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Introduction Martin-Löf’s theory of randomness

Martin-Löf’s theory of randomness

(As presented by Levin). Let X be the space Σ∗ of finite strings, or the
space Σω of infinite strings. Let µ be a probability measure over X. A
test

tµ(x)

quantifies the nonrandomness of outcome x ∈ X with respect to µ. In
Martin-Löf’s theory, measure µ is assumed to be “computable” and
fixed. Required:∫

tµ(x)µ(dx) 6 1. (The measure of “non-random” objects is small.)
t is lower semicomputable in x. (Sooner or later we will recognize
non-randomness.)

Test u is universal if ∀t ∃c > 0 ∀x tµ(x) > c · uµ(x).

Theorem 1
There is a universal test t̃µ(x).
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Introduction Test in terms of complexity

Test in terms of complexity

I assume familiarity with description (Kolmogorov) complexity. Let
X = Σ∗. For x ∈ X, denote the complexity (the prefix version) of x by

H(x)

(same as K(x) in Li-Vitányi). Let d̃µ(x) = log t̃µ(x), called the
deficiency of randomness of x with respect to µ.

Theorem 2
Over the set of finite strings,

d̃µ(x) += − log µ(x)−H(x).

Over the set of infinite strings,

d̃µ(x) += sup
n

− log µ(x6n)−H(x6n).

Constants in += depend on µ.
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Introduction Conservation of randomness

Conservation of randomness

For a computable function f : X → Y, and probability measure µ over
X, define the output distribution f ∗µ over Y by

(f ∗µ)(y) = µ(f−1(x)).

If µ is computable then it can be seen that f ∗µ is also computable. The
following theorem implies that if x is random with respect to µ then
f (x) is random with respect to f ∗µ:

Proposition 3

d̃f ∗µ(f (x))
+
< d̃µ(x).
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Introduction Apriori probability

“Apriori probability”

If m(x) = 2−H(x) is treated as a measure, then

d̃m(x) += − log m(x)−H(x) = 0

shows that all strings are random with respect to m.
But: m is not a probability measure (only a “semimeasure”), and is not
computable (only lower semicomputable).
Still: this idea (over infinite sequences) is used in inductive inference
(Solomonoff).
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Introduction Uniform tests

Arbitrary measures: uniform tests

Restriction to computable measures µ is unnatural (it is particularly
baffling to probabilists). How to extend the definition to arbitrary
measures? Idea: just use (over X = Σ∗):

− log µ(x)−H(x).

Alas, this test does not conserve randomness (easy counterexample).
New idea (following early work of Levin): test tµ(x):

1
∫

tµ(x)µ(dx) 6 1.

2 t is lower semicomputable in (µ, x).
To make sense of 2 equip the space of measures with a computability
structure. Levin has done this for some compact spaces (like infinite
binary sequences).
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Introduction Uniform tests

Levin’s uniform tests

With appropriately defined notion of test, claims:

Universal uniform test tµ(x); let dµ(x) = log tµ(x).
Randomness conservation
Neutral measure M: for all every x we have tM(x) 6 1 (“apriori
probability”).

Lower semicomputable neutral semimeasure Semimeasures
(semi-additive measures) are introduced; there is a lower
semicomputable semi-measure M that is neutral (and universal).
Information I(x : y) (appropriately defined) is essentially equal to
dM×M(x, y): “defect of independence”. This allows information
conservation to be proved as special case of randomness
conservation.
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Introduction Goals

My goals

Natural, general definition of test (achieved). ?
Non-compact spaces, too (achieved).
Expressing the test via complexity (partial success).
See which of Levin’s results survive:

Universal uniform test yes.
Randomness conservation yes.
Neutral measure yes.
Neutral l.sc. semimeasure no, not even in the compact case or for
finite strings.
Information conservation from randomness conservation: ?.
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Continuous computability Topology

