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ABSTRACT

As computer systems are essential components of many crit-
ical commercial services, the need for secure online transac-
tions is now becoming evident. The demand for such appli-
cations, as the market grows, exceeds the capacity of individ-
ual businesses to provide fast and reliable services, making
outsourcing technologies a key player in alleviating issues
of scale. Consider a stock broker that needs to provide a
real-time stock trading monitoring service to clients. Since
the cost of multicasting this information to a large audi-
ence might become prohibitive, the broker could outsource
the stock feed to third-party providers, who are in turn re-
sponsible for forwarding the appropriate sub-feed to clients.
Evidently, in critical applications the integrity of the third-
party should not be taken for granted. In this work we study
a variety of authentication algorithms for selection and ag-
gregation queries over sliding windows. Our algorithms en-
able the end-users to prove that the results provided by the
third-party are correct, i.e., equal to the results that would
have been computed by the original provider. Our solutions
are based on Merkle hash trees over a forest of space par-
titioning data structures, and try to leverage key features,
like update, query, signing, and authentication costs. We
present detailed theoretical analysis for our solutions and
empirically evaluate the proposed techniques.

1. INTRODUCTION
Online services, like electronic commerce and stock mar-

ket applications, are now permeating our modern way of
life. Due to the overwhelming volume of data that can be
produced by these applications, the amount of required re-
sources, as the market grows, exceeds the capacity of indi-
vidual businesses to provide fast and reliable services.

Consider the following example. A stock broker needs
to provide a real-time stock trading monitoring service to
clients. Since the cost of multicasting this information to
a large audience might become prohibitive, as many clients
could be monitoring a large number of individual stocks,
the broker could outsource the stock feed to third-party

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘07, September 2328, 2007, Vienna, Austria.
Copyright 2007 VLDB Endowment, ACM 9781595936493/07/09.

0110..011

ServersProvider

. . .

Clients

Figure 1: The outsourced stream model.

providers, who would be in turn responsible for forwarding
the appropriate sub-feed to clients (see Figure 1). Evidently,
especially in critical applications, the integrity of the third-
party should not be taken for granted, as the latter might
have malicious intent or might be temporarily compromised
by other malicious entities. Deceiving clients can be at-
tempted for gaining business advantage over the original
service provider, for competition purposes against impor-
tant clients, or for easing the workload on the third-party
servers, among other motives. In that respect, assuming
that the original service provider can be trusted, an impor-
tant consideration is to give clients the ability to prove the
service furnished by the third-party (a.k.a. the server).

Consider an end-user that issues a monitoring query for
the moving average of a specific stock within a sliding win-
dow. This monitor can be viewed as a selection-aggregation
query over the original stock feed. A third-party server is
assigned to forward the aggregate over all qualifying trades
to this client. Given that the server has total access over the
feed, it can 1. drop trades; 2. introduce spurious trades; or
3. modify existing trades. Similar threats apply for selection
queries, e.g., reporting all bids larger than a threshold within
the last hour, and group by queries, e.g., reporting the po-
tential value per market of a given portfolio. It will be the
job of the stock broker to proof-infuse the stream such that
the clients are guarded against such threats, guaranteeing
both correctness and completeness of the results.

In this work we concentrate on authenticated one-shot and
sliding window queries on data streams. To the best of our
knowledge, no work has studied the authentication of exact
selection and aggregation queries over streaming outsourced
data. We introduce a variety of authentication algorithms
for answering multi-dimensional (i.e., on multiple attributes)
selection and aggregation queries. One-shot window queries
report answers computed once over a user defined temporal
range. Sliding window queries report answers continuously
as they change, over user defined window sizes and update
intervals. We assume that clients register a multiplicity of



ad-hoc queries with the servers, which in turn compute the
results and forward the answers back to the clients along
with the necessary signatures and authentication informa-
tion needed to construct a proof of correctness. For one-shot
queries the servers construct answers and proofs, and send
the results back to clients. For sliding window queries, the
servers update the query results incrementally, communi-
cating only authenticated changes to the clients. By ad-hoc
queries we mean that clients can register and cancel queries
at any time, using arbitrary window sizes (sliding or not)
and update intervals.

