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ABSTRACT. While Kolmogorov complexity is the accepted absolute measure of information
content in an individual finite object, a similarly absolute notion is needed for the informa-
tion distance between two individual objects, for example, two pictures. We give several
natural definitions of a universal information metric, based on length of shortest programs
for either ordinary computations or reversible (dissipationless) computations. It turns out
that these definitions are equivalent up to an additive logarithmic term. We show that the
information distance is a universal cognitive similarity distance. We investigate the maxi-
mal correlation of the shortest programs involved, the maximal uncorrelation of programs
(a generalization of the Slepian-Wolf theorem of classical information theory), and the den-
sity properties of the discrete metric spaces induced by the information distances. A related
distance measures the amount of nonreversibility of a computation. Using the physical
theory of reversible computation, we give an appropriate (universal, anti-symmetric, and
transitive) measure of the thermodynamic work required to transform one object in an-
other object by the most efficient process. Information distance between individual objects
is needed in pattern recognition where one wants to express effective notions of “pattern
similarity” or “cognitive similarity” between individual objects and in thermodynamics of
computation where one wants to analyse the energy dissipation of a computation from a
particular input to a particular output.
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1. INTRODUCTION

We write string to mean a finite binary string. Other finite objects can be encoded into
strings in natural ways. The set of strings is denoted by {0, 1}∗.

The Kolmogorov complexity, or algorithmic entropy, K(x) of a string x is the length
of a shortest binary program to compute x on a universal computer (such as a universal
Turing machine). Intuitively, K(x) represents the minimal amount of information required
to generate x by any effective process, [9]. The conditional Kolmogorov complexity K(x|y)
of x relative to y is defined similarly as the length of a shortest program to compute x
if y is furnished as an auxiliary input to the computation. The functions K(·) and K(·|·),
though defined in terms of a particular machine model, are machine-independent up to an
additive constant and acquire an asymptotically universal and absolute character through
Church’s thesis, from the ability of universal machines to simulate one another and execute
any effective process. The Kolmogorov complexity of a string can be viewed as an absolute
and objective quantification of the amount of information in it. This leads to a theory of
absolute information contents of individual objects in contrast to classic information theory
which deals with average information to communicate objects produced by a random source.
Since the former theory is much more precise, it is surprising that analogons of theorems
in classical information theory hold for Kolmogorov complexity, be it in somewhat weaker
form.

Here our goal is to study the question of an “absolute information distance metric” be-
tween individual objects. This should be contrasted with an information metric (entropy
metric) such as H(X|Y) + H(Y|X) between stochastic sources X and Y. Non-absolute ap-
proaches to information distance between individual objects have been studied in a statis-
tical setting, see for example [25] for a notion of empirical information divergence (relative
entropy) between two individual sequences. Other approaches include various types of
edit-distances between pairs of strings: the minimal number of edit operations from a
fixed set required to transform one string in the other string. Similar distances are defined
on trees or other data structures. The huge literature on this ranges from pattern matching
and cognition to search strategies on internet and computational biology. As an example
we mention nearest neighbor interchange distance between evolutionary trees in compu-
tational biology, [24, 21]. A priori it is not immediate what is the most appropriate universal
symmetric informational distance between two strings, that is, the minimal quantity of in-
formation sufficient to translate between x and y, generating either string effectively from
the other. We give evidence that such notions are relevant for pattern recognition, cogni-
tive sciences in general, various application areas, and physics of computation.

Metric. A distance function D with nonnegative real values, defined on the Cartesian prod-
uct X × X of a set X is called a metric on X if for every x, y, z ∈ X:

• D(x, y) = 0 iff x = y (the identity axiom);
• D(x, y) + D(y, z) ≥ D(x, z) (the triangle inequality);
• D(x, y) = D(y, x) (the symmetry axiom).

A set X provided with a metric is called a metric space. For example, every set X has the
trivial discrete metric D(x, y) = 0 if x = y and D(x, y) = 1 otherwise. All information
distances in this paper are defined on the set X = {0, 1}∗ and satisfy the metric conditions
up to an additive constant or logarithmic term while the identity axiom can be obtained
by normalizing.
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Algorithmic Information Distance. Define the information distance as the length of a shortest
binary program that computes x from y as well as computing y from x. Being shortest, such
a program should take advantage of any redundancy between the information required to
go from x to y and the information required to go from y to x. The program functions in
a catalytic capacity in the sense that it is required to transform the input into the output,
but itself remains present and unchanged throughout the computation. We would like to
know to what extent the information required to compute y from x can be made to overlap
with that required to compute x from y. In some simple cases, complete overlap can be
achieved, so that the same minimal program suffices to compute x from y as to compute y
from x. For example if x and y are independent random binary strings of the same length n
(up to additive contants K(x|y) = K(y|x) = n), then their bitwise exclusive-or x ⊕ y serves
as a minimal program for both computations. Similarly, if x = uv and y = vw where u,
v, and w are independent random strings of the same length, then u ⊕ w plus a way to
distinguish x from y is a minimal program to compute either string from the other.

Maximal Correlation. Now suppose that more information is required for one of these com-
putations than for the other, say,

K(y|x) > K(x|y).

Then the minimal programs cannot be made identical because they must be of different
sizes. In some cases it is easy to see that the overlap can still be made complete, in the
sense that the larger program (for y given x) can be made to contain all the information in
the shorter program, as well as some additional information. This is so when x and y are
independent random strings of unequal length, for example u and vw above. Then u ⊕ v
serves as a minimal program for u from vw, and (u ⊕ v)w serves as one for vw from u.

A principal result of this paper in Section 3 shows that, up to an additive logarithmic
error term, the information required to translate between two strings can be represented
in this maximally overlapping way in every case. Namely, let

k1 = K(x|y), k2 = K(y|x),
l = k2 − k1

where we assume k1 ≤ k2. Then there is a string q of length k1 + K(k1, k2) and a string d of
length l such that q serves as the minimal program both to compute from xd to y and from
y to xd. The term K(k1, k2) has magnitude O(log k2). This means that the information to
pass from x to y can always be maximally correlated with the information to get from y to
x. It is therefore never the case that a large amount of information is required to get from x
to y and a large but independent amount of information is required to get from y to x. This
demonstrates that

E1(x, y) = max{K(y|x), K(x|y)}

equals the length of a shortest program p := qd to compute x from y and y from x, up to a
logarithmic additive term.1 (It is very important here that the time of computation is com-
pletely ignored: this is why this result does not contradict the idea of one-way functions.)

The process of going from x to y may be broken into two stages. First, add the string d;
second, use the difference program q between xd and y. In the reverse direction, first use q

1The situation is analogous to the inverse function theorem of multidimensional analysis. This theorem
says that under certain conditions, if we have a vector function f (x, p) then it has an inverse g(y, p) such
that in a certain domain, f (x, p) = y holds if and only if g(y, p) = x. In the function going from y to x, the
parameter p remains the same as in the function going from x to y.
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to go from y to xd; second, erase d. Thus the computation from x to y needs both q and d,
that is, the program p = qd, while the computation from y to x needs only q as program.

Minimal Correlation. The converse of maximal correlation is that in the special case of the
shortest programs for going between independent random x and y, they can be choosen com-
pletely independent. For example use y to go from x to y and x to go from y to x. This turns
out to hold also in the general case for arbitrary pairs x, y, as will be shown in Theorem
3, but only with respect to an “oracle”: a certain constant string that must be in all the
conditions. This theorem can be considered a generalization of the Slepian-Wolf Theorem
of classical information theory [8].

Universal Cognitive Distance. Section 4 develops an axiomatic theory of “pattern distance”
or more generally a “cognitive similarity metric” and argues that the function E1(x, y) is
the most natural way of formalizing a universal cognitive distance between x and y. This
nonnegative function is 0 iff x = y (rather, its normalized version in Theorem 4 satifies
this), it is symmetric, obeys the triangle inequality to within an additive constant, and is
minimal among the class of distance functions that are computable in a weak sense and
satisfy a normalization constraint limiting the number of distinct strings y within a given
distance of any x. It uncovers all effective similarities between two individual objects.

Information Distance for Reversible Computation. Up till now we have considered ordinary
computations, but if one insists that the computation be performed reversibly, that is by
a machine whose transition function is one-to-one [18, 3], then the full program p = qd
above is needed to perform the computation in either direction. This is because reversible
computers cannot get rid of unwanted information simply by erasing it as ordinary irre-
versible computers do. If they are to get rid of unwanted information at all, they must
cancel it against equivalent information already present elsewhere in the computer. Re-
versible computations are discussed in Section 5 where we define a reversible distance
E2(x, y) = KR(x|y) = KR(y|x), representing the amount of information required to pro-
gram a reversible computation from x to y (which by definition is the reverse of the com-
putation from y to x). The E2 distance is equal within an additive constant to the length of
the conversion program p = qd considered above, and so is at most greater by an additive
logarithmic term than the optimal distance E1. It is also a metric. The reversible program
functions again in a catalytic manner.

Hence, three very different definitions arising from different backgrounds identify up
to logarithmic additive terms the same notion of information distance and corresponding
metric. It is compelling to believe that our intuitive notions are adequately formalized by
this universal and absolute notion of information metric.

Minimal Number of Irreversible Operations. Section 6 considers reversible computations
where the program is not catalytic but in which additional information p (like a program)
besides x is consumed, and additional information q (like garbage) besides y is generated
and irreversibly erased. The sum of these amounts of information, defined as distance
E3(x, y), represents the minimal number of irreversible bit operations in an otherwise re-
versible computation from x to y in which the program is not retained. It is shown to be
equal to within a logarithmic term to Zurek’s sum metric K(y|x) + K(x|y), which is typ-
ically larger than our proposed optimal metric E1 because of the redundancy between p
and q. But using the program involved in E1 we both consume it and are left with it at the
end of the computation, accounting for 2E1(x, y) irreversible bit operations, which is typi-
cally larger than E3(x, y). Up to additive logarithmic terms E1(x, y) ≤ E3(x, y) ≤ 2E1(x, y).
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If the total computation time is limited then the total number of irreversible bit operations
will rise. Resource-bounded versions of E3(·, ·) are studied in [20].

