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ABSTRACT. There are several proofs now for the stability of Toom’s ex-
ample of a two-dimensional stable cellular automaton and its applica-
tion to fault-tolerant computation. Simon and Berman simplified and
strengthened Toom’s original proof: the present report is simplified ex-
position of their proof.

1. INTRODUCTION

Let us define cellular automata.

Definition 1.1. For a finite m, let Zm be the set of integers modulo m; we
will also write Z∞ = Z for the set of integers. A set C will be called a one-
dimensional set of sites, or cells, if it has the form C = Zm for a finite or infinite
m. For finite m, and x ∈ C, the values x + 1 x − 1 are always understood
modulo m. Similarly, it will be called a two- or three-dimensional set of
sites if it has the form C = Zm1 × Zm2 or C = Zm1 × Zm2 × Zm3 for finite or
infinite mi. One- and three-dimensional sets of sites are defined similarly.

For a given set C of sites and a finite set S of states, we call every function
ξ : C → S a configuration. Configuration ξ assigns state ξ(x) to site x. For
some interval I ⊂ (0, ∞], a function η : C× I → S will be called a space-time
configuration. It assigns value η(x, t) to cell x at time t.

In a space-time vector 〈x, t〉, we will always write the space coordinate
first. y

Definition 1.2. Let us be given a function function Trans : S3 → S and a
one-dimensional set of sites C. We say that a space-time configuration η
in one dimension is a trajectory of the one-dimensional (deterministic) cellular
automaton CA(Trans)

η(x, t) = Trans(η(x − B, t − T), η(x, t − T), η(x + B, t − T))

holds for all x, t. Deterministic cellular automata in several dimensions are
defined similarly. y

Since we want to analyze the effect of noise, we will be interested in
random space-time configurations.
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Definition 1.3. For a given set C of sites and time interval I, consider a
probability distribution P over all space-time configurations η : C× I → S.
Once such a distribution is given, we will talk about a random space-time
configuration (having this distribution). We will say that the distribution P
defines a trajectory of the ε-perturbation

CAε(Trans)

if the following holds. For all x ∈ C, t ∈ I, r−1, r0, r1 ∈ S, let E0 be an event
that η(x + j, t − 1) = rj (j = −1, 0, 1) and η(x′, t′) is otherwise fixed in some
arbitrary way for all t′ < t and for all x′ 6= x, t′ = t. Then we have

P[ η(x, t) = Trans(r−1, r0, r1) | E0 ] 6 ε.

y

A simple stable two-dimensional deterministic cellular automaton given
by Toom in [3] can be defined as follows.

Definition 1.4 (Toom rule). First we define the neighborhood

H = {〈0, 0〉, 〈0, 1〉, 〈1, 0〉}.

The transition function is, for each cell x, a majority vote over the three
values x + gi where gi ∈ H. y

As in [2], let us be given an arbitrary one-dimensional transition function
Trans and the integers N, T.

Definition 1.5. We define the three-dimensional transition function Trans′

as follows. The interaction neighborhood is H × {−1, 0, 1} with the neigh-
borhood H defined above. The rule Trans′ says: in order to obtain your
state at time t + 1, first apply majority voting among self and the northern
and eastern neighbors in each plane defined by fixing the third coordinate.
Then, apply rule Trans on each line obtained by fixing the first and second
coordinates.

For a finite or infinite m, let C be our 3-dimensional space that is the
product of Z2

m and a 1-dimensional (finite or infinite) space A with N = |A|.
For a trajectory ζ of Trans on A, we define the trajectory ζ ′ of Trans′ on C
by ζ ′(i, j, n, t) = ζ(n, t). y

Let ζ ′ be a trajectory of Trans′ and η a trajectory of CAε(Trans′) such that
η(0, w) = ζ ′(0, w).

Theorem 1. Suppose ε < 1
32·128 . If m = ∞ then we have

P[ η(w, t) 6= ζ ′(w, t) ] 6 24ε.