It should be emphasized here that one-shot queries are not
only interesting in their own right, but also because they
are an essential building block for answering sliding win-
dow queries: The initial answer of a sliding window query
is constructed using a one-shot algorithm. We design one
set of authentication structures optimized for one-shot win-
dow queries, and another for ad-hoc sliding window queries.
Then, we combine both solutions to provide efficient algo-
rithms for all settings. Our solutions are based on Merkle
hash trees over a forest of space partitioning data struc-
tures, and balance key features, like update, query, signing
and authentication cost, from the perspective of the service
provider, the server and the client.

The contributions of this paper are: 1. Designing a vari-
ety of authentication algorithms for multi-dimensional selec-
tion and aggregation queries on data streams, concentrating
both on one-shot and variable-sized sliding window queries;
2. Deriving detailed theoretical performance bounds for all
algorithms over a variety of cost metrics; 3. Conducting a
comprehensive empirical evaluation using real data sets, val-
idating the practicality of the proposed schemes.

This paper is organized as follows. Section 2 formally de-
fines the problem and presents essential cryptographic tools.
Sections 3 and 4 present solutions for sliding window queries.
Section 5 presents solutions for one-shot window queries.
Section 6 summarizes our results. The empirical evaluation
is conducted in Section 7. Related work is discussed in Sec-
tion 8, before concluding the paper.

2. PRELIMINARIES

2.1 Problem formulation

Stream outsourcing. We adopt the traditional data out-
sourcing model in a streaming environment. Formally, we
define three entities, the service provider who is the origina-
tor of the stream, the server who answers queries, and the
client who registers queries and receives authenticated re-
sults (see Figure 1). The service provider constructs special
authentication structures that can be updated in real-time
over the stream and that are tailored for answering one-shot
and sliding window selection and aggregation queries. The
provider forwards the original stream to the server along
with the necessary information to enable reconstruction of
the authentication structures at the server side. The server
uses these structures to generate verifiable query answers,
and forwards the final results to the clients.

The data stream model. We model a data stream S as
an infinite sequence of tuples S = (a1, a2, . . . ). Tuples arrive
one at a time, i.e., in the i-th time unit tuple ai arrives. A
sliding window of size n consists of elements (at−n+1, . . . , at)
where at is the last tuple received so far, and n is in number

of tuples. This model is typically referred to as tuple-based
sliding windows [10, 4] (i.e., querying the most recent n tu-
ples). In some applications it might be desirable to use time-
based sliding windows, where each tuple is associated with a
timestamp and we are interested in querying all tuples within
time interval [tnow − T, tnow] where tnow is the current time
and T is the window size in timestamps. For ease of expo-
sition we focus on tuple-based sliding windows, and discuss
extensions for time-based sliding windows in Section 6.

Queries. Assume that each tuple consists of multiple at-
tributes and clients issue continuous selection queries of the
following form:

SELECT * FROM Stream WHERE

l1 ≤ A1 ≤ u1 AND ... AND ld ≤ Ad ≤ ud

WINDOW SIZE n, SLIDE EVERY σ

where (li, ui) are the selection ranges over attributes Ai.
1

We will also consider aggregation queries of a similar form:

SELECT AGG(Ax) FROM Stream WHERE ...

Ax is any tuple attribute and AGG is any distributive aggre-
gate function, like sum, count, min, and max.

Assume that a query is issued at time t. The answer to
a selection query consist of those tuples that fall within the
window (at−n+1, . . . , at) and whose attributes satisfy the se-
lection predicates. For one-shot queries the server constructs
the answer once and reports the result. For sliding window
queries, the server constructs the initial answer at time t,
which is again a one-shot query, and incrementally commu-
nicates the necessary changes to the clients, as tuples expire
from the window and new tuples become available.

Our authentication algorithms will guarantee that the server
does not introduce any spurious tuples, does not drop any
tuples, and does not modify any tuples. In other words, our
techniques guarantee both correctness and completeness of
the results. Similarly for aggregation queries, we will guar-
antee that the aggregate is computed over the correct set of
tuples, and properly updated over the sliding window.

An important observation for authenticating queries in a
streaming setting is that any solution that can provide au-
thenticated responses on a per tuple basis will have to trig-
ger a signing operation at the provider on a per tuple arrival
basis, which is very costly (see Section 2.2). The only alter-
native is to amortize the signing cost by performing signing
operations across several tuples. This approach will lower
the update overhead at the cost of providing delayed query
responses. In many applications, delayed responses can of-
ten be tolerated and, given the complexity of this problem,
our main interest will be to design algorithms that minimize
signing, authentication and querying costs, given a maxi-
mum permissible response delay b. For one-shot window
queries, clients will receive replies in the worst case b tuple
arrivals after the time that the query was issued. For sliding
window queries, clients will receive necessary updates with
at most a b-tuple delay. Even though we introduce delays,
we do not change the ad-hoc window semantics: The an-
swers provided are with respect to the user defined window
specifications t, n, σ. In critical applications (e.g., anomaly
detection) preserving window semantics is very important.