Thermodynamic Work. Section 8 considers the problem of defining a thermodynamic en-
tropy cost of transforming x into y, and argues that it ought to be an anti-symmetric, tran-
sitive function, in contrast to the informational metrics which are symmetric. Landauer’s
principle connecting logical and physical irreversibility is invoked to argue in favor of
K(x) − K(y) as the appropriate (universal, anti-symmetric, and transitive) measure of the
thermodynamic work required to transform x into y by the most efficient process.

Density in Information Metric Spaces. Section 9 investigates the densities induced by the
optimal and sum information metrics. That is, how many objects are there within a given
distance of a given object. Such properties can also be viewed as “dimensional” properties.
They will govern many future applications of information distances.

2. KOLMOGOROV COMPLEXITY

Let l(p) denote the length of the binary string p. Let #S denote the number of elements
of set S. We give some definitions and basic properties of Kolmogorov complexity. For
all details and attributions we refer to [22]. There one can also find the basic notions of
computability theory and Turing machines. The “symmetry of information” property in
Equation 5 is from [13]. It refines an earlier version in [28] relating to the original Kol-
mogorov complexity of [9].

Definition 2.1. We say that a real-valued function f (x, y) over strings or natural numbers
x, y is upper semicomputable if the set of triples

{ (x, y, d) : f (x, y) < d, with d rational }

is recursively enumerable. A function f is lower semicomputable if − f is upper semicom-
putable.

Definition 2.2. A prefix set, or prefix-free code, or prefix code, is a set of strings such that
no member is a prefix of any other member. A prefix set which is the domain of a partial
recursive function (set of halting programs for a Turing machine) is a special type of prefix
code called a self-delimiting code because there is an effective procedure which reading
left-to-right determines where a code word ends without reading past the last symbol. A
one-to-one function with a range that is a self-delimiting code will also be called a self-
delimiting code.

We can map {0, 1}∗ one-to-one onto the natural numbers by associating each string with
its index in the length-increasing lexicographical ordering

(ε, 0), (0, 1), (1, 2), (00, 3), (01, 4), (10, 5), (11, 6), . . . , (1)

where ε denotes the empty word, that is, l(ε) = 0. This way we have a binary representa-
tion for the natural numbers that is different from the standard binary representation. It is
convenient not to distinguish between the first and second element of the same pair, and
call them “string” or “number” arbitrarily. As an example, we have l(7) = 00. A simple
self-delimiting code we use throughout is obtained by reserving one symbol, say 0, as a
stop sign and encoding a natural number x as 1x0. We can prefix an object with its length
and iterate this idea to obtain ever shorter codes:

λi(x) =

{

1x0 for i = 0,
λi−1(l(x))x for i > 0. (2)
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Thus, λ1(x) = 1l(x)0x and has length l(λ1(x)) = 2l(x) + 1; λ2(x) = λ1(l(x))x and has

length l(λ2(x)) = l(x) + 2l(l(x)) + 1. From now on, we will denote by
+
< an inequality to

within an additive constant, and by +
= the situation when both

+
< and

+
> hold. We will also

use
log
< to denote an inequality to within an additive logarithmic term, and

log
= to denote the

situation when both
log
< and

log
> hold. Using this notation we have for example

l(λ3(x))
+
< l(x) + log l(x) + 2 log log l(x).

Define the pairing function
〈x, y〉 = λ2(x)y (3)

with inverses 〈·〉1, 〈·〉2. A partial recursive function F(p, x) is called self-delimiting if for each
x, { p : F(p, x) < ∞ } is a self-delimiting code. (“F(p, x) < ∞” is shorthand for “there is a y
such that F(p, x) = y.”) The argument p is called a self-delimiting program for y := F(p, x)
from x, because, owing to the self-delimiting property, no punctuation is required to tell
the machine where p ends and the input to the machine can be simply the concatenation
px.

Remark 2.3. Our results do not depend substantially on the use of self-delimiting programs
but for our purpose this form of the theory of Kolmogorov complexity is cleaner and easier
to use. For example, the simplicity of the normalization property in Section 4 depends on
the self-delimiting property. ♦

Remark 2.4. Consider a multi-tape Turing machine M with a distinguished semi-infinite
tape called the program tape. The program tape’s head begins scanning the leftmost square
of the program. There is also an input tape and, possibly, a separate output tape and work
tapes. We say that M computes the partial function F(p, x) by a self-delimiting computation
if for all p and x for which F(p, x) is defined:

• M with program p and input x halts with output F(p, x) written on the output tape.
• The program tape head scans all of p but not beyond p.

A partial recursive function is self-delimiting if and only if there is a self-delimiting com-
putation for it. A Turing machine performing a self-delimiting computation is called a
self-delimiting Turing machine. ♦

In what follows, informally, we will often call a self-delimiting partial recursive function
F a prefix machine or self-delimiting machine even though it is only the function computed by
such a machine.

Definition 2.5. The conditional descriptional complexity, (the “self-delimiting” version)
KF(y|x) of y with condition x, with respect to the machine F is defined by

KF(y|x) := min{l(p) : F(p, x) = y},

or ∞ if such p do not exist. There is a prefix machine U (the universal self-delimiting Tur-
ing machine) with the property that for every other prefix machine F there is an additive
constant cF such that for all x, y

KU(y|x) ≤ KF(y|x) + cF.

(A stronger property that is satisfied by many universal machines U is that for all F there
is a string sF such that for all x, y, p we have U(sF p, x) = F(p, x), from which the stated
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property follows immediately.) Since cF depends on F but not on x, y such a prefix machine
U will be called optimal or universal. We fix such an optimal machine U as reference, write

K(y|x) := KU(y|x)

and call K(y|x) the conditional Kolmogorov complexity of y with respect to x. The uncon-
ditional Kolmogorov complexity of y is defined as K(y) := K(y|ε) where ε is the empty
word.

We give a useful characterization of K(y|x). It is easy to see that K(y|x) is an upper
semicomputable function with the property that for each x we have

∑
y

2−K(y|x) ≤ 1. (4)

Namely, for each x the set of K(y|x)’s is a subset of the length set of a prefix-code. Therefore
property 4 is a consequence of the so-called Kraft inequality. It is an important fact that the
function K(y|x) is minimal with respect to the normalization property 4:

Lemma 2.6. For every upper semicomputable function f (x, y) satisfying ∑y 2− f (x,y) ≤ 1 we have

K(y|x)
+
< f (x, y).

A prominent example of such a function is the algorithmic entropy

H(y|x) := − log ∑
p:U(p,x)=y

2−l(p).

Since K(y|x) is the length of the shortest program p such that U(p, x) = y we have K(y|x) ≥

H(y|x), and because H(y|x) is upper semicomputable and satisfies ∑y 2−H(y|x) ≤ 1 (by the

Kraft inequality) we have K(y|x)
+
< H(y|x). Together this shows that H(y|x)

+
= K(y|x)

(almost all the entropy is concentrated in the shortest program).
The functions 〈x, y, z〉, etc. are defined with the help of 〈x, y〉 in any of the usual ways.

We introduce the notation

K(x, y) = K(〈x, y〉), K(x|y, z) = K(x|〈y, z〉),

etc. Kolmogorov complexity has the following addition property:

K(x, y)
+
= K(x) + K(y|x, K(x)). (5)

Ignoring for a moment the term K(x) in the condition of the second term of the right-
hand side, this property says, analogously to the corresponding property of information-
theoretic entropy, that the information content of the pair (x, y) is equal to the information
content of x plus the information needed to restore y from x.

The mutual information between x and y is the quantity

I(x : y) = K(x) + K(y) − K(x, y). (6)

This is the algorithmic counterpart of the mutual information between two random vari-
ables I(X : Y) = H(X) + H(Y) − H(X, Y). Because of the conditional K(x) term in Equa-
tion 5, the usual relation between conditional and mutual information holds only to within
a logarithmic error term (denoting x∗ := 〈x, K(x)〉):

I(x : y)
+
= K(x) − K(x|y∗)

+
= K(y) − K(y|x∗)

= K(x) − K(x|y) + O(log(K(y)) = K(y) − K(y|x) + O(log(K(x)).
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Thus, within logarithmic error, I(x : y) represents both the information in y about x and
that in x about y. We consider x and y to be “independent” whenever I(x : y) is (nearly)
zero.

Mutual information should not be confused with “common information.” Informally,
we can say that a string z contains information common in x and y if both K(z|x) and
K(z|y) are small. If this notion is made precise it turns out that common information is can
be very low even if mutual information is large [12].

3. MAX DISTANCE

In line with the identification of the Kolmogorov complexity K(x) as the information
content of x, [9], we define the information distance between x and y as the length of the
shortest program that converts x to y and y to x. The program itself is retained before,
during, and after the computation. This can be made formal as follows. For a partial
recursive function F computed by a prefix (self-delimiting) Turing machine, let

EF(x, y) := min{l(p) : F(p, x) = y, F(p, y) = x}.

There is a universal prefix machine U (for example the reference machine in Definition 2.5)
such that for every partial recursive prefix function F and all x, y

EU(x, y) ≤ EF(x, y) + cF,

where cF is a constant that depends on F but not on x and y. For each two universal prefix
machines U and U′, we have for all x, y that |EU(x, y) − EU′(x, y)| ≤ c, with c a constant
depending on U and U′ but not on x and y. Therefore, with U the reference universal
prefix machine U of Definition 2.5 we define

E0(x, y) := min{l(p) : U(p, x) = y, U(p, y) = x}.

Then E0(·, ·) is the universal effective information distance which is clearly optimal and
symmetric, and will be shown to satisfy the triangle inequality. We are interested in the
precise expression for E0.