If m is finite then we have

P[ η(w, t) 6= ζ ′(w, t) ] 6 24tm2N(2 · (12)2ε1/12)m + 24ε.

The proof we give here is a further simplification of the simplified proof
of [1].
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Definition 1.6. Let Noise be the set of space-time points v where η does
not obey the transition rule Trans′. Let us define a new process ξ such that
ξ(w, t) = 0 if η(w, t) = ζ ′(w, t), and 1 otherwise. Let

Corr(a, b, u, t) = Maj(ξ(a, b, u, t), ξ(a + 1, b, u, t), ξ(a, b + 1, u, t)).

y

For all points (a, b, u, t + 1) 6∈ Noise(η), we have

ξ(a, b, u, t + 1) 6 max(Corr(a, b, u − 1, t), Corr(a, b, u, t), Corr(a, b, u + 1, t)).

Now, Theorem 1 can be restated as follows:
Suppose ε < 1

32·128 . If m = ∞ then

P[ ξ(w, t) = 1 ] 6 24ε.

If m is finite then

P[ ξ(w, t) = 1 ] 6 24tm2N(2 · (12)2ε1/12)m + 24ε.

2. PROOF USING SMALL EXPLANATION TREES

Definition 2.1 (Covering process). If m < ∞ let C′ = Z3 be our cover-
ing space, and V′ = C′ × Z our covering space-time. There is a projection
proj(u) from C′ to C defined by

proj(u)i = ui mod m (i = 1, 2).

This rule can be extended to C′ identically. We define a random process ξ ′

over C′ by
ξ ′(w, t) = ξ(proj(w), t).

The set Noise is extended similarly to Noise′. Now, if proj(w1) = proj(w2)
then ξ ′(w1, t) = ξ ′(w2, t) and therefore the failures at time t in w1 and w2
are not independent. y

Definition 2.2 (Arrows, forks). In figures, we generally draw space-time
with the time direction going down. Therefore, for two neighbor points
u, u′ of the space Z and integers a, b, t, we will call arrows, or vertical edges
the following kinds of (undirected) edges:

{〈a, b, u, t〉, 〈a, b, u′, t − 1〉}, {〈a, b, u, t〉, 〈a + 1, b, u′, t − 1〉},

{〈a, b, u, t〉, 〈a, b + 1, u′, t − 1〉}.

We will call forks, or horizontal edges the following kinds of edges:

{〈a, b, u, t〉, 〈a + 1, b, u, t〉}, {〈a, b, u, t〉, 〈a, b + 1, u, t〉},

{〈a + 1, b, u, t〉, 〈a, b + 1, u, t〉}.

We define the graph G by introducing all possible arrows and forks. Thus,
a point is adjacent to 6 possible forks and 6 possible arrows: the degree of
G is at most

r = 12.
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(If the space is d + 2-dimensional instead of 3, then r = 6(d + 1).) We use
the notation Time(〈w, t〉) = t. y

The following lemma is key to the proof, since it will allow us to estimate
the probability of each deviation from the correct space-time configuration.
It assigns to each deviation a certain tree called its “explanation”. Larger
explanations contain more noise and have a correspondingly smaller prob-
ability. For some constants c1, c2, there will be 6 2c1L explanations of size L
and each such explanation will have probability upper bound εc2L.

Lemma 2.3 (Explanation Tree). Let u be a point outside the set Noise′ with
ξ ′(u) = 1. Then there is a tree Expl(u, ξ ′) consisting of u and points v of G with
Time(v) < Time(u) and connected with arrows and forks called an explanation
of u. It has the property that if n nodes of Expl belong to Noise′ then the number
of edges of Expl is at most 4(n − 1).

This lemma will be proved in the next section. To use it in the proof of
the main theorem, we need some easy lemmas.

Definition 2.4. A weighted tree is a tree whose nodes have weights 0 or 1,
with the root having weight 0. The redundancy of such a tree is the ratio of
its number of edges to its weight. The set of nodes of weight 1 of a tree T
will be denoted by F(T).