1The selection attributes can be categorical as well, but
without loss of generality, we will concentrate on numeri-
cal attributes in the paper.
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Figure 2: A Merkle hash tree.

A straightforward approach for answering sliding window
queries would be to re-compute the exact answer every σ tu-
ple arrivals, which is unacceptable. Alternatively, we could
maintain the answers of all registered queries at the server
side, update them incrementally as the window evolves, and
communicate only the necessary changes to clients. This
solution is unacceptable in streaming settings with a large
number of queries and clients, putting unnecessary storage
burden on the server. Hence, we explore solutions that in-
crementally compute result updates without explicitly keep-
ing state on a per query/per client basis. In addition, we
will assume that a maximum permissible window size N has
been determined, and we will require our structures to have
storage linear or near-linear in N .

Finally, we will evaluate our solutions, both analytically
and experimentally, using the following metrics: 1. The
query cost for the server; 2. The communication overhead
for the authentication information, i.e., the size of the verifi-
cation object, or the VO. 3. The authentication cost for the
client; 4. The update cost for the provider and the server; 5.
The storage cost for the provider and the server; 6. Support
for multi-dimensional queries.

2.2 Cryptographic essentials

Collision-resistant hash functions. A hash function H
is an efficiently computable function that takes a variable-
length input x to a fixed-length output y = H(x). Collision
resistance states that it is computationally infeasible to find
two inputs x1 6= x2 such that H(x1) = H(x2). An exam-
ple of a practical hash function is SHA1 [29], which takes
variable-length inputs to 160-bit (20-byte) outputs.

Public-key digital signature schemes. A public-key
digital signature scheme [16] is a tool for authenticating the
integrity and ownership of a signed message. The signer gen-
erates a pair of keys (SK ,PK ), keeps the secret key SK se-
cret, and publishes the public key PK . Subsequently, for any
message m sent by the signer, a signature sm = S(SK , m)
is produced. The recipient of sm and m can verify sm via
V(PK , m, sm). A valid signature assures the recipient that
the message was signed by the owner of (SK , PK ), and that
no tampering has occurred.

Relative cost of cryptographic operations. It is im-
perative to evaluate the relative cost of cryptographic oper-
ations in order to design efficient solutions, since such oper-
ations will adversely affect update costs. Based on experi-
ments with two widely used cryptography libraries, OpenSSL
[30] and Crypto++ [9], we obtained results for hashing, sign-
ing and verifying. Evidently, the cost of one hashing oper-
ation on our testbed computer takes approximately 1 to 2
µs. A signing operation is 1,000 times slower, while a veri-
fication operation 100 times slower. It is clear that hashing
should be chosen over signing wherever possible.

The Merkle hash tree. The straightforward solution for
verifying a set of n values is to generate n digital signa-
tures. An improvement on this solution is the Merkle hash
tree [24], or simply the Merkle tree. Its basic idea is exactly
to replace signatures with the much cheaper hashes. The
Merkle tree is a binary tree where each leaf contains the
hash of a data value, and each internal node contains the
hash of the concatenation of its two children (see Figure 2).
Verification of data values is based on the fact that the hash
value of the root of the tree is authentically published us-
ing a digital signature s. To prove the authenticity of any
value, the prover provides the verifier with the data value
itself and the hash values of the siblings of the nodes that
lie in the path that connects the root of the tree with this
data value. The verifier, by iteratively computing and con-
catenating the appropriate hashes, can recompute the hash
of the root and verify its correctness using s. Correctness is
guaranteed due to, in addition to the security of the public-
key digital signature for the hash value of the root node, the
collision-resistance of the hash functions. By hashing a given
node, it becomes computationally infeasible for an adversary
to modify the node in a way that ultimately preserves the
hash value of the root. The correctness of any data value can
be proved at the cost of computing log n hash values plus
verifying one signature. The Merkle tree concept can also be
used to authenticate range queries using binary search trees
(where data entries are sorted), and it has been shown how
to guarantee completeness of the results as well (by includ-
ing boundary values in the results) [23]. External memory
Merkle B-trees have also been proposed [32, 22]. Finally,
it has been shown how to apply the Merkle tree concept to
more general data structures [23].