3.1. Maximum overlap. The conditional complexity K(y|x) itself is unsuitable as infor-
mation distance because it is unsymmetric: K(ε|x), where ε is the empty string, is small
for all x, yet intuitively a long random string x is not close to the empty string. The asym-
metry of the conditional complexity K(x|y) can be remedied by defining the informational
distance between x and y to be the sum of the relative complexities, K(y|x) + K(x|y). The
resulting metric will overestimate the information required to translate between x and y
in case there is some redundancy between the information required to get from x to y and
the information required to get from y to x.

This suggests investigating to what extent the information required to compute x from
y can be made to overlap with that required to compute y from x. In some simple cases,
it is easy to see how complete overlap can be achieved, so that the same minimal program
suffices to compute x from y as to compute y from x. A brief discussion of this and an
outline of the results to follow were given in Section 1.

Definition 3.1. The max distance E1 between x and y is defined by

E1(x, y) := max{K(x|y), K(y|x)}.

By definition of Kolmogorov complexity, every program p that computes y from x and
also computes x from y satisfies l(p) ≥ E1(x, y), that is,

E0(x, y) ≥ E1(x, y). (7)
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In Theorem 1 we show that this relation also holds the other way: E0(x, y) ≤ E1(x, y)
up to an additive logarithmic term. Moreover, the information to compute from x to y can
always be maximally correlated with the information to compute from y to x. It is therefore
never the case that a large amount of information is required to get from x to y and a large
but independent amount of information is required to get from y to x.

Theorem 1 (Conversion). Let K(x|y) = k1 and K(y|x) = k2, and l = k2 − k1 ≥ 0. There is a
string d of length l and a string q of length

k1 + K(k1, k2) + O(1)

such that U(q, xd) = y and U(q, y) = xd.

Proof. Given k1, k2, we can enumerate the set S = {(x, y) : K(x|y) ≤ k1, K(y|x) ≤ k2}. With-
out loss of generality, assume that S is enumerated without repetition, and with witnesses
of length exactly k1 and k2. Now consider a dynamic graph G = (V, E) where V is the set
of binary strings, and E is a dynamically growing set of edges that starts out empty.

Whenever a pair (x, y) is enumerated, we add an edge e = {xd, y} to E. Here, d is
chosen to be the (i2−k1)th binary string of length l, where i is the number of times we have
enumerated a pair with x as the first element. So the first 2k1 times we enumerate a pair
(x, ·) we choose d = 0l , for the next 2k1 times we choose d = 0l−11, etc. The condition
K(y|x) ≤ k2 implies that i < 2k2 hence i2−k1 < 2l , so this choice is well-defined.

In addition, we “color” edge e with a binary string of length k1 + 1. Call two edges
adjacent if they have a common endpoint. If c is the minimum color not yet appearing on
any edge adjacent to either xd or y, then e is colored c. Since the degree of every node
is bounded by 2k1 (when acting as an xd) plus 2k1 (when acting as a y), a color is always
available.

A matching is a maximal set of nonadjacent edges. Note that the colors partition E into
at most 2k1+1 matchings, since no edges of the same color are ever adjacent. Since the pair
(x, y) in the statement of the theorem is necessarily enumerated, there is some d of length
l and color c such that the edge {xd, y} is added to E with color c.

Knowing k1, k2, c and either of the nodes xd or y, one can dynamically reconstruct G,
find the unique c-colored edge adjacent to this node, and output the neighbour. There-
fore, a self-delimiting program q of size K(k1, k2) + k1 + O(1) suffices to compute in either
direction between xd and y. �

The theorem states that K(y|xd, q), K(xd|y, q)
+
= 0. It may be called the Conversion Theo-

rem since it asserts the existence of a difference string q that converts both ways between
xd and y and at least one of these conversions is optimal. If k1 = k2, then d = ε and the
conversion is optimal in both directions.

Theorem 2. Assume the notation above. Then, with
log
= denoting equality up to additive logarith-

mic terms:

E0(xd, y)
log
= E1(xd, y) (

log
= l(q))

E0(x, y)
log
= E1(x, y) (

log
= l(qd)).
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Proof. (First displayed equation) Assume the notation and proof of Theorem 1. First note

that l(q)
log
= E1(xd, y). Moreover, q computes between xd and y in both directions and there-

fore l(q) ≥ E0(xd, y) by the minimality of E0(·, ·). Hence E1(xd, y)
log
> E0(xd, y). Together

with Equation 7 this shows the first displayed equation holds.
(Second displayed equation) This requires an extra argument because the program p :=

qd is not yet a program to compute between x and y in both directions. Namely, an input x ′

can be either x or y in the above proof. Given q, d the program also needs to know whether
q should compute from x′d to some y′ or from x′ to some y′′d. This problem is resolved
by adding a means to distinguish between x and y: With x′, y′, y′′ as above we just add
an O(1) bit prefix to p stating whether it computes from x′ to y′ or from x′ to y′′ using the
string order (as in Equation 1) to express these options. By a similar argument as in the
previous case we now obtain the second displayed equation. �

Remark 3.2. The same proofs work for the non-self-delimiting Kolmogorov complexity as
in [9] and would also give rise to a logarithmic correction term in the theorem. ♦

Remark 3.3. The difference program p = qd in the above theorem is independent of x in
the sense that the mutual information I(p : x) as defined in Equation 6 is nearly 0. This
follows from K(x) + K(p) = K(x, y) + O(log K(x, y)) (use Equation 5 with K(y|x) = K(p)).
The program p is at the same time completely dependent on the pair (x, y).

If k1 = k2 then d = ε and p = q. Then p = q is a conversion program from x to y and
from y to x and it is both independent of x and independent of y, that is, I(p : x), I(p : y)
are both nearly 0. The program p is at the same time completely dependent on the pair
(x, y). ♦

Remark 3.4. Remark (Mutual Information Formulation) Let us reformulate the result of
this section in terms of mutual information as defined in Equation 6. Let p be a shortest
program transforming x to y and let q be a shortest program transforming y to x. We have
shown that p and q can depend on each other as much as possible: the mutual information
in p and q is maximal: I(p : q) = min{K(p), K(q)} up to an additive O(log K(x, y)) term.

♦

3.2. Minimum overlap. This section can be skipped at first reading; the material is diffi-
cult and it is not used in the remainder of the paper. For a pair x, y of strings, we found that
shortest program p converting x into y and q converting y into x can be made to overlap
maximally. In Remark 3.4 this result is formulated in terms of mutual information. The
opposite question is whether p and q can always be made completely independent, that is,
can we choose p and q such that I(p : q) = 0? That is, is it true that for every x, y there
are p, q such that K(p) = K(y|x), K(q) = K(x|y), I(p : q) = 0, U(p, x) = y, U(q, y) = x,
where the first three equalities hold up to an additive O(log K(x, y)) term. This is evi-
dently true in case x and y are random with respect to one another, that is, K(x|y) ≥ l(x)
and K(y|x) ≥ l(y). Namely, without loss of generality let y = uv with l(u) = l(x). We
can choose p := (x ⊕ u)v as a shortest program that computes from x to y and q := x ⊕ u
as a shortest program that computes from y to x, and therefore obtain maximum overlap
I(p : q) = min{l(p), l(q)}. However, we can also choose shortest programs p := y and
q := x to realize minimum overlap I(p : q) = 0. The question arises whether we can al-
ways choose p, q with I(p : q) = 0 even when x and y are not random with respect to one
another.

Remark 3.5. N.K. Vereshchagin suggested replacing “I(p : q) = 0” (that is, K(p, q) = K(p) +
K(q)) by “K(q|x) = 0, K(p|y) = 0,” everything up to an additive O(log K(x, y)) term. Then
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an affirmative answer to the latter question would imply an affirmative answer to the
former question. ♦

Here we study a related but formally different question: replace the condition “I(p :
q) = 0” by “p is a function of only y” and “q is a function of only x.” Note that when this
new condition is satisfied it can still happen that I(p : q) > 0. We may choose to ignore the
latter type of mutual information.

We show that for every pair of integers k1, k2 ≥ 0 there exists a function f with K( f ) =
k1 + k2 + O(log(k1 + k2)) such that for every x, y such that K(x) ≤ k1, K(y|x) ≤ k2 we
have K(y|x, f (y), f ) = O(log(k1 + k2)) and l( f (y)) ≈ k2, that is, f (y) has about k2 bits and
suffices together with a description of f itself to restore y from every x from which this is
possible using this many bits. Moreover, there is no significantly simpler function f , say
K( f |y) � min{k1, k2}, with this property.

Let us amplify the meaning of this for the question of the conversion programs having
low mutual information. First we need some terminology. When we say that f is a simple
function of y we mean that K( f |y) is small.

Suppose we have a minimal program p, of length k2, converting x to y and a minimal
program q of length k1 converting y to x. It is easy to see, just as in Remark 3.3 above
that y is independent of q. Also, any simple function of y is independent of q. So, if p is
a simple function of y, then it is independent of q. The question whether p can be made a
simple function of y is interesting in itself since it would be a generalization of the Slepian-
Wolf Theorem (see [8]). And it sounds no less counterintuitive at first than that theorem.
If it were true then for each y there is a k2-bit program p such that for every x satisfying
K(y|x) ≤ k2, we can reconstruct y from the pair (x, p). As stated already, we will show
that p can be made a function of y independent of x; but we will also show that p cannot be
made a simple function of y.

Before proceeding with the formal statement and proof we introduce a combinatorial
lemma. In a context where a partition V =

⋃

j Vj of a set V is called a coloring we say that
two elements have the same color if they belong to the same set Vj.

Lemma 3.6. Coloring Lemma On a set V, let us be given a set system with M sets Si (possibly
overlapping) of size at most N each. For B > 0, a B-coloring of this system is a partition V =

⋃

j Vj

such that #(Si
⋂

Vj) ≤ B for every i, j, that is, there are at most B points of the same color in a set
Si. There is a B-coloring with not more colors than

(N/B)e(MN)1/B.