A subtree of a tree is a subgraph that is a tree. y

Lemma 2.5. Let T be a weighted tree of total weight w > 3 and redundancy λ. It
has a subtree of total weight w1 with w/3 < w1 6 2w/3, and redundancy 6 λ.

Proof. Let us order T from the root r down. Let T1 be a minimal subtree
below r with weigth > w/3. Then the subtrees immediately below T1 all
weigh 6 w/3. Let us delete as many of these as possible while keeping
T1 weigh > w/3. At this point, the weight w1 of T1 is > w/3 but 6 2w/3
since we could subtract a number 6 w/3 from it so that w1 would become
6 w/3 (note that since w > 3) the tree T1 is not a single node.

Now T has been separated by a node into T1 and T2, with weights
w1, w2 > w/3. Since the root of a tree has weight 0, by definition the pos-
sible weight of the root of T1 stays in T2 and we have w1 + w2 = w. The
redundancy of T is then a weighted average of the redundancies of T1 and
T2, and we can choose the one of the two with the smaller redundancy: its
redundancy is smaller than that of T. �

Theorem 2 (Tree Separator). Let T be a weighted tree with weight w and re-
dundancy λ, and let k < w. Then T has a subtree with weight w′ such that
k/3 < w′ 6 k and redundancy 6 λ.

Proof. Let us perform the operation of Lemma 2.5 repeatedly, until we get
weight 6 k. Then the weight w′ of the resulting tree is > k/3. �

Lemma 2.6 (Tree Counting). In a graph of maximum node degree r the number of
weighted subtrees rooted at a given node and having k edges is at most 2r · (2r2)k.
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Proof. Let us number the nodes of the graph arbitrarily. Each tree of k edges
can now be traversed in a breadth-first manner. At each non-root node of
the tree of degree i from which we continue, we make a choice out of r for i
and then a choice out of r − 1 for each of the i − 1 outgoing edges. This is ri

possibilities at most. At the root, the number of outgoing edges is equal to
i, so this is ri+1. The total number of possibilities is then at most r2k+1 since
the sum of the degrees is 2k. Each point of the tree can have weight 0 or 1,
which multiplies the expression by 2k+1. �

Proof of Theorem 1. Let us consider each explanation tree a weighted tree in
which the weight is 1 in a node exactly if the node is in Noise′. For each
n, let En be the set of possible explanation trees Expl for u with weight
|F(Expl)| = n. First we prove the theorem for m = ∞, that is Noise′ =
Noise. If we fix an explanation tree Expl then all the events w ∈ Noise′ for
all w ∈ F = F(Expl) are independent from each other. It follows that the
probability of the event F ⊂ Noise′ is at most εn. Therefore we have

P[ ξ(u) = 1 ] 6
∞

∑
n=1

|En|εn.

By the Explanation Tree Lemma, each tree in En has at most k = 4(n − 1)
edges. By the Tree Counting Lemma, we have

|En| 6 2r · (2r2)4(n−1),

Hence

P[ ξ(u) = 1 ] 6
2r
ε

∞

∑
n=0

(16r16ε)n =
2r
ε

(1− 16r16ε).

In the case C 6= C′ this estimate bounds only the probability of ξ ′(u) =
1, |Expl(u, ξ ′)| 6 m, since otherwise the events w ∈ Noise′ are not neces-
sarily independent for w ∈ F. Let us estimate the probability that an expla-
nation Expl(u, ξ ′) has m or more nodes. It follows from the Tree Separator
Theorem that Expl has a subtree T with weight n′ where m/12 6 n′ 6 m/4,
and at most m nodes. Since T is connected, no two of its nodes can have
the same projection. Therefore for a fixed tree of this kind, for each node of
weight 1 the events that they belong to Noise′ are independent. Hence for
each tree T of these sizes, the probability that T is such a subtree of Expl is
at most εm/12. To get the probability that there is such a subtree we multiply
by the number of such subtrees. An upper bound on the number of places
for the root is tm2N. An upper bound on the number of trees from a given
root is obtained from the Tree Counting Lemma. Hence

P[ |Expl(u, ξ ′)| > m ] 6 2rtm2N · (2r2ε1/12)m.