3. THE TUMBLING MERKLE TREE
In this section we present a structure based on the Merkle

binary search tree for answering one-dimensional sliding win-
dow queries. Consider a predefined maximum window size
N , a maximum permissible response delay b, and ad-hoc
queries with window sizes n < N , on selection attribute
A. The provider builds one Merkle binary search tree on
the values of the attribute A for every b tuples within the
window of the most recent N + b tuples (at−N+1−b, . . . , at).
Note that tuples in the tree are sorted by value A and not
by order of arrival. An example is shown at the top of Fig-
ure 3, where every rectangle represents a Merkle tree on
attribute A. Then, the provider signs the ⌈N/b⌉+ 1 Merkle
trees. Each signature also includes t⊢ and t⊣, the indices
of the oldest and newest tuple contained in the tree, i.e.,
s = S(SK , hroot|t⊢|t⊣). All signatures are forwarded to the
server. We call this structure the Tumbling Merkle Tree
(TM-tree). Updating the TM-tree is easy. On every b new
tuple arrivals the provider and the server bulk load a new
Merkle tree with the new values and discard the oldest tree.
In addition, the provider signs the tree and propagates the
signature to the server. An advantage of this solution is
that it amortizes the signing cost over every b tuples. The
penalty is that authenticated results are provided with a de-
lay up to b tuples. When the server receives a query but has
not obtained the up-to-date signature from the provider, it
temporarily buffers the query. When the next signature is
received, the oldest buffered query refers to a sliding window
with a low boundary at most N + b tuples in the past.
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Figure 3: The Tumbling Merkle Tree.

One-Shot Queries. Consider a one-shot window query of
size n. To answer the query the server traverses the ⌈n/b⌉+1
Merkle trees whose corresponding time intervals together
cover the query time window, reporting all tuples satisfy-
ing the selection predicates (see Figure 3). For every tree,
a verification object (VO) is constructed using the original
Merkle tree algorithm, and it is extended with the indices
of the oldest and newest tuple in the tree. For trees fully
contained in the query window, all tuples satisfying the se-
lection predicate need to be reported (plus two boundary
tuples for proof of completeness [23]). For the (at most)
two boundary Merkle trees, up to 2b false positive answers
might be returned (false positives are introduced in the tem-
poral dimension though they are all satisfying tuples in the
value dimension defined by the selection attribute A; see Fig-
ure 3). The server includes the false positives in the result,
and leaves the filtering task to the client—this is necessary
for proper authentication. Now, upon receiving a reply the
client verifies correctness by authenticating the result of ev-
ery tree individually; only then it filters out false positives
from tuples in the two boundary Merkle trees whose indices
are outside the query window. Correctness stems from the
properties of Merkle trees discussed in Section 2. Complete-
ness is guaranteed by proving that all qualifying values have
been returned and that the right ⌈n/b⌉ + 1 trees have been
traversed. Completeness of the values returned from each
individual tree is guaranteed from the original Merkle bi-
nary search tree verification algorithm by including the left
and right boundary values in the result [23, 22]. Verifying
that the correct trees have been traversed is possible by ex-
amining the indices of the oldest and newest tuples in the
trees, whose values have been verified using the signature
of each tree. Since trees do not intersect in the temporal
dimension, we expect those indices to be consecutive and
cover the query window completely.

Assuming that k is the result size of the query, the TM-
tree achieves the following.

Lemma 1. Given a maximum permissible response delay
b, the TM-tree uses O(N) space, and requires O(log b) time
and O(1/b) signing operations amortized to process a tuple.
It takes O(n/b · log b + b + k) time to answer a one-shot
window query, and provides a VO of size O(n/b · log b + b).
The client takes O(n/b · log b + b + k) time to authenticate
the results.

Note that we interpret the VO as all information trans-
mitted to the client besides the query results, so the VO size
above also includes the false positives.