Constructive topology

Computability extended: instead of only about random strings, to
speak of random real numbers, even about a random path of the
Brownian motion (non-compact space). (For the special case of
Brownian motion the concept has been worked out already by Asarin.)
I assume familiarity with topological spaces. For the constructive
version, I (essentially) follow Weihrauch et al.
Constructive topological space:

X = (X, β, ν),

where X is the underlying set, β is a basis of open neighborhoods, ν is
an enumeration of β: β = {ν(1), ν(2), . . . }.
Open set: a union of basis elements. R.e. open set: a union of a r.e. set
of basis elements.
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Continuous computability Topology

Computable functions

Let f : X → Y.
Continuous: f−1(V) is open for all basis elements V ⊆ Y.
Computable: f−1(V) is r.e. open, uniformly in the enumerated basis
elements V.
Lower semicomputable: a constructive version of “lower
semicontinuity”: the set

{ (x, r) : f (x) > r }

is a r.e. open subset of X ×Q.
Point x ∈ X is computable if the constant function 0 7→ x is.
Conditional description complexity H(x | y) can be generalized to the
case where y is coming from a computable topological space. The
interpreter function used in the definition must be computable in y.

Péter Gács (Boston University) Randomness Fall 07 10 / 32



Continuous computability Metric space

Computable metric space

X = (X, d, D, α).
d is a distance function over X.
D ⊆ X is countable, dense (so, X is separable).
α is an enumeration of D.
Condition: d(x, y) is computable for x, y ∈ D.
A computable metric space is automatically a constructive topological
space. Basic balls: balls with center in D and rational radius.
The space X is effectively compact if for every k one can compute a
covering of X by basic balls.
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Continuous computability Measures

Topology of measures

I assume familiarity with measures, defined on the Borel sets of a
topological space X. We will always require X to be a complete
computable metric space.
Weak convergence: µi → µ if µif → µf for all bounded continuous
functions f .
Example (Dirac delta): δxi → δx if xi → x.
Prokhorov distance: p(µ, ν) = inf{ ε : ∀ Borel A, νAε < µA + ε }.
Wasserstein distance: W(µ, ν) = inff∈Lip |µf − νf |.
Dense set of measures: finite rational combinations of measures of
form δx for x ∈ D.
This turns the set of probability measures into a computable metric
space M(X).
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Continuous computability Measures

Theorem 4
If f : X → R is computable then µ 7→ µf is computable.

But, for example, for any ball B = B(x, r), (x ∈ D, r ∈ Q), the function
µ 7→ µ(B) is not computable. Let Bi be an enumeration of all basic
balls.

Theorem 5 (Hoyrup, Rojas)
Measure µ is computable if and only if the function

〈i1, . . . , ik〉 7→ µ(Bi1 ∪ · · · ∪ Bik)

is lower semicomputable.
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Uniform tests

Uniform tests

∫
tµ(x)µ(dx) 6 1.

t is lower semicomputable in (µ, x).

Theorem 6 (Hoyrup, Rojas)

There is a universal uniform test tµ(x).

(I had this theorem only under a certain condition on the space.)
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Uniform tests

Randomness with respect to computable measures has
certain—intuitively meaningful—monotonicity and convexity:

µ 6 cν implies tν(x)
∗
< ctµ(x).

µ = 1
n ∑n

i=1 µi implies tµ
∗
> mini tµi .

These properties do not survive for the uniform test: let µ0 be uniform
over [0, 1], and µ1 uniform over [0, 1/2], µ2 uniform over [1/2, 1]. Let
p < 1/2 be random with respect to µ0, let ν1 = pµ1 + (1− p)µ2, and
ν2 = (1− p)µ1 + pµ2. Then p is not random with respect to either ν1 or
ν2, but Then µ0 6 p−1ν1 and also µ0 = (ν1 + ν2)/2.
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Randomness conservation

Randomness conservation

Theorem 7
Let f : X → Y be computable. Then

df ∗µ(f (x))
+
< dµ(x).

There is a more general theorem, for computable random transitions.
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Relation to complexity Nicest cases

Relation to complexity
Nicest cases

Theorem 8
If X is discrete,

dµ(x) += − log µ(x)−H(x | µ).