Remark 3.7. Notice that N/B colors are trivially required (and suffice if the Si’s are pairwise
disjoint). ♦

Proof. If B = N then one color is enough, so assume B < N. Let us try to color with
nN/B colors and then see what choice of n satisfies our needs. We choose the color of
each element of V independently, with a uniform distribution among the given number of
colors, with probability p = B/(nN). For each i, j, we can upperbound the probability that
#(Si

⋂

Vj) > B, using the Chernoff bound (see e.g. [8]) for large deviations in the law of
large numbers. In application to the present case, this bound says that if in an experiment
of N coin-tosses, the success probability is p then for every p′

> p, the probability that
there are more than Np′ successes is at most ecN with

c = p′ ln
p
p′

+ (1 − p′) ln
1 − p
1 − p′

.
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We apply this bound with p = B/(nN) and p′ = B/N. Now MNecN upperbounds the
probability that the random coloring is not a B-coloring. Let us see what choice of n makes
this bound less than 1.

Estimating the second term of the right-hand side above by ln x ≤ x − 1, it is at most
p′ − p < p′, hence c < p′(ln(p/p′) + 1) = (B/N)(− ln n + 1). Now the condition MNecN

<

1 turns into ln(MN) + Nc < 0. Substituting the above estimate for c, we get a stronger
condition ln(MN) + B ≤ B ln n, satisfied by ln n = (ln(MN))/B + 1. �

Theorem 3.
(i) There is a recursive function R such that for every pair of integers k1, k2 > 0 there is an

integer m with log m ≤ k1 + k2 and an integer b with b
+
< log(k1 + k2) + 2 log log(k1 + k2)

such that for all x, y with K(x) ≤ k1 and K(y|x) ≤ k2

K(y|x, f (y), m) ≤ b,

where f (y) := R(k1, k2, m, y) with l( f (y))
+
< k2.

(ii) Using the notation in (i), even allowing for much larger b we cannot significantly eliminate
the conditional information m required in (i): If b satisfies

0 ≤ b < k1 − 5 log(k1 + k2), (8)

then every m satisfying the conditions in (i) also satisfies

l(m) ≥ k2 − b − 5 log(k1 + k2).

Remark 3.8. Thus, the extra information in y needed in addition to x to restore y can be
made a function f (y) of just y, and its minimality implies that it will be essentially inde-
pendent of x. However, there is a catch: it is indispensible for these results that certain
fixed oracle string m describing how to compute f is also used in the transformations. The
role of this oracle string is to make the complexity function computable over the set of
strings of interest. ♦

Remark 3.9. If also K(y) ≤ k2 then the theorem holds symmetrically in x and y. This is the
sense in which the shortest programs f (y) and f (x), converting x into y and y into x, can
be made “non-overlapping”: they will be independent of the strings they convert from. ♦

Proof. (i): We first show the existence of R and m with the above properties. As in the proof
of Theorem 1, let G = (V, E) be a graph with the node set V ⊆ {0, 1}∗ and E consisting of
those edges (x, y) with K(x) ≤ k1 and K(y|x) ≤ k2. Let

M = 2k1 , N = 2k2 ;

Sx = { y : (x, y) ∈ E };
B = k1 + k2;
m = #E.

Then #Sx ≤ N, and the number of x′s with nonempty Sx is at most M. According to the
Coloring Lemma 3.6, there is a B-coloring of the M sets Sx with at most

(N/B)e(MN)1/B = 2eN/B (9)

colors. Let R be a recursive function computing a color f (y) = R(k1, k2, m, y). Using the
numbers k1, k2, m it reconstructs the graph G. Then it finds (if there is no better way, by
exhaustive search) a B-coloring of the Sx’s set system. Finally, it outputs the color of y.
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Let us estimate K(y|x, f (y), m). Without loss of generality we can assume that the rep-
resentation of m ≤ 2k1+k2 is padded up to length exactly k1 + k2. The logarithm of the

number of colors is
+
< k2 − log(k1 + k2) so with padding we can represent color f (y) by a

string of precisely that length. Therefore, we can retrieve k1, k2 from the representations of
m and f (y) in the conditional. Now for every y ∈ Sx, if we are given k1, k2, m, x, and f (y)
then we can list the set of all y’s in Sx with color f (y). Since the size of this list is at most
B, the program to determine y in it needs only the number of y in the enumeration, with

a self-delimiting code of length l(λ2(B))
+
< log(k1 + k2) + 2 log log(k1 + k2) with λ2 as in

Definition 2.
(ii): Suppose that there is a number m with the desired properties with representation

length
l(m) < k2 − b − 5 log(k1 + k2), (10)

and b satisfies 8. We will arrive from here at a contradiction. First note that the number of
y’s satisfying K(y|x) ≤ k2 for some x with K(x) ≤ k1 as required in the theorem is

log #
⋃

x

Sx
+
> k1 + k2 − 2.2 log(k1 + k2). (11)

Namely, concatenating an arbitrary binary string x with K(x)
+
< k1 and an arbitrary string

v with K(v)
+
< k2 we can form y = xv and we have K(y|x)

+
< K(v)

+
< k2. This includes

every x with l(x)
+
< k1 − 1.1 log k1 and every v with l(v)

+
< k2 − 1.1 log k2. For appropriate

additive constants in
+
< it will be true that for every such x, all such strings y will belong

to Sx.
Choose an arbitrary recursive function R satisfying the statements of the theorem and

Equation 10. For each possible value c of f (y) (where f (y) := R(k1, k2, m, y)), let

Yc := { y : f (y) = c }.

Because the number of y’s is lower-bounded by Equation 11 and the size of f (y) is upper-

bounded by l( f (y))
+
< k2 there is a c such that

log #Yc
+
> k1 − 2.2 log(k1 + k2). (12)

Let l be the first such c found when enumerating all the sets Yc. This enumeration can be
done as follows: Using k1 we enumerate all x with K(x) ≤ k1 by running all programs of
length ≤ k1 in rounds of one step per program; when a program halts its output is the next
x enumerated. For all of the enumerated x’s, we use k2 to enumerate all y’s with K(y|x) ≤
k2 in a similar fashion. Finally, for each enumerated y compute f (y) = R(k1, k2, m, y) and
enumerate the Yc’s.

Therefore, given the recursive function R, the integers k1, k2, m, and an constant-length
program we can enumerate the Yc’s, determine l, and enumerate Yl . We can describe R
by a constant-length self-delimiting program and the integers k1, k2, m by a self-delimiting
program µ := λ3(k1)λ3(k2)λ3(m) with λ3 as in Definition 2. Then, for every i such that yi
is the i-th element in this enumeration of Yl :

K(yi)
+
< l(µ) + log i + 1.1 log log i
+
< l(m) + log i + 4.4 log(k1 + k2).
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If
log i < k2 − l(m) − 4.5 log(k1 + k2) (13)

and k1 + k2 is large enough, then for every x we have

K(yi|x) ≤ K(yi) + O(1) ≤ k2.

Let t = min{k1, k2 − l(m)}. By Equations 12, 13, for every x there are at least

2t−4.5 log(k1+k2)

values of i with K(yi|x) ≤ k2. Then, for every x there must be at least one of these yi’s, say
y, that satisfies

K(y|x, f (y), m) ≥ t − 4.5 log(k1 + k2).
This follows trivially by counting the number of programs of length less than t −
4.5 log(k1 + k2). Hence, by the property b ≥ K(y|x, f (y), m) assumed in the statement
of the theorem:

b ≥ min{k1, k2 − l(m)} − 4.5 log(k1 + k2).
If k1 < k2 − l(m) then this contradicts 8, otherwise it contradicts 10. �

4. COGNITIVE DISTANCE

Let us identify digitized black-and-white pictures with binary strings. There are many
distances defined for binary strings. For example, the Hamming distance and the Eu-
clidean distance. Such distances are sometimes appropriate. For instance, if we take a
binary picture, and change a few bits on that picture, then the changed and unchanged
pictures have small Hamming or Euclidean distance, and they do look similar. However,
this is not always the case. The positive and negative prints of a photo have the largest
possible Hamming and Euclidean distance, yet they look similar to us. Also, if we shift
a picture one bit to the right, again the Hamming distance may increase by a lot, but the
two pictures remain similar. Many approaches to pattern recognition try to define pattern
similarities with respect to pictures, language sentences, vocal utterances, and so on. Here
we assume that similarities between objects can be represented by effectively computable
functions (or even upper semicomputable functions) of binary strings. This seems like a
minimal prerequisite for machine pattern recognition and physical cognitive processes in
general. Let us show that the distance E1 defined above is, in a sense, minimal among all
such reasonable similarity measures.

For a cognitive similarity metric the metric requirements do not suffice: a distance mea-
sure like D(x, y) = 1 for all x 6= y must be excluded. For each x and d, we want only
finitely many elements y at a distance d from x. Exactly how fast we want the distances of
the strings y from x to go to ∞ is not important: it is only a matter of scaling. In analogy
with Hamming distance in the space of binary sequences, it seems natural to require that
there should not be more than 2d strings y at a distance d from x. This would be a differ-
ent requirement for each d. With prefix complexity, it turns out to be more convenient to
replace this double series of requirements (a different one for each x and d) with a single
requirement for each x:

∑
y:y 6=x

2−D(x,y)
< 1.

We call this the normalization property since a certain sum is required to be bounded by 1.
We consider only distances that are computable in some broad sense. This condition

will not be seen as unduly restrictive. As a matter of fact, only upper semicomputability of
D(x, y) will be required. This is reasonable: as we have more and more time to process x
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and y we may discover more and more similarities among them, and thus may revise our
upper bound on their distance. The upper semicomputability means exactly that D(x, y)
is the limit of a computable sequence of such upper bounds.

Definition 4.1. An admissible distance D(x, y) is a total nonnegative function on the pairs
x, y of binary strings that is 0 if and only if x = y, is symmetric, satisfies the triangle in-
equality, is upper semicomputable and normalized, that is, it is an upper semicomputable,
normalized, metric. An admissible distance D(x, y) is universal if for every admissible dis-

tance D′(x, y) we have D(x, y)
+
< D′(x, y).