Sliding Window Queries. Consider a sliding window
query issued at time t, with window size n and sliding pe-
riod σ. The server first constructs the initial answer to the

query for the window starting at t as described for one-shot
queries, and sends the results to the client with delay at
most b. Then, the server has to keep the results up-to-date
as follows. Every b tuples, if a sliding period has ended,
it constructs a VO that contains the tuples that have ex-
pired from the query window and the new tuples that have
been generated since the last update to the client. The ex-
pired tuples can be found simply by traversing the (at most)
⌈σ/b⌉+1 Merkle trees at the left-most boundary of the slid-
ing window; the new tuples can be found by querying the
(at most) ⌈σ/b⌉ + 1 new Merkle trees that have been cre-
ated since the last update. The cost of both operations is
O(⌈σ/b⌉ log b+b+k), where k is the total number of new re-
sult tuples in the current query window and expiring tuples
in the previous query window. Note that the server may re-
turn up to 4b false positives (see Figure 3), which need to be
filtered out by the client. False positives correspond to val-
ues from the boundary Merkle trees (expired and new) and
also values that have appeared in the result already and are
reported again. Notice that in order to construct an update
the server is oblivious to the previous state of the query an-
swer. Hence, no per query/client state needs to be retained.
Furthermore, for large n, updating the result is more effi-
cient than reconstructing the answer from scratch, since a
large number of intermediate Merkle trees do not have to be
traversed. Correctness and completeness is guaranteed given
that the answers provided by every Merkle tree can be au-
thenticated individually, verifying that both the expired and
the new tuple sets are correct. Clearly, if σ < b, the server
cannot do better than reporting updates only once every b
tuples. If σ > b, the server reports updates every σ tuples
with a maximum delay of b.

Lemma 2. The TM-tree can support sliding window queries
with a per period cost O(⌈σ/b⌉ log b + b + k) and VO size
O(⌈σ/b⌉ log b + b). The client spends O(⌈σ/b⌉ log b + b + k)
time to authenticate the results.

Supporting aggregations. Now we consider aggregate
queries. Take sum as an example. The Merkle binary search
tree can support range-sum queries by using standard tech-
niques [20, 21]. Assume that all data values are stored on the
leaf nodes. We associate with every internal node u, the sum
(sum(u)) of the aggregation attribute of all tuples stored in
the subtree rooted at u. To enable authentication, we in-
clude this sum into the hash value stored in the parent node.
More precisely, for an internal node u with children v and w,
the hash value of u is computed as hu = H(hv|hw|sum(u)).
Now, authenticating a sum aggregate can be done efficiently
by retrieving the covering set of leaf and internal nodes that
span the query range, and computing the aggregate without
having to traverse all the leaf nodes satisfying the selection
predicate. It is easy to show that the covering set has a
logarithmic size. The correctness and completeness proof is
a technicality, and full details can be found in [21]. Similar
techniques can be used for all other distributive aggregates.

The TM-tree can be used for answering aggregation queries
as well. For every Merkle tree that is completely contained
in the window, we return the sum of all tuples falling in
the selection range. However, for the two trees crossing the
boundary, the server needs to return all the tuples in the
selection range, instead of just the sum, so that the client
can compute the sum of the tuples that are both in the se-
lection range and in the query window. The same analysis



applies to sliding window queries and for all other distribu-
tive aggregates, except min and max. For these aggregates,
in addition the client has to maintain the min/max of the
(at most) ⌈n/b⌉ trees that do not contain any expiring tu-
ples. These values will be needed for recomputing the total
aggregate after an update is received. Without giving the
details of the derivation, which is rather straightforward, we
conclude that for aggregation queries, all the aforementioned
bounds hold by setting k = 1.

4. THE TUMBLING MKDTREE
So far we have an efficient solution for one-shot and slid-

ing window queries that has three drawbacks: it introduces
O(b) false positive answers (leading to a large VO size for
large b), supports only one-dimensional queries, and has a
high one-shot query cost. In this section we address the first
two drawbacks and in the next section the third one. Notice
that selection queries on variable window sizes with mul-
tiple selection predicates are essentially a range searching
problem. This motivates the use of multi-dimensional range
searching structures, like kd-trees [5, 11], range trees [11], or
R-trees [18]. In this work we will use authenticated Merkle
kd-trees (Mkd-trees) as a building block for our solutions.
The Mkd-tree is of independent interest for general authen-
ticated range searching problems, but also a very good can-
didate for streaming settings, since it is a main memory data
structure that can be bulk-loaded very efficiently and pro-
vides guaranteed worst case performance (as opposed to R-
trees). Nevertheless, our techniques are not designed specif-
ically for kd-trees; any space or data partitioning structure,
such as R-trees, can be authenticated in the same manner.

