂r
′

r (w, τ ′′) ≤ ηγa(w, τ ′′) + 2−r−g−1 ≤ a(w, τ ′′)(ηγ + 2−g)

≤ ηa(w, τ ′′)(γ + 2−g−3)

proving (5.4) for m+ 1.

6 The lower bound for binary sequences
The original proof of Theorem 2 used a recursion that forced Client’st strategy to introduce
very large numbers, but using Adam Day’s idea this is no longer the case. What results is
an improved lower bound for binary sequences in Theorem 3.

Proof of Theorem 3. Let us upperbound the number of sequences of length 2n used by
Client’s strategy inflate-seqs(Λ, 0, n). Define the sequence rm recursively by r0 = 0,

rm+1 = r′(rm,m, n).

If we assume (since we can) for an appropriate ε:

g(2n+ 1) ≤ (1 + ε) log n, (6.1)

γn(m) ≤ log n, (6.2)

then for

k = max
m

h(m,n) + 4,

following estimates hold.

r′(r, 0, n) = r + g(2n+ 1) ≤ r + (1 + ε) log n,

r′(r, 1, n) ≤ r + (1 + ε)k log n,

r′(r, 2, n) ≤ r + (1 + ε)k2 log n,

. . .

r′(r,m, n) ≤ r + (1 + ε)km log n,

where, using (6.1):

k ≤ 2(1+ε) logn+4/σ + 6 ≤ 32n1+ε log n+ 6,

kn log n ≤ 2(1+2ε)n1+ε

for large n. Strategy inflate-seqs(W, r, n) with W ⊆ N2(n−m−1) uses recursive calls on at most

2r
′−r ≤ 2(1+ε)km logn
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sequences of length 2(n−m). The total number of sequences of length 2n used is, for large
n therefore at most

2(1+ε) logn(k0+k1+···+kn−1) ≤ 2(1+2ε)kn logn ≤ 2(1+2ε)2(1+2ε)n1+ε

for large n. It follows that we can encode these strings with binary strings of length L =
(1 + 2ε)2(1+2ε)n1+ε

, thus n ≤ (logL)1−2ε for large n. On such strings then, the redundancy
bound cannot be less than log n for sufficiently large n.

For the difference K(x)−H(x), this gives for infinitely many binary strings of length L
a lower bound of (1− 2ε) log logL.
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