The following theorem shows that E1 is a universal (that is, optimal) admissible distance.
We find it remarkable that this distance happens to also have a “physical” interpretation
as the approximate length of the conversion program of Theorem 1, and, as shown in the
next section, of the smallest program that transforms x into y on a reversible machine.

Theorem 4. For an appropriate constant c, let E(x, y) = E1(x, y) + c if x 6= y and 0 otherwise.
Then E(x, y) is a universal admissible metric. That is, it is an admissible distance and it is minimal
in the sense that for every admissible distance D(x, y) we have

E(x, y)
+
< D(x, y).

Proof. The nonnegativity and symmetry properties are immediate from the definition. To
prove the triangle inequality, let x, y, z be given and assume, without loss of generality,
that E1(x, z) = K(z|x). Then, by the self-delimiting property (or, the easy direction of the
addition property),

E1(x, z) = K(z|x)
+
< K(y, z|x)

+
< K(y|x) + K(z|x, y)

+
< K(y|x) + K(z|y) ≤ E1(x, y) + E1(y, z).

Hence there is a nonnegative integer constant c such that E1(x, z) ≤ E1(x, y) + E1(y, z) + c.
Let this c be the one used in the statement of the theorem, then E(x, y) satisfies the triangle
inequality without an additive constant.

For the normalization property, we have

∑
y:y 6=x

2−E1(x,y) ≤ ∑
y:y 6=x

2−K(y|x) ≤ 1.

The first inequality follows from the definition of E1, and the second one follows from 4.
The minimality property follows from the characterization of K(y|x) given after 4. This

property says that if f (x, y) is an upper semicomputable function with ∑y:y 6=x 2− f (x,y) ≤ 1

then K(y|x)
+
< f (x, y). This implies that for every admissible distance D(·, ·) we have both

K(y|x)
+
< D(x, y) and K(x|y)

+
< D(y, x). �

Remark 4.2. Remark (Universal Cognitive Distance) The universal admissible distance E1
minorizes all admissible distances: if two pictures are d-close under some admissible dis-

tance, then they are
+
< d-close under this universal admissible distance. That is, the latter

discovers all effective feature similarities or cognitive similarities between two objects: it
is the universal cognitive similarity metric. ♦
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5. REVERSIBLE COMPUTATION DISTANCE

Reversible models of computation in which the transition function is one-to-one have
been explored especially in connection with the question of the thermodynamic limits of
computation. Reversible Turing machines were introduced by Lecerf [18], and indepen-
dently but much later by Bennett [3, 4]. Further results concerning them can be found in
[4, 5, 19, 20].

Consider the standard model of Turing machine. The elementary operations are rules
in quadruple format (p, a, b, q) meaning that a machine in state p scanning symbol a writes
a symbol or moves the scanning head one square left, one square right, or not at all (as
indicated by b) and enters state q.

Quadruples are said to overlap in domain if they cause the machine in the same state and
scanning the same symbol to perform different actions. A deterministic Turing machine is
defined as a Turing machine with quadruples that pairwise do not overlap in domain.

Now consider a special format (deterministic) Turing machines using quadruples of
two types: read/write quadruples and move quadruples. A read/write quadruple (p, a, b, q)
causes the machine in state p scanning tape symbol a to write symbol b and enter state q.
A move quadruple (p,⊥, σ, q) causes the machine in state p to move its tape head by σ ∈
{−1, 0, +1} squares and enter state q, oblivious to the particular symbol in the currently
scanned tape square. (Here “−1” means “one square left,” “0” means “no move” and
“+1” means “one square right.”) Quadruples are said to overlap in range if they cause the
machine to enter the same state and either both write the same symbol or (at least) one
of them moves the head. Said differently, quadruples that enter the same state overlap
in range unless they write different symbols. A reversible Turing machine is a deterministic
Turing machine with quadruples that pairwise do not overlap in range. A k-tape reversible
Turing machine uses (2k + 2) tuples that for each tape separately, select a read/write or
move on that tape. Moreover, every pair of tuples having the same initial state must specify
differing scanned symbols on at least one tape (to guarantee non-overlapping domains),
and every pair of tuples having the same final state must write differing symbols on at
least one tape (to guarantee non-overlapping ranges).

To show that each partial recursive function can be computed by a reversible Turing
machine one can proceed as follows. Take the standard irreversible Turing machine com-
puting that function. We modify it by adding an auxiliary storage tape called the “history
tape.” The quadruple rules are extended to 6-tuples to additionally manipulate the his-
tory tape. To be able to reversibly undo (retrace) the computation deterministically, the
new 6-tuple rules have the effect that the machine keeps a record on the auxiliary history
tape consisting of the sequence of quadruples executed on the original tape. Reversibly
undoing a computation entails also erasing the record of its execution from the history
tape.

This notion of reversible computation means that only one-to-one recursive functions
can be computed. To reversibly simulate t steps of an irreversible computation from x to
f (x) one reversibly computes from input x to output 〈x, f (x)〉. Say this takes t′ = O(t)
time. Since this reversible simulation at some time instant has to record the entire history
of the irreversible computation, its space use increases linearly with the number of simu-
lated steps t. That is, if the simulated irreversible computation uses s space, then for some
constant c > 1 the simulation uses t′ ≈ c + ct time and s′ ≈ c + c(s + t) space. After
computing from x to f (x) the machine reversibly copies f (x), reversibly undoes the com-
putation from x to f (x) erasing its history tape in the process, and ends with one copy of
x and one copy of f (x) in the format 〈x, f (x)〉 and otherwise empty tapes.
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Let ψi be the partial recursive function computed by the i’th such reversible Turing ma-
chine. We let φi denote the partial recursive function computed by the i’th ordinary (in
general irreversible) Turing machine. Among the more important properties of reversible
Turing machines are the following [4, 5, 19]:

Universal reversible machine: There is a universal reversible machine, i.e. an index
u such that for all k and x, ψu(〈k, x〉) = 〈k, ψk(x)〉.

Irreversible to reversible: Two irreversible algorithms, one for computing y from x
and the other for computing x from y, can be efficiently combined to obtain a re-
versible algorithm for computing y from x. More formally, for any two indices i and
j one can effectively obtain an index k such that, for any strings x and y, if φi(x) = y
and φj(y) = x, then ψk(x) = y.

Saving input copy: ¿From any index i one may obtain an index k such that ψk has the
same domain as φi and, for every x, ψk(x) = 〈x, φi(x)〉. In other words, an arbitrary
Turing machine can be simulated by a reversible one which saves a copy of the
irreversible machine’s input in order to assure a global one-to-one mapping.

Efficiency: The above simulation can be performed rather efficiently. In particular, for
any ε > 0 one can find a reversible simulating machine which runs in time O(T1+ε)
and space O(S log(T/S)) compared to the time T and space S of the irreversible
machine being simulated.

One-to-one functions: From any index i one may effectively obtain an index k such
that if φi is one-to-one, then ψk = φi. The reversible Turing machines {ψk}, there-
fore, provide a Gödel-numbering of all one-to-one partial recursive functions.

The connection with thermodynamics comes from the fact that in principle the only ther-
modynamically costly computer operations are those that are logically irreversible, i.e. op-
erations that map several distinct logical states of the computer onto a common successor,
thereby throwing away information about the computer’s previous state [16, 3, 11, 4, 20].
The thermodynamics of computation is discussed further in Section 8. Here we show that
the minimal program size for a reversible computer to transform input x into output y is
equal within an additive constant to the size of the minimal conversion string p of Theorem
1.

The theory of reversible minimal program size is conveniently developed using a re-
versible analog of the universal self-delimiting function (prefix machine) U defined in Sec-
tion 2.

Definition 5.1. A partial recursive function F(p, x) is called a reversible self-delimiting func-
tion if

• for each p, F(p, x) is one-to-one as a function of x;
• for each x, { p : ∃y F(p, x) = y } is a prefix set;
• for each y, { p : ∃x F(p, x) = y } is a prefix set.

Remark 5.2. A referee asked whether the last two of these conditions can be replaced with
the single stronger one saying that { p : ∃x, y F(p, x) = y } is a prefix set. This does not
seem to be the case. ♦

In analogy with Remark 2.4, we can define the notion of a reversible self-delimiting compu-
tation on a reversible Turing machine. Take a reversible multi-tape Turing machine M with
a special semi-infinite read-only tape called the program tape. There is now no separate
input and output tape, only an input-output tape. At the beginning of the computation,
the head of the program tape is on the starting square.
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We say that M computes the partial function F(p, x) by a reversible self-delimiting compu-
tation if for all p and x for which F(p, x) is defined:

• M halts with output y := F(p, x) written on its output tape performing a one-to-one
mapping x ↔ y on the input-output tape under the control of the program p.

• The program tape head scans all of p but never scans beyond the end of p.
• At the end of the computation, the program tape head rests on the starting square.

Once it starts moving backward it never moves forward again.
• Any other work tapes used during the computation are supplied in blank condi-

tion at the beginning of the computation and must be left blank at the end of the
computation.

It can be shown (see the references given above) that a function F is reversible self-
delimiting if and only if it can be computed by a reversible self-delimiting computation.
Informally, again, we will call a reversible self-delimiting function also a reversible self-
delimiting (prefix) machine.

A universal reversible prefix machine UR, which is optimal in the same sense of Section 2,
can be shown to exist, and the reversible Kolmogorov complexity KR(y|x) is defined as

KR(y|x) := min{ l(p) : UR(p, x) = y }.

In Section 3, it was shown that for any strings x and y there exists a conversion program
p, of length at most logarithmically greater than

E1(x, y) = max{K(y|x), K(x|y)}

such that U(p, x) = y and U(p, y) = x. Here we show that the length of this minimal
such conversion program is equal within a constant to the length of the minimal reversible
program for transforming x into y.

Theorem 5.
KR(y|x)

+
= min{ l(p) : U(p, x) = y, U(p, y) = x }.