4.1 The kdtree
We briefly review the kd-tree in two dimensions; the ex-

tension to higher dimensions is straightforward. For sim-
plicity we assume that all coordinates are distinct; if this is
not the case, standard techniques such as symbolic perturba-
tion [11] can be used to resolve degeneracy. The kd-tree is a
balanced binary tree T . To build T on a set P of n points,
we first divide P into two subsets Pl and Pr using a vertical
line that divides the points into two sets of approximately
equal size. We store the dividing line at the root node of
T and continue with sets Pl and Pr as the left and right
children of the root, by dividing each set into two subsets
using a horizontal line. We continue recursively for all sets,
alternating the direction of the dividing line for every level
of the tree. The recursion stops when a set consists of only
one point, which is stored as a leaf node of the tree. Each
node u of the tree is naturally associated with a bounding
box, denoted box(u), which encloses all the points stored in
the subtree rooted at u (see Figure 4).

To answer an orthogonal range search query Q, we start
from the root of T and traverse all nodes whose associated
bounding boxes intersect with or are contained in the query
range Q. Please refer to Figure 4 for a query example where
the query range is indicated by the small dark rectangle and
the nodes accessed in the kd-tree are marked by the gray
color. It is known that the kd-tree has excellent performance
in practice, and furthermore, the following guarantee:

Lemma 3 ([5]). Let T be the kd-tree built on a set of n
points. For any orthogonal query Q, the number of nodes in
T whose bounding boxes intersect Q is at most O(

√
n + k),
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Figure 4: A kd-tree.

where k is the number of points in the result, and the number
of nodes whose bounding boxes intersect any side of Q (i.e.,
the boundary ∂(Q) of Q) is at most O(

√
n).

4.2 The Mkdtree
We can extend the kd-tree with authentication informa-

tion similarly to the Merkle tree. The authenticated Mkd-
tree stores one hash value for every node. A leaf node v that
contains point p stores hash value hv = H(p). An internal
node u with children v and w and dividing line lu stores
hash value hu = H(hv|hw|lu). The hash value of the root of
the tree is signed by the data provider, producing signature
s = S(SK , hroot).

The query algorithm. To answer a range query Q, we
recursively visit all nodes whose bounding boxes intersect
with or are contained in Q. In addition to the query results,
we also return the following VO in order for the client to
authenticate the results: 1. The hash value hu for each un-
visited node u that has a visited sibling; 2. The dividing line
lu for each u where box(u) ∩ ∂(Q) 6= ∅; 3. The point p of
a visited leaf u if p /∈ Q (note that all p ∈ Q are included
in the query results); 4. The signature s. We also include
a label for each of these nodes, for identifying its level and
position in the tree. The label is described by O(log n) bits,
or O(1) words.

Lemma 4. For any query Q, the Mkd-tree T built on n
points returns a VO of size at most O(

√
n).

Proof. We only need to bound the total number of nodes
in the three categories defined above. According to Lemma 3,
the number of nodes in T whose bounding boxes intersect
∂(Q) is O(

√
n). This naturally bounds the number of type

(2) and (3) elements. For a type (1) node u, its parent must
have a bounding box that intersects ∂(Q), so the number of
type (1) nodes is also O(

√
n).

The authentication algorithm. Using the VO and the
query results the client can recompute the hash value of the
root and verify the signature s of the tree. Let R be the
set of points in the query result. The client computes hroot

using a recursive function starting from the root node. The
recursive call has three inputs: a node u (i.e., the label of u),
box(u) and all p ∈ R s.t. p ∈ box(u). The algorithm (shown
as Algorithm 1) is initialized with ComputeHash(root, R

2,
R). When the recursive call completes, the hash value of the
root has been computed. The basic idea is to reconstruct
the part of the Mkd-tree that was traversed for constructing
the query answer at the server.

Since there are O(log n) levels of recursion, and each level
involves O(k) operations, the total running time is O(k log n).