For other spaces, we do not have a nice characterization for the
uniform tests, so we assume that µ is computable.

Theorem 9
On the space of infinite sequences, for computable measure µ we have

dµ(x) += sup
n

− log µ(x6n)−H(x6n).
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Relation to complexity Cells

Cells

Sometimes other spaces can be mapped to the space of infinite
sequences.
For a computable sequence of functions b1, b2, . . . , with bi : X → R, let

Φi,0 = { x ∈ X : bi(x) < 0 },
Φi,1 = { x ∈ X : bi(x) > 0 }.

We say that the sequence {bi} is separating if x1 6= x2 implies
∃j bj(x1) · bj(x2) < 0.
It is isolating if the nonempty finite intersections of the sets Φi,j form
an enumerated basis computationally equivalent to the canonical one.
An isolating sequence is always separating.

Theorem 10
If the space is effectively compact then a separating sequence is also isolating.
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Relation to complexity Cells

Fix a separating sequence {bi}, let

X0 = { x ∈ X : bj(x) 6= 0, j = 1, 2, . . . }.

For x ∈ X0 let

σi(x) = j if x ∈ Φi,j,

σ[n](x) = (σ1(x), . . . , σn(x)).

For a binary string s1 · · · sn = s, we define the n-cell

Γ(s) = Γn(x) = { x : σ[n](x) = s }.

If {bi} is isolating then the nonempty sets Γ(s) form an enumerated
basis over the subspace X0.
On the set X0, the cells behave somewhat like binary subintervals: they
divide X0 in half, then each half again in half, etc.
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Relation to complexity Cells

A measure µ is regular for the sequence {bi} if µ(X0) = 1.

Theorem 11
If the sequence {bi} is isolating, the measure µ is computable and regular for
{bi} then for x ∈ X0 we have

dµ(x) += sup
n

− log µ(Γn(x)))−H(Γn(x)).

For x ∈ X r X0 we have dµ(x) = ∞.

Question 1
Find a nice characterization for the general uniform test in terms of
complexity.
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Neutral measure

Neutral measure

Theorem 12 (Levin)
If X is compact then there is a measure M with the property that for all x,
tM(x) 6 1.

(Proof using Sperner’s Lemma.)
Noncompact spaces? No. The discrete space X = N has no neutral
measure. But, we can compactify N. A neutral measure M over
N = N∪ ∞ is only a semimeasure over N.
Is there a neutral measure with some nice computability property?

Theorem 13
No neutral measure over N is lower semicomputable or upper
semicomputable over N.
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Information Relative algorithmic entropy

Information
Relative algorithmic entropy

Hν(x) = −dν(x)

is a generalization of complexity (algorithmic entropy). Indeed,
generalizing to non-probability measures ν (example: the counting
measure #)

H#(x) += H(x).

This is in analogy to the definition of relative (information-theoretical)
entropy of µ with respect to ν,

Hν(µ) = −
∫

log
dµ

dν
dµ,

(which is the negative of the so-called Kullback distance). Special
cases: ν = # gives ordinary entropy. For ν = Lebesgue measure gives
−

∫
f (x) log f (x)dx.
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Information Addition theorem

Addition theorem

Let us generalize the well-known addition theorem

H(x, y) += H(x) + H(y | x, H(x)).

Theorem 14 (General Addition)

Hµ×ν(x, y) += Hµ(x | ν) + Hν(y | x, Hµ(x | ν), µ).

The proof is somewhat subtle.

Question 2
Applications?
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Information Information

Information

Classical information between two random variables X, Y with
distribution µX,Y is

I(X : Y) = H(X) +H(Y)−H(X, Y) (1)
= −HµX×µY(µX,Y). (2)

(2) is the Kullback distance of µX,Y from the product µX × µY.
The analog of (1) is the algorithmic mutual information

I(x : y) = H(x) + H(y)−H(x, y).