Proof. (
+
>) The minimal reversible program for y from x, with constant modification, serves

as a program for y from x for the ordinary irreversible prefix machine U, because reversible
prefix machines are a subset of ordinary prefix machines. We can reverse a reversible pro-
gram by adding an O(1) bit prefix program to it saying “reverse the following program.”
Therefore, the reverse of the minimal reversible program for y from x is a minimal re-
versible program for x from y up to O(1) bits. Hence the minimal reversible program for y
from x, with (possibly different) constant modification, serves also as a program for x from
y for the ordinary irreversible prefix machine U. Given an input x′ and a combination of a
program and its reverse we can still be in the situation that the program computes in one
direction from some y′ to x′ and in the other direction from x′ to some y′′. To have a re-
versible program that computes between x and y in both directions we need to distinguish
between x and y. With x′, y′, y′′ as above we add an O(1)-bit prefix program that for input
x′ states whether the computation is from x′ to y′ or from x′ to y′′, expressed in the order
of x′, y′, y′′ as in the proof of Theorem 2.

(
+
<) The proof of the other direction is an example of the general technique for combining

two irreversible programs, for y from x and for x from y, into a single reversible program
for y from x. In this case the two irreversible programs are the same, since by Theorem 1
the minimal conversion program p is both a program for y given x and a program for x
given y. The computation proceeds by several stages as shown in Figure 1. To illustrate
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STAGE AND ACTION PROGRAM WORK TAPE

0. Initial configuration p̂rog x
1. Compute y, saving history proĝ y (y|x)-history
2. Copy y to blank region proĝ y (y|x)-history y
3. Undo comp. of y from x p̂rog x y
4. Swap x and y p̂rog y x
5. Compute x, saving history proĝ x (x|y)-history x
6. Cancel extra x proĝ x (x|y)-history
7. Undo comp. of x from y p̂rog y

FIGURE 1. Combining irreversible computations of y from x and x from y
to achieve a reversible computation of y from x

motions of the head on the self-delimiting program tape, the program p is represented by
the string “prog” in the table, with the head position indicated by a caret.

Each of the stages can be accomplished without using any many-to-one operations.
In stage 1, the computation of y from x, which might otherwise involve irreversible

steps, is rendered reversible by saving a history, on previously blank tape, of all the infor-
mation that would have been thrown away.

In stage 2, making an extra copy of the output onto blank tape is an intrinsically re-
versible process, and therefore can be done without writing anything further in the his-
tory. Stage 3 exactly undoes the work of stage 1, which is possible because of the history
generated in stage 1.

Perhaps the most critical stage is stage 5, in which x is computed from y for the sole
purpose of generating a history of that computation. Then, after the extra copy of x is
reversibly disposed of in stage 6 by cancelation (the inverse of copying onto blank tape),
stage 7 undoes stage 5, thereby disposing of the history and the remaining copy of x, while
producing only the desired output y.

Not only are all its operations reversible, but the computations from x to y in stage 1
and from y to x in stage 5 take place in such a manner as to satisfy the requirements for a
reversible prefix interpreter. Hence, the minimal irreversible conversion program p, with
constant modification, can be used as a reversible program for UR to compute y from x.
This establishes the theorem. �

Definition 5.3. The reversible distance E2(x, y) between x and y is defined by

E2(x, y) := KR(y|x) = min{ l(p) : UR(p, x) = y }.

As just proved, this is within an additive constant of the size of the minimal conversion
program of Theorem 1. Although it may be logarithmically greater than the optimal dis-
tance E1, it has the intuitive advantage of being the actual length of a concrete program for
passing in either direction between x and y. The optimal distance E1 on the other hand is
defined only as the greater of two one-way program sizes, and we don’t know whether it
corresponds to the length of any two-way translation program.

E2(x, y) may indeed be legitimately called a distance because it is symmetric and obeys
the triangle inequality to within an additive constant (which can be removed by the addi-
tive rescaling technique used in the proof of Theorem 4).

Theorem 6.
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Stage and Action Program tape Work Tape

0. Initial configuration p̂progqprog x
1. Compute (y|x), transcribing pprog. p̂progqprog y pprog
2. Space forward to start of qprog. pprogq̂prog y pprog
3. Compute (z|y). pprogq̂prog z pprog
4. Cancel extra pprog as head returns. p̂progqprog z

FIGURE 2. Reversible execution of concatenated programs for (y|x) and
(z|y) to transform x into z.

E2(x, z)
+
< E2(x, y) + E2(y, z)

Proof. We will show that, given reversible UR programs p and q, for computing (y|x) and
(z|y) respectively, a program of the form spq, where s is a constant supervisory routine,
serves to compute z from x reversibly. Because the programs are self-delimiting, no punc-
tuation is needed between them. If this were an ordinary irreversible U computation, the
concatenated program spq could be executed in an entirely straightforward manner, first
using p to go from x to y, then using q to go from y to z. However, with reversible UR pro-
grams, after executing p, the head will be located at the beginning of the program tape, and
so will not be ready to begin reading q. It is therefore necessary to remember the length of
the first program segment p temporarily, to enable the program head to space forward to
the beginning of q, but then cancel this information reversibly when it is no longer needed.

A scheme for doing this is shown in Figure 2, where the program tape’s head position
is indicated by a caret. To emphasize that the programs p and q are strings concatenated
without any punctuation between them, they are represented respectively in the table by
the expressions “pprog” and “qprog”, and their concatenation pq by “pprogqprog”.

Notice that transcribing “pprog” in stage 1 is straightforward: as long as the program
tape head moves forward such a transcription will be done; according to our definition
of reversible self-delimiting computation above, this way the whole program will be tran-
scribed.

�

6. SUM DISTANCE

Only the irreversible erasures of a computation need to dissipate energy. This raises the
question of the minimal amount of irreversibility required in transforming string x into
string y, that is, the number of bits we have to add to x at the beginning of a reversible
computation from x to y, and the number of garbage bits left (apart from y) at the end of
the computation that must be irreversibly erased to obtain a “clean” y.

The reversible distance E2 defined in the previous section, is equal to the length of a “cat-
alytic” program, which allows the interconversion of x and y while remaining unchanged
itself. Here we consider noncatalytic reversible computations which consume some infor-
mation p besides x, and produce some information q besides y.

Even though consuming and producing information may seem to be operations of op-
posite sign, we can define a distance E3(·, ·) based on the notion of information flow, as the
minimal sum of amounts of extra information flowing into and out of the computer in the
course of the computation transforming x into y. This quantity measures the number of
irreversible bit operations in an otherwise reversible computation. The resulting distance
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turns out to be within a logarithmic additive term of the sum of the conditional complex-
ities K(y|x) + K(x|y). See [20] for a more direct proof than the one provided here, and for
a study of resource-limited (for example with respect to time) measures of the number of
irreversible bit operations. For our treatment here it is crucial that computations can take
unlimited time and space and therefore E3(·, ·) represents a limiting quantity that cannot
be realized by feasible computation. For a function F computed by a reversible Turing
machine, define

EF(x, y) := min{ l(p) + l(q) : F(〈p, x〉) = 〈q, y〉 }.

Remark 6.1. Since p will be consumed it would be too awkward and not worth the trouble
to try to extend the notion of self-delimiting for this case; so, the computations we consider
will not be self-delimiting over p. ♦

It follows from the existence of universal reversible Turing machines mentioned in
Section 5 that there is a universal reversible Turing machine UR′ (not necessarily self-
delimiting) such that for all functions F computed on a reversible Turing machine, we
have

EUR′(x, y) ≤ EF(x, y) + cF

for all x and y, where cF is a constant which depends on F but not on x or y.

Remark 6.2. In our definitions we have pushed all bits to be irreversibly provided to the
start of the computation and all bits to be irreversibly erased to the end of the computation.
It is easy to see that this is no restriction. If we have a computation where irreversible acts
happen throughout the computation, then we can always mark the bits to be irreversibly
erased, waiting with actual erasure until the end of the computation. Similarly, the bits
to be provided can be provided (marked) at the start of the computation while the actual
reading of them (simultaneously unmarking them) takes place throughout the computa-
tion.

By Landauer’s principle, which we meet in Section 8, the number of irreversible bit
erasures in a computation gives a lower bound on the unavoidable energy dissipation of
the computation, each bit counted as kT ln 2, where k is Boltzmann’s constant and T the
absolute temperature in degrees Kelvin. It is easy to see (proof of Theorem 7) that the
minimal number of garbage bits left after a reversible computation going from x to y is
about K(x|y) and in the computation from y to x it is about K(y|x). ♦

Definition 6.3. We fix a universal reference reversible Turing machine UR′. The sum dis-
tance E3(x, y) is defined by

E3(x, y) := EUR′(x, y).

Theorem 7.
E3(x, y) = K(x|y) + K(y|x) + O(log K(x, y)).

Proof. (≥) We first show the lower bound E3(x, y) ≥ K(y|x) + K(x|y). Let us use the uni-
versal prefix machine U of Section 2. Due to its universality, there is a constant-length
binary string r such that for all p, x we have

U(rλ2(p), x) = 〈UR′(〈p, x〉)〉2

(The function λ2 in Definition 2 makes p self-delimiting. Recall that 〈·, ·〉2 selects the second
element of the pair.) Suppose UR′(〈p, x〉) = 〈q, y〉. Then it follows that y = U(rλ2(p), x),
hence

K(y|x)
+
< l(rλ2(p))

+
< l(λ2(p))

+
< l(p) + 2 log l(p).
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Since the computation is reversible, the garbage information q at the end of the computa-
tion yielding 〈y, q〉 serves the rôle of program when we reverse the computation to com-

pute x from y. Therefore, we similarly have K(x|y)
+
< l(q) + 2 log l(q), which finishes the

proof of the lower bound.
(≤) Let us turn to the upper bound and assume k1 = K(x|y) ≤ k2 = K(y|x) with l =

k2 − k1 ≥ 0. According to Theorem 1, there is a string d of length l such that K(xd|y)
+
=

k1 + K(k1, k2) and K(y|xd)
+
= k1 + K(k1, k2). According to Theorem 1 and Theorem 5 there

is a self-delimiting program q of length +
= k1 + K(k1, k2) going reversibly between xd and y.