Algorithm 1: ComputeHash(u, box(u), Ru)

input: u: a node in T , box(u) : u’s bounding box, lu:
the dividing line of u, Ru: p ∈ R s.t. p ∈ box(u).

return: hu: the hash value of u.

if u is a leaf then1

if |Ru| 6= 1 then report error;2

let p be the only point in Ru;3

if p /∈ box(u) then report error;4

return H(p);5

else6

let v and w be u’s children;7

compute box(v) and box(w) from box(u) and lu;8

Rv := Ru ∩ box(v);9

Rw := Ru ∩ box(w);10

for z = v, w do11

if box(z) ∩ Q = ∅ then12

if hv not available then report error;13

else if box(z) ∩ ∂(Q) 6= ∅ then14

if lz not available then report error;15

hz :=ComputeHash(z, box(z), Rz);16

else17

// box(z) is contained in Q;18

build the Mkd-tree Tz of Rz;19

hz := hash value of the root of Tz;20

return H(hv|hw|lu);21

Correctness of the results is guaranteed similarly to the orig-
inal Merkle tree, due to the collision-resistance of the hash
function. Completeness is guaranteed by the following.

Lemma 5. Successful VO authentication of the Mkd-tree
implies completeness of query results.

Proof. If any node fully contained in Q is missing from
the VO, authentication will fail. Consider nodes that in-
tersect with ∂(Q). For any such node, the construction al-
gorithm will have to traverse all the way to the leaves to
identify potential query results. At some level of this recur-
sion there will be one path fully disjoint with Q and another
fully contained in Q. Clearly, if any fully contained node
or its children is omitted from the VO authentication will
fail; a needed hash for constructing the hash of the parent is
missing. Similarly, if any node that has a parent that inter-
sects with ∂(Q) is missing, authentication will fail; the hash
of this parent will have to be computed due to a child that is
fully contained in Q. Hence, if the hash of the root authen-
ticates correctly, no points below nodes that are contained
or intersect with Q have been omitted from the result.

The following holds for the Mkd-tree:

Theorem 1. Given a set of n points in the plane, an
Mkd-tree takes O(n) space and can be built in O(n log n)
time. Given an orthogonal range search query Q, it takes
O(

√
n + k) time to construct the answer, with a VO size

O(
√

n). The client needs O(
√

n + k log n) time to authenti-
cate the results.

The kd-tree can be extended into an aggregate structure
similarly to the discussion in Section 3, by hashing a node
with hu = H(hv|hw|lu|sum(u)). The bounds in Theorem 1
hold by setting k = 1 for aggregation queries.

. . .
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Figure 5: The DMkd-tree. Trees with boundaries
outside of the maximum window can be discarded.
A one-shot query can be answered by accessing only
a logarithmic number of trees.

4.3 The Tumbling Mkdtree
We can now extend the TM-tree into a Tumbling Mkd-tree

(TMkd-tree), by replacing the Merkle trees with Mkd-trees.
Clearly, the new structure eliminates false positives, since
now for the boundary kd-trees that intersect with the query
range we can issue two-dimensional range queries that will
report qualifying tuples within both the selection and tem-
poral axes. The TMkd-tree significantly reduces the sliding
window query cost, especially the VO size.

Theorem 2. Given a maximum permissible response de-
lay b, the TMkd-tree uses O(N) space, and requires O(log b)
time and O(1/b) amortized signing operations to process a
tuple. It supports sliding window queries with per period cost
O(⌈σ/b⌉

√
b + k), and VO size O(⌈σ/b⌉

√
b). For aggregation

queries, the same bounds hold by setting k = 1.

In addition, the structure naturally extends to higher di-
mensions. For queries with d selection attributes, we use
(d+1)-dimensional kd-trees (time is always one dimension).

5. REDUCING ONESHOT QUERY COST
The TM-tree and TMkd-tree are robust solutions for slid-

ing window queries. Nevertheless, they suffer from high one-
shot query cost, especially for large n, since a large number
(n/b) of trees need to be queried for constructing the answer.
In the following we focus on algorithms for reducing one-shot
query cost at the expense of either slightly increased stor-
age cost or slightly increased update cost. Clearly, the same
solutions can be used for constructing the initial results of
sliding window queries (recall that constructing the initial
answer to a sliding window query is a one-shot query), which
is a very important improvement especially in streaming sce-
narios where a large number of users pose queries dynami-
cally. In the rest, we do not discuss extensions for aggregate
queries, since they are similar to the solutions discussed al-
ready for the TMkd-tree.

5.1 The Dyadic Mkdtree
We present a structure that combines the Merkle tree

and the Mkd-tree, yielding a solution that has much faster
one-shot query cost than the TM-tree for one-dimensional
queries, at the expense of slightly increased maintenance
cost at the provider and server, and slightly increased stor-
age cost at the server.