�



6 PETER GACS

3. THE EXISTENCE OF SMALL EXPLANATION TREES

3.1. Some geometrical facts. Let us introduce some geometrical concepts.

Definition 3.1. Three linear functionals are defined as follows for v =
〈x, y, z, t〉.

L1(v) = −x, L2(v) = −y, L3(v) = x + y.

y

Notice L1(v) + L2(v) + L3(v) = 0.

Definition 3.2. For a set S, we write

Size(S) =
3

∑
i=1

max
v∈S

Li(v).

y

Notice that for a point v we have Size({v}) = 0.

Definition 3.3. A set S = {S1, . . . , Sn} of sets is connected by intersection
if the graph G(S) is connected which we obtain by introducing an edge
between Si and Sj whenever Si ∩ Sj 6= ∅. y

Definition 3.4. A spanned set is an object P = 〈P, v1, v2, v3〉 where P is a
space-time set and vi ∈ P. The points vi are the poles of P, and P is its base
set. We define Span(P) as ∑3

i=1 Li(vi). y

Lemma 3.5 (Spanned Set Creation). If P is a set then there is a spanned set
〈P, v1, v2, v3〉 on P with Span(P) = Size(P).

Proof. Assign vi to a point of the set P in which Li is maximal. �

The following lemma is our main tool.

Lemma 3.6 (Spanning). Let L = 〈L, u1, u2, u3〉 be a spanned set and M be a set
of subsets of L connected by intersection, whose union covers the poles of L. Then
there is a set {M1, . . . , Mn} of spanned sets whose base sets Mi are elements of M,
such that the following holds. Let M′

i be the set of poles of Mi.
(a) Span(L) = ∑i Span(Mi).
(b) The union of the sets M′

j covers the set of poles of L.
(c) The system {M′

1, . . . , M′
n} is a minimal system connected by intersection (that

is none of them can be deleted) that connects the poles of L.

Proof. Let Mij ∈ M be a set containing the point uj. Let us choose uj as
the j-th pole of Mij . Now leave only those sets of M that are needed for
a minimum spanning tree T of the graph G(M) connecting Mi1 , Mi2 , Mi3 .
Keep deleting points from each set (except uj from Mij ) until every remain-
ing point is necessary for a connection among uj. There will only be two-
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and three-element sets, and any two of them intersect in at most one ele-
ment. Let us draw an edge between each pair of points if they belong to a
common set M′

i . This turns the union

V =
⋃

i

M′
i

into a graph. (Actually, this graph can have only two simple forms: a point
connected via disjoint paths to the poles ui or a triangle connected via dis-
joint paths to these poles.) For each i and j, there is a shortest path between
M′

i and uj. The point of M′
i where this path leaves M′

i will be made the j-th
pole uij of Mi. For j ∈ {1, 2, 3} we have uij j = uj by definition. This rule
creates three poles in each Mi and each point of M′

i is a pole.
Let us show ∑i Span(Mi) = Span(L). We can write

∑
i

Span(Mi) = ∑
v∈V

∑
i,j:v=uij

Lj(v). (1)

For a point v ∈ V, let

I(v) = { i : v ∈ M′
i }.

For i ∈ I(v) let Ei(v) be the set of those j ∈ {1, 2, 3} for which either i = ij
or v 6= uij. Because graph T is a tree, for each fixed v the sets Ei(v) are
disjoint. Because of connectedness, they form a partition of the set {1, 2, 3}.
Let ei(j, v) = 1 if j ∈ Ei(v) and 0 otherwise, then we have ∑i ei(j, v) = 1 for
each j.

We can now rewrite the sum (1) as
3

∑
j=1

∑
v∈V

Lj(v)(eij(j, v) + ∑
v∈V

∑
i∈I(v)r{ij}

(1− ei(j, v))).