Therefore with a constant extra program s, the universal reversible machine will go from
qxd to qy. And by the above estimates

l(qd) + l(q)
+
< 2k1 + l + 2K(k1, k2) = k1 + k2 + O(log k2).

�

Note that all bits supplied in the beginning to the computation, apart from input x, as
well as all bits erased at the end of the computation, are random bits. This is because we
supply and delete only shortest programs, and a shortest program q satisfies K(q) ≥ l(q),
that is, it is maximally random.

Remark 6.4. It is easy to see that up to an additive logarithmic term the function E3(x, y) is a
metric on {0, 1}∗; in fact it is an admissible (cognitive) distance as defined in Section 4. ♦

7. RELATIONS BETWEEN INFORMATION DISTANCES

The metrics we have considered can be arranged in increasing order. As before, the

relation
log
< means inequality to within an additive O(log), and

log
= means

log
< and

log
> .

E1(x, y) = max{K(y|x), K(x|y)}

log
= E2(x, y) = KR(y|x)

+
= E0(x, y) = min{ l(p) : U(p, x) = y, U(p, y) = x }

log
< K(x|y) + K(y|x)

log
= E3(x, y)

log
< 2E1(x, y).

The sum distance E3, is tightly bounded between the optimum distance E1 and twice
the optimal distance. The lower bound is achieved if one of the conditional complexities
K(y|x) and K(x|y) is zero, the upper bound is reached if the two conditional complexities
are equal.

It is natural to ask whether the equality E1(x, y)
log
= E2(x, y) can be tightened. We have

not tried to produce a counterexample but the answer is probably no.

8. THERMODYNAMIC COST

Thermodynamics, among other things, deals with the amounts of heat and work ideally
required, by the most efficient process, to convert one form of matter to another. For ex-
ample, at 0 C and atmospheric pressure, it takes 80 calories of heat and no work to convert
a gram of ice into water at the same temperature and pressure. From an atomic point of
view, the conversion of ice to water at 0 C is a reversible process, in which each melting
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water molecule gains about 3.8 bits of entropy (representing the approximately 23.8-fold in-
creased freedom of motion it has in the liquid state), while the environment loses 3.8 bits.
During this ideal melting process, the entropy of the universe remains constant, because
the entropy gain by the ice is compensated by an equal entropy loss by the environment.
Perfect compensation takes place only in the limit of slow melting, with an infinitesimal
temperature difference between the ice and the water.

Rapid melting, e.g. when ice is dropped into hot water, is thermodynamically irre-
versible and inefficient, with the the hot water losing less entropy than the ice gains,
resulting in a net and irredeemable entropy increase for the combined system. (Strictly
speaking, the microscopic entropy of the universe as a whole does not increase, being a
constant of motion in both classical and quantum mechanics. Rather what happens when
ice is dropped into hot water is that the marginal entropy of the (ice + hot water) system
increases, while the entropy of the universe remains constant, due to a growth of mutual
information mediated by subtle correlations between the (ice + hot water) system and the
rest of the universe. In principle these correlations could be harnessed and redirected so
as to cause the warm water to refreeze, but in practice the melting is irreversible.)

Turning again to ideal reversible processes, the entropy change in going from state X
to state Y is an anti-symmetric function of X and Y; thus, when water freezes at 0 C by
the most efficient process, it gives up 3.8 bits of entropy per molecule to the environment.
When more than two states are involved, the entropy changes are transitive: thus the
entropy change per molecule of going from ice to water vapor at 0 C (+32.6 bits) plus that
for going from vapor to liquid water (−28.8 bits) sum to the entropy change for going from
ice to water directly. Because of this asymmetry and transitivity, entropy can be regarded
as a thermodynamic potential or state function: each state has an entropy, and the entropy
change in going from state X to state Y by the most efficient process is simply the entropy
difference between states X and Y.

Thermodynamic ideas were first successfully applied to computation by Landauer. Ac-
cording to Landauer’s principle [16, 4, 26, 27, 6] an operation that maps an unknown state
randomly chosen from among n equiprobable states onto a known common successor
state must be accompanied by an entropy increase of log2 n bits in other, non-information-
bearing degrees of freedom in the computer or its environment. At room temperature, this
is equivalent to the production of kT ln 2 (about 7 · 10−22) calories of waste heat per bit of
information discarded.

The point here is the change from “ignorance” to “knowledge” about the state, that
is, the gaining of information and not the erasure in itself (instead of erasure one could
consider measurement that would make the state known).

Landauer’s priniciple follows from the fact that such a logically irreversible operation
would otherwise be able to decrease the thermodynamic entropy of the computer’s data
without a compensating entropy increase elsewhere in the universe, thereby violating the
second law of thermodynamics.

Converse to Landauer’s principle is the fact that when a computer takes a physical
randomizing step, such as tossing a coin, in which a single logical state passes stochasti-
cally into one of n equiprobable successors, that step can, if properly harnessed, be used
to remove log2 n bits of entropy from the computer’s environment. Models have been
constructed, obeying the usual conventions of classical, quantum, and thermodynamic
thought-experiments [16, 15, 3, 4] [11, 17, 23, 1, 10] showing both the ability in principle
to perform logically reversible computations in a thermodynamically reversible fashion
(i.e. with arbitrarily little entropy production), and the ability to harness entropy increases
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due to data randomization within a computer to reduce correspondingly the entropy of its
environment.

In view of the above considerations, it seems reasonable to assign each string x an ef-
fective thermodynamic entropy equal to its Kolmogorov complexity K(x). A computation
that erases an n-bit random string would then reduce its entropy by n bits, requiring an
entropy increase in the environment of at least n bits, in agreement with Landauer’s prin-
ciple.

Conversely, a randomizing computation that starts with a string of n zeros and produces
n random bits has, as its typical result, an algorithmically random n-bit string x, i.e. one for
which K(x) ≈ n. By the converse of Landauer’s principle, this randomizing computation
is capable of removing up to n bits of entropy from the environment, again in agreement
with the identification of the thermodynamic entropy and Kolmogorov complexity.

What about computations that start with one (randomly generated or unknown) string
x and end with another string y? By the transitivity of entropy changes one is led to say
that the thermodynamic cost, i.e. the minimal entropy increase in the environment, of a
transformation of x into y, should be

W(y|x) = K(x) − K(y),

because the transformation of x into y could be thought of as a two-step process in which
one first erases x, then allows y to be produced by randomization. This cost is obviously
anti-symmetric and transitive, but is not even semicomputable. Because it involves the
difference of two semicomputable quantities, it is at best expressible as the non-monotone
limit of a computable sequence of approximations. Invoking the identity [13] K(x, y)

+
=

K(x) + K(y|x∗), where x∗ denotes the first minimal program for x in enumeration order
(or equivalently, x∗ := 〈x, K(x)〉), the above cost measure W(y|x) can also be interpreted
as a difference in conditional complexities,

W(y|x)
+
= K(x|y∗) − K(y|x∗) .

Such indirect conditional complexities, in which the input string is supplied as a mini-
mal program rather than directly, have been advocated by Chaitin [7] on grounds of their
similarity to conditional entropy in standard information theory.

An analogous anti-symmetric cost measure based on the difference of direct conditional
complexities

W ′(y|x) = K(x|y) − K(y|x).
was introduced and compared with W(x|y) by Zurek [26], who noted that the two costs
are equal within a logarithmic additive term. Here we note that W ′(y|x) is non-transitive
to a similar extent.

Clearly, W ′(y|x) is tied to the study of distance E3, the sum of irreversible information
flow in and out of the computation. Namely, analysis of the proof of Theorem 7 shows that
up to logarithmic additional terms, a necessary and sufficient number of bits of K(y|x) (the
program) needs to be supplied at the start of the computation from x to y, while a necessary
and sufficient number of bits of K(x|y) (the garbage) needs to be irreversibly erased at
the end of the computation. The thermodynamical analysis of Landauer’s principle at
the beginning of this section says the thermodynamic cost, and hence the attending heat
dissipation, of a computation of y from x is given by the number of irreversibly erased bits
minus the number of irreversibly provided bits, that is, W ′(y|x).

It is known that there exist strings [13] x of each length such that K(x∗|x) ≈ log l(x),
where x∗ is the minimal program for x. According to the W ′ measure, erasing such an x via
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the intermediate x∗ would generate log l(x) less entropy than erasing it directly, while for
the W measure the two costs would be equal within an additive constant. Indeed, erasing
in two steps would cost only K(x|x∗) − K(x∗|x) + K(x∗|0) − K(0|x∗)

+
= K(x) − K(x∗|x)

while erasing in one step would cost K(x|0) − K(0|x) = K(x).
Subtle differences like the one between W and W ′ pointed out above (and resulting

in a slight nontransitivity of W ′) depend on detailed assumptions which must be, ulti-
mately, motivated by physics [27]. For instance, if one were to follow Chaitin [7] and
define a Kc-complexity as Kc(x) := K(x), Kc(x, y) := K(x, y) but the conditional in-
formation Kc(y|x) := K(y|x∗) then the joint information would be given directly by
Kc(x, y)

+
= Kc(x) + Kc(y|x), and the Kc-analogues Wc′(y|x) = Wc(y|x) would hold without

logarithmic corrections (because Kc(y|x) = Kc(y|x∗)). This Kc notation is worth consid-
ering especially because the joint and conditional Kc-complexities satisfy equalities which
also obtain for the statistical entropy (i.e. Gibbs-Shannon entropy defined in terms of prob-
abilities) without logarithmic corrections. This makes it a closer analog of the thermody-
namic entropy. Moreover—as discussed by Zurek [27], in a cyclic process of a hypothet-
ical Maxwell demon-operated engine involving acquisition of information through mea-
surement, expansion, and subsequent erasures of the records compressed by reversible
computation—the optimal efficiency of the cycle could be assured only by assuming that
the relevant minimal programs are already available.

