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The complexity K(x) of the algorithmic definition of a finite binary word x was
introduced by A. N. Kolmogorov in [1]. Kolmogorov and Levin showed that the infor-
mation [(x :y) = K(y) — K(y/x) concerning the word y in the word x, though it is
~symmetric to a greater degree (to within the logarithm of complexity), it is not exactly
(i.e. not to within an additive constant) a symmetric function of its arguments (for

a proof see [3]). There exist several variants of complexity, introduced by Levin in
[4], (5], which asymptoti;:ally_ coincide with it and yield probabilistic results that are
- simpler in form. Symmetry for them to within the logarithm of complexity at once follows
from the results mentioned above, but the degree of nonsymmetry is not known. One
- of these complexities, KP(x), considered in detail by Levin, is defined as the com-
“plexity in specifying x on a machine on which it is impossible to indicate the halt-
ing of a master program: an infinite sequence of binary symbols enters the machine
and the machine must itself decide how many binary symbols are required for its

" computatlon. KP(x), on the other hand, is equal to the base two logarithm of a
“universal semicomputable probability measure that can be defined on the. countable

) set of all words.

The aim of the present article is to give exact relationships of nonsymmetxy for
--IP(x y) = KP(y) = KP(y/x). Nonsymmetry of a similar order follows from them and
"for other complexltles as well, since they coincide with KP(x) on any prefix set.
._3In order to maintain unity of presentation and not to complicate the article with ref-

“erences, we announce at the outset: the relationship

KP(z, KP(z))=<KP(z) (1)

is due to the author, as well as Theorem 2 and its Corollary to the effect that

[P(x: y) is nonsymmetric. All the other results and corollaries were obtained by
Levin.

(1) is a unique, nonobvious property which is requlred of a certain complexity
function K(x) in order to prove the nonsymmetry of T(x: y). It is quite natural to
‘substantiate this in a certain axiomatics considered by Levin, which, moreover, in a
."‘.Il_atural way distinguishes KP(x) from other conceivable complexities.

. The last theorem shows that, although [P(x:y) is nonsymmetric to the same
‘order as is I(x:y), nonsymmetry for IP(x:x) is an extremely rare event, while for

I(x:y) greater nonsymmetricity is reached on random sequences.
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Let us first give a precise relationship of nonsymmetry for IP(x:y).

Theorem 1. .
KP(z)+KP(y/x, KP(x))<XKP(z, y).

of determining KP(x) the machine will know both its length and its end, and it can

write down the shortest program assigning y for x and KP(x).

2) (X).
KP(y/z, KP(z)) <KP(z, y)—KP(z),

2KP(x)-KP(x,y)

since is a probability distribution (tq within a multiplicative con-

stant) on the words of y which is semicomputable relative to x and KP(x).

Corollary 1. '
KP(z, y) <KP(z, KP(z), y).
Corollary. 2.

KP (z)+KP(y/z)—KP(z, y) <IP(KP(z):y/x)
< KP(KP(z)/z) = log. KP(x)+2 log. log: KP (z).

Corollary 3. |
IP (z:y) —IP (y:z) <IP (KP(y) :a/y) —IP (KP (z) :y/z).

‘We will now show that on some infinite set, the left side in (5) and (6)is

asymptotically equal to log,KP(x, y). Let % =<x, KP(x)>. Then

KP(z)+KP (/z)—KP(z, %) <KP(KP(z)/z),
IP (2:%) —IP (%:z) X—KP (KP () /z).

If {x)=n, then KP(KP(x)/x)< log-2 n. Therefore our assertion reduces to the

following theorem.
Theorem 2. For all n there exists x of length n such that
KP (KP (x)/z) »= logs, n—log; log. n.

Proof. Let B(p, x) be that universal partial recursive function for which -

KP(y/x)=ming, . Ip). Let D=10, 1}
Let s<log, n be such that if [(x)=mn, then P € D% can be found for which
B(p, x) = KP(x). We must show that

s >=log, n—log. log: n.
Let us say that p € D¥ is ‘‘suitable’’ for x € D" if there exists &k = B(p, x)

and g € D® such that B(g, A) =«



Let us denote by M. the set of those x € D" for which there exist at least i
erent suitable p € DS We will consider the sequence D” = My 2M; D...D M]. )
1'.’74@/’ where M, # . It is clear that 2° > j. We now show that

IOg‘gA 3’.[1[ <10g2 I ]ll[i-H [ +4 ].Og' n. (11)

In fact, we may write a program with a length given by the second temm of the
uality (11), which assigns x € M. — M;,, with the property KP(x) > log‘MA - 1.
e program operates in the following manner. It assigns 1MZ.+1| by means of a seg-
at of length log, ‘Mz‘}l‘ + log, n+ 2 log, log, n. The numbers i, n, and s are
signed by means of programs of lengths log, n + 2 log, log, n, n + 2 log log 7, and
og, lpgz n, respectively. From this data the machine can determine the set Mz.+1
then begin to enumerate the set MZ. - Mz.+1. For x € Ml. - MZ.+1 it can determine
). Since we may assume that log, }M. - M. 1[ > log, [Ml ~ 1 (otherwise (11) is
al), there exists x EM, - M;, y for which KP(x) > log, ]M | - 1. The machine
vers the first such x as the result

Erom the inequality (11) it immediately follows that j> n/(4 log, n), and (10)

s from the latter.

TCprollary. IP(x:y) (as well as I(x:y)) is not even asymptotically symme.zric.

‘Pmof. Let us assume that () = n and KP(KP(x)/x)¥ log, n~ log, log, n.

ill consider x, ®, and KP(x). The following relationships are immediately
IP(z:KP(x)) =<3 log: log: n<<log, n—log. log: n= IP(x:KP (z)), (12)

IP(KP (x):x)=<IP(KP(z):%). (13)

ollows from this that symmetry breaks down in an exponentially greater measure
ron the pair x, K(x) or on the pair x, I?(x). '

The following theorem, which we give without proof, shows that the words x, y
hich IP(x, y) is nonsymmetric are rather ‘‘exotic’’

Inform ation [P(d:x) in an mhmte sequence & concerning the word x is deter-

'n a natural manner.

Theorem 3. Let v be the characteristic function of a universal recursively

:iqble set. Then
KP(KP(1)/x) <IP (v:z) +3log, IP (v:z). (14)

"Ihﬁ_s if KP(KP(x)/x) is large, much informétien concerming X is contai_ned in

urfiversal set. We note that for any computable or semicomputable probability
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