If i = ij ∈ I(v) then by definition we have 1− ei(j, v) = 0, therefore we can
simplify the sum as

3

∑
j=1

∑
v∈V

Lj(v)eij(j, v) + ∑
i∈I(v)

3

∑
j=1

Lj(v)(1− ei(j, v)).

The first term is equal to Span(L); we show that the last term is 0. More-
over, we show 0 = ∑3

j=1 Lj(v) ∑i∈I(v)(1 − ei(j, v)) for each v. Indeed,
∑i∈I(v)(1 − ei(j, v)) is independent of j since it is |I(v)| − ∑i ei(j, v) =
|I(v)| − 1. On the other hand, ∑3

j Lj(v) = 0 as always. �

3.2. Building an explanation tree. Let us define the excuse of a space-time
point.

Definition 3.7. Let v = 〈a, b, u, t + 1〉 with ξ ′(v) = 1. If v 6∈ Noise′ then
there is a u′ such that ξ ′(w) = 1 for at least two members w of the set{

〈a, b, u′, t〉, 〈a + 1, b, u′, t〉, 〈a, b + 1, u′, t〉
}

.
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We define the set Excuse(v) as such a pair of elements w, and as the empty
set in all other cases. By Lemma 3.5, we can turn Excuse(v) into a spanned
set, 〈Excuse(v), w1, w2, w3〉 with span 1. Denote

Excusei(v) = wi.

y

The following lemma utilizes the fact that Toom’s rule “makes triangles
shrink”.

Lemma 3.8 (Excuse size). If V = 〈V, v1, v2, v3〉 is a spanned set and vi are not
in Noise′ then we have

3

∑
j=1

Lj(Excusej(vj)) = Span(V) + 1.

Proof. Let T be the triangle

{ u : L1(u) 6 0, L2(u) 6 0, L3(u) 6 1 }.

We have Size(T) = 1, and Excuse(v) ⊂ v + T. Since the chosen poles turn
Excuse(v) into a spanned set of size 1, the function Lj achieves its maximum
in v + T on Excusej(v). We have

Lj(Excusej(v)) = max
u∈v+T

Lj(u) = Lj(v) + max
u∈T

Lj(u).

Hence we have

∑
j

Lj(Excusej(vj)) = ∑
j

max
u∈T

Lj(u) + ∑
j

Lj(vj)

= Size(T) + Span(V) = 1 + Span(V).

�

Definition 3.9 (Clusters). In a subgraph of the graph G, let us call two
nodes u, v of the above graph with Time(u) = Time(v) = t equivalent if
there is a path between them made of arrows, using only points x with
Time(x) 6 t. An equivalence class will be called a cluster. For a cluster K
we will denote by Time(K) the time of its points. We will say that a fork or
arrow connects two clusters if it connects some of their nodes. y

If a cluster contains a point in Noise′ then clearly it contains no other
points.

Definition 3.10 (Cause graph). For a cluster K we define the cause graph
GK = 〈VK, EK〉 as follows. The elements of GK are those clusters R with
Time(R) = Time(K) − 1 which are reachable by an arrow from K. For
R, S ∈ VK we have {R, S} ∈ EK iff for some v ∈ R and w ∈ S we have
Time(v) = Time(w) = Time(K)− 1 and {v, w} ∈ Forks. y

Lemma 3.11. The cause graph GK is connected.



TOOM’S PROOF 9

Proof. The points of K are connected via arrows using points x with
Time(x) 6 Time(K). The clusters in GK are therefore connected with each
other only through pairs of arrows going trough K. The tails of each such
pair of arrows in Time(K)− 1 are connected by a fork. �

Definition 3.12. A spanned cluster is a spanned set that is a cluster. y

The explanation tree will be built from an intermediate object defined
below. Let us fix a point u0: from now on we will work in the subgraph
of the graph G reachable from u0 by arrows pointing backward in time.
Clusters are defined in this graph.