These remarks lead one to consider a more general issue of entropy changes in nonideal
computations. Bennett [4] and especially Zurek [27] have considered the thermodynam-
ics of an intelligent demon or engine which has some capacity to analyze and transform
data x before erasing it. If the demon erases a random-looking string, such as the digits
of π, without taking the trouble to understand it, it will commit a thermodynamically ir-
reversible act, in which the entropy of the data is decreased very little, while the entropy
of the environment increases by a full n bits. On the other hand, if the demon recognizes
the redundancy in π, it can transform π to an (almost) empty string by a reversible com-
putation, and thereby accomplish the erasure at very little thermodynamic cost. See for a
comprehensive treatment [22].

More generally, given unlimited time, a demon could approximate the semicomputable
function K(x) and so compress a string x to size K(x) before erasing it. But in limited time,
the demon will not be able to compress x so much, and will have to generate more entropy
to get rid of it. This tradeoff between speed and thermodynamic efficiency is superficially
similar to the tradeoff between speed and efficiency for physical processes such as melting,
but the functional form of the tradeoff is very different. For typical physical state changes
such as melting, the excess entropy produced per molecule goes to zero inversely in the
time t allowed for melting to occur. But the time-bounded Kolmogorov complexity Kt(x),
i.e. the size of the smallest program to compute x in time less than t, in general approaches
K(x) only with uncomputable slowness as a function of t and x. These issues have been
analyzed in more detail by two of us in [20].

9. DENSITY PROPERTIES

In a discrete space with some distance function, the rate of growth of the number of
elements in balls of size d can be considered as a kind of “density” or “dimension” of the
space. For all information distances one significant feature is how many objects there are
within a distance d of a given object. From the pattern recognition viewpoint such infor-
mation tells how many pictures there are within the universal admissible (max) distance
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E1(x, y) = d. For the reversible distance E2(x, y) = d this tells us how many objects one
can reach using a reversible program of length d. For the sum distance E3(x, y) = d this
tells us how many objects there are within d irreversible bit operations of a given object.

Recall the distances E1(x, y) = max{K(x|y), K(y|x)} and E3(x, y)
log
= K(x|y) + K(y|x).

For a binary string x of length n, a nonnegative number d and i = 1, 3, let Bi(d, x) be the
set of strings y 6= x with Ei(x, y) ≤ d, and Bi(d, x, n) := Bi(d, x)

⋂

{0, 1}n.
The functions Bi(d, x) behave rather simply: log #Bi(d, x) grows essentially like d. The

functions Bi(d, x, n) behave, however, differently. While log #B1(d, x, n) grows essentially
like d, the function log #B3(d, x, n) grows essentially like d/2. This follows from the some-
what more precise result in 10 below. First we treat the general case below that says that
balls around x of radius d with d random with respect to x contain less elements: neighbor-
hoods of tough radius’s contain less neighbors.

Theorem 8. Let x be a binary string of length n. The number of binary strings y with E1(x, y) ≤ d
satisfies

log #B1(d, x)
+
= d − K(d|x);

d − K(d)
+
< log #B1(d, x, n)

+
< d − K(d|x).

The last equation holds only for n ≥ d − K(d): for n < d − K(d) we have log #B1(d, x, n)
+
= n.

Proof. (B1(d, x)
+
<) For every binary string x

∞

∑
d=0

#B1(d, x)2−d−1 =
∞

∑
d=0

d

∑
j=0

2−d+j−1 ∑
y:E1(x,y)=j&y 6=x

2−j

=
∞

∑
d=0

d

∑
j=0

2−d+j−1 ∑
y:E1(x,y)=j&y 6=x

2−E1(x,y)

=
∞

∑
i=1

2−i ∑
y:y 6=x

2−E1(x,y) ≤ 1,

where the last inequality follows from the properties of E1(·, ·) proven in Theorem 4. Since
f (x, d) := log(2d+1/#B1(d, x)) is upper semicomputable and satisfies ∑d 2− f (x,d) ≤ 1, by

Lemma 2.6 we have K(d|x)
+
< f (x, d)

+
= d − log #B1(d, x).

(B1(d, x)
+
>) For all i < 2d−K(d|x), consider the strings yi = λ3(i)x where λ3 is the self-

delimiting code of Definition 2. The number of such strings yi is 2d−K(d|x). Clearly, for
every i, we have K(x|yi)

+
= 0 and K(yi|x)

+
= K(i|x). Therefore,

E1(x, yi)
+
< K(i|x).

Each i can be represented by a string zi of length precisely d − K(d|x), if necessary by
padding it up to this length. Let q be a shortest self-delimiting program computing d from
x. By definition l(q) = K(d|x). The program qzi is a self-delimiting program to compute
i from x: Use q to compute d from x and subsequently use d − l(q) = d − K(d|x) = l(zi)

to determine where zi ends. Hence, K(i|x)
+
< l(qzi) = d from which E1(x, yi)

+
< d follows.

The implied additive constants in
+
< can be removed in any of the usual ways.
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(B1(d, x, n)
+
<) Since B1(d, x, n) ≤ B1(d, x) the upper bound on the latter is also an upper

bound on the former.
(B1(d, x, n)

+
> and n ≥ d − K(d)) For the d − K(d) lower bound on log #B1(d, x, n) the

proof is similar but now we consider all i < 2d−K(d) and we choose the strings yi = x ⊕ i
where ⊕ means bitwise exclusive-or (if l(i) < n then assume that the missing bits are 0’s).

(B1(d, x, n) and n < d − K(d)) in that case we obtain all strings in {0, 1}n as yi’s in the
previous proof. �

Note that K(d)
+
< log d + 2 log log d. It is interesting that a similar dimension relation

holds also for the larger distance E3(x, y)
log
= K(y|x) + K(x|y).

Theorem 9. Let x be a binary string. The number B3(d, x) of binary strings y with E3(x, y) ≤ d
satisfies

log #B3(d, x)
log
= d − K(d|x).

Proof. (
+
<) This follows from the previous theorem since E3 ≥ E1.

(
log
> ) Consider strings y of the form px where p is a self-delimiting program. For all

such programs, K(x|y)
+
= 0, since x can be recovered from y by a constant-length program.

Therefore E3(x, y)
log
= K(y|x)

+
= K(p|x). Now just as in the argument of the previous proof,

there are at least 2d−K(d|x) such strings p with K(p|x) ≤ d. �

The number of strings of length n within any E3-distance of a random string x of length
n, (that is, a string with K(x) near n) turns out to be different from the number of strings
of length n within the same E1-distance. In the E3-distance: “tough guys have few neighbors
of their own size”.

In particular, a random string x of length n has only about 2d/2 strings of length n within
E3-distance d while there are essentially 2d such strings within E1-distance d of x by Theo-
rem 8. Moreover, since Theorem 9 showed that every string has essentially 2d neighbors al-
together in E3-distance d, for every random string x asymptotically almost all its neighbors
within E3-distance d have length unequal n. The following theorem describes the general
situation.

Theorem 10. For each x of length n we have

log #B3(d, x, n)
log
=

n + d − K(x)

2
,

while n − K(x) ≤ d. (For n − K(x) > d we have log #B3(d, x, n)
log
= d.)

Proof. Let K(x)
log
= n − δ(n) (for example, K(x)

+
= n + K(n) − δ(n).

(≥) Let y = x∗z with l(y) = n and l(z) = δ(n), and let x∗ be the first self-delimiting
program for x (l(x∗) = K(x)) that we find by dovetailing all computations on programs
of length less than n. We can retrieve z from y using at most O(log n) bits. There are 2δ(n)

different such y’s. For each such y we have K(x|y) = O(1), since x can be retrieved from
y using x∗. Now suppose that we also replace the fixed first l/2 bits of y by an arbitrary
u ∈ {0, 1}l/2 for some value of l to be determined later. Then, the total number of y’s
increases to 2δ(n)+l/2.
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These choices of y must satisfy E3(x, y) ≤ d. Clearly, K(y|x)
log
< δ(n) + l/2. Moreover,

K(x|y)
log
< l/2 since we can retrieve x by providing l/2 bits. Therefore, K(x|y) + K(y|x)

log
<

l/2 + δ(n) + l/2. Since the left-hand side has value at most d, the largest l we can choose

is l
log
= d − δ(n).

This shows that the number #B3(d, x, n) of y’s such that E3(x, y) ≤ d satisfies

log #B3(d, x, n)
log
>

δ(n) + d
2

.

(≤) Assume, to the contrary, that there are at least 2(d+δ(n))/2+c elements y of length n such
that E3(x, y) ≤ d holds, with c some large constant to be determined later. Then, for some
y,

K(y|x) ≥
d + δ(n)

2
+ c.

By assumption, K(x)
log
= n − δ(n), K(y)

log
< n. By the addition theorem 5 we find n + (d −

δ(n))/2 + c
log
< n + K(x|y). But this means that

K(x|y)
log
>

d − δ(n)

2
+ c,

and these two equations contradict K(x|y) + K(y|x) ≤ d for large enough c = O(log n). �

It follows from our estimates that in every set of low Kolmogorov complexity almost all
elements are far away from each other in terms of the distance E1.

If S is a finite set of low complexity (like a finite initial segment of a recursively enu-
marable set) then almost all pairs of elements in the set have large information distance.
Let the Kolmogorov complexity K(S) of a set be the length of a shortest binary program
that enumerates S and then halts.

Theorem 11. For a constant c, let S be a set with #S = 2d and K(S) = c log d. Almost all pairs
of elements x, y ∈ S have distance E1(x, y) ≥ d, up to an additive logarithmic term.

The proof of this theorem is easy. A similar statement can be proved for the distance of a
string x (possibly outside S) to the majority of elements y in S. If K(x) ≥ n, then for almost
all y ∈ S we have E1(x, y) ≥ n + d ± O(log dn).
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