If we defined deficiency of randomness as

dµ(x) = − log µ(x)−H(x),

then the analog of (2) is

I(x : y) = dm×m(x, y) = −Hm×m(x, y),

which can be seen as the deficiency of independence between x and y.
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Information Information

Alas, we had to discard d.

Question 3

Is I(x : y) = dM×M(x, y) with some neutral measure M over N?

Levin’s use of a similar formula allowed him to derive his information
conservation inequality from randomness conservation.
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Information Information

Question 4
What is the natural definition of information (having the best properties) in
the continuous case?

A candidate for the case with cells is

I(x : y) = sup
m,n

I(σ[m](x) : σ[n](y)).

Other possibility, with underlying measures µ, ν:

Iµ,ν(x : y) = Hµ(x | ν) + Hν(y | µ)−Hµ×ν(x, y).

How much does this depend on µ, ν? What if we use a neutral
measure here?
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Entropy in physics The model

Entropy in physics
The model

Assume that our system is that of classical mechanics, a dynamical
system with X as a state space (phase space, configuration space), and
a dynamic

x 7→ Utx,

where time t is discrete or continuous. We have a measure L invariant
under Ut (think of Liouville’s theorem).
We assume an isolating set of functions {bi} and so will speak about
cells. Asssume the functions bi arranged in decreasing order of
interest. At the beginning are some “macroscopic” ones like
temperature, pressure, then come pressure, concentrations in the
different compartments of space, and so on.
When the data of interest have been specified we arrive at a cell Γn(x),
a coarse-grained description of the system.
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Entropy in physics The model

Example 15 (The baker’s map)

X = the set of doubly infinite binary sequences x = . . . x−1x0x1x2 . . .
with the shift transformation (Utx)i = xi+t over discrete time. Let
xn = x−bn/2c · · · xdn/2e−1. The n-cells are of the form Γn(x) = Γ(xn),
with volume

L(Γ(xn)) = 2−n.
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Entropy in physics Boltzmann entropy

Boltzmann entropy

Boltzmann defined entropy as

log L(Γn(x)).

This definition is, of course, dependent on the choice of the functions bi
and the fineness n of the partition. In practice these variations are
negligible compared to log L(Γn(x)) (of the order of 1023).
One way of expressing the second law of thermodynamics is to say
that in typical systems of physics, entropy

log L(Γn(Utx))

increases over time, until it reaches its maximum near log L(X). This
can only be true in a statistical sense, requires some strong mixing
properties of the map Ut.
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Entropy in physics “Physical” entropy

“Physical” entropy

For the baker’s map (otherwise a very nicely mixing system), all
n-cells have the same measure no matter what fixed precision we
choose, so the volume L(Γn(Utz)) is constant in t. This suggests
difficulties with Boltzmann’s definition.
Using some more interesting considerations, Zurek recommended a
quantity similar to

Hn(x) = log L(Γn(x)) + H(Γn(x)),

calling it “physical entropy”; we call it coarse-grained algorithmic
Boltzmann entropy. So, we add the complexity of the cell to the
logarithm of its size.
For typical applications in classical physics, the correction term is
negligible.
In the baker’s map, it can be shown that Hn(x) increases fast to its
maximum (which is 0) for almost all sequences.
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Entropy in physics Fine-grain entropy

The function Hn(x) depends only moderately on the choice of the
functions bi and on n. Indeed, let

HL(x) = −dL(x)

be the relative algorithmic entropy of x with respect to L (a finite
measure now). We will call it fine-grained entropy in the physical
context.
The theorem characterizing the randomness defect in terms of
complexity translates to

HL(x) = inf
n

L(Γn(x)) + H(Γn(x)) = inf
n

Hn(x).

So Hn(x) can be viewed as the nth approximation of the fine-grained
entropy HL(x). On the other hand, the latter is essentially invariant
with respect to the choice of bi and n.
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Entropy in physics Fine-grain entropy

Question 5
Prove the increase of Hn(x) for some interesting maps Ut. Maybe some
hyperbolicity properties of the map suffice.
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