Definition 3.13. A partial explanation tree is an object of the form 〈C0, C1, E〉.
Elements of C0 are spanned clusters called unprocessed nodes, elements of
C1 are processed nodes, these are nodes of G. The set E is a set of arrows or
forks {u, v} between nodes and poles of the spanned clusters. From this
structure a graph is formed if we identify each pole of a spanned cluster K
with K itself. This graph is required to be a tree.

The span of such a tree will be the sum of the spans of its unprocessed
clusters and the number of its forks. y

The explanation tree will be built by applying repeatedly a “refinement”
operation to partial explanation trees.

Definition 3.14 (Refinement). Let T be a partial explanation tree, and let the
spanned cluster K = 〈K, v1, v2, v3〉 be one of its unprocessed nodes, with vi
not in Noise′. We apply an operation whose result will be a new tree T′.

Consider the cause graph GK = 〈VK, EK〉 defined above. Let M = VK ∪
EK, that is the family of all clusters in VK (sets of points) and all edges in
GK connecting them, (two-element sets). Let L be the union of these sets,
and L = 〈L, u1, u2, u3〉 a spanned set where ui = Excusei(vi). Lemma 3.11
implies that the set M is connected by intersection. Applying the Spanning
Lemma 3.6 to L and M, we find a family M1, . . . , Mn of spanned sets with

∑
i

Span(Mi) = Span(L) = ∑
i

Li(ui).

It follows from Lemma 3.8 that the latter sum is Span(K) + 1, and that ui
are among the poles of these sets. Some of these sets are spanned clusters,
others are forks connecting them, adjacent to their poles. Consider these
forks again as edges and the spanned clusters as nodes. By the minimality
property of Lemma 3.6, they form a tree U(K) that connect the three poles
of K.

The refinement operation takes an unprocessed node K = 〈K, v1, v2, v3〉
in the tree T. This node is connected to other parts of the tree by some of its
poles vj.

The operation deletes cluster K, and keeps those poles vj that were
needed to keep connect K to other clusters and nodes in T. It turns these
into processed nodes, and adds the tree U(K) just built, declaring each of
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FIGURE 1. An explanation tree. The black points are noise.
The squares are other points of the explanation tree. Thin
lines are arrows not in the explanation tree. Framed sets
are clusters to which the refinement operation was applied.
Thick solid lines are arrows, thick broken lines are forks of
the explanation tree.

its spanned clusters unprocessed nodes. Then it adds the arrow from these
vj to Excusej(vj). Even if none of these nodes were needed for connection,
it keeps v1 and adds the arrow from v1 to Excuse1(v1). y

The refinement operation increases both the span and the number of ar-
rows by 1.

Let us build now the explanation tree. We start with a node u0 6∈
Noise′ with ξ ′(u0) = 1 and from now on work in the subgraph of the
graph G of points reachable from u0 by arrows backward in time. Then
〈{u0}, u0, u0, u0〉 is a spanned cluster, forming a one-node partial explana-
tion tree if we declare it an unprocessed node. We apply the refinement
operation to this partial explanation tree, as long as we can. When it can-
not be applied any longer then all nodes are either processed or one-point
spanned clusters belonging to Noise′. See an example in Figure 1.

Proof of Lemma 2.3. What is left to prove is the estimate on the number of
edges. Let us contract each arrow 〈u, v〉 of the explanation tree one-by-one
into its bottom point v. The edges of the resulting tree are the forks. All the
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processed nodes will be contracted into the remaining one-node clusters
that are elements of Noise′. If n is the number of these nodes then there
are n − 1 forks in this remaining tree. The span of the explanation tree just
constructed is the sum of sizes of the forks, that is n − 1.

The number of arrows in the tree is at most 3(n − 1). Indeed, each intro-
duction of at most 3 arrows by the refinement operation was accompanied
by an increase of the span by 1. The total number of edges of the explana-
tion tree is thus at most 4(n − 1). �
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