The structure. We call the new structure the Dyadic Mkd-
tree (DMkd-tree). Assume that (N + b)/b is a power of 2
and let ℓ = log((N +b)/b)−1. A DMkd-tree consists of ℓ+1
levels of forests of trees arranged in dyadic ranges over the
time dimension. On level 0, we build a Mkd-tree for every
b consecutive tuples in the stream (denoted with boxes in



Figure 5). Levels 1 through ℓ consist of a forest of Merkle
binary search trees over the values of attribute A (rectangles
in the figure). More precisely, on level i, we build a Merkle
binary search tree for every 2ib tuples.

The maintenance algorithm. The DMkd-tree is fairly
easy to maintain. The structure is initialized with the first
N+b tuples, building all levels in the dyadic hierarchy. After
b new tuples have been received we build one new Mkd-
tree on level 0 and discard the last kd-tree. At the same
time we discard all Merkle trees that contain tuples outside
the maximum window N + b. In general, after 2ib tuples
have been received, we build one new Merkle tree on level
i, 1 ≤ i ≤ ℓ and discard all Merkle trees that fall outside
the maximum window. For example, in Figure 5, after 2b
tuples, the two left-most kd-trees and the left-most Merkle
tree on all levels can be deleted.

A very important observation is that to build a new Merkle
binary search tree T on level i, 2 ≤ i ≤ ℓ, we do not need
to re-sort any tuples. We can simply retrieve the tuples by
scanning the leaf levels of the level-(i− 1) Merkle trees that
fully span the range of T . Hence, we can build tree T in a
bottom-up fashion in time O(2ib).

Lemma 6. The amortized maintenance cost per tuple for
the DMkd-tree is O(log N). The amortized number of sign-
ing operations is O(1/b).

Proof. On level 0, we spend O(b log b) time to build
each Mkd-tree. The amortized cost is O(log b) per tuple.
Similarly, on level 1 we spend O(b log b) time to build a
Merkle tree for every 2b tuples, so the amortized cost is
also O(log b). On level i, 2 ≤ i ≤ ℓ, we spend O(2ib) time
to build the Merkle tree for every 2ib tuples (as mentioned
already the sorting operation can be avoided). This yields
an amortized cost of O(1). So the overall cost per tuple is
O(log b + ℓ) = O(log N).

Applying similar arguments, the amortized number of sign-
ing operations on level i is O(1/(2ib)), which yields a total
of O(1/b) signing operations per tuple.

Since each level occupies O(N) space the entire structure
at the server side takes O(N log(N/b)) space. On the other
hand, the service provider uses linear space for storing the
DMkd-tree. Once a kd-tree or a Merkle tree at any level of
the hierarchy has been covered by a higher level Merkle tree
and its signature has been propagated to the server, it can
be discarded (at the provider side the trees are only useful
for producing signatures and not for answering queries).

Query and authentication. The main idea behind using
dyadic ranges is that constructing a query answer requires
accessing only a logarithmic number of trees. Given a one-
shot window query of size n, we decompose its time range
into a series of sub-ranges, and answer each of them individ-
ually. First, we query the two level-0 Mkd-trees at the end-
points of the query range. Then by a standard argument,
the remaining portion of the range can be decomposed into
O(log(n/b)) sub-ranges, each of which is exactly covered by
one of the Merkle trees. For example, in Figure 5 only three
kd-trees and one Merkle tree need to be traversed. Trees at
level 0 might be contained fully in the query time range or
not. Trees at higher levels are always fully contained in the
query. Hence, for higher levels in the hierarchy we only need
to maintain one-dimensional structures on the selection at-

tribute. For level 0 we need to maintain two-dimensional
kd-trees to be able to filter out false positives.

To authenticate the results the client first individually au-
thenticates the VO of each tree as in the original Merkle tree
and Mkd-tree. This verifies correctness. To authenticate
completeness, the client needs to verify that the appropri-
ate trees have been traversed. First, the provider signs each
tree individually creating a signature that contains the hash
value of the root node and the indices of the oldest and
newest tuple contained therein. Second, the server includes
in the VOs the indices of the newest and oldest tuple of the
traversed trees. The client verifies that the indices returned
by the server are consecutive and also cover the query win-
dow. Since no trees overlap in the temporal dimension this
invariant has to hold. The authenticity of the timestamps
returned is established by the signature of each tree. The
following holds for the DMkd-tree:

Theorem 3. For a maximum response delay b, the DMkd-
tree uses O(N log(N/b)) space, and requires O(log N) time
and O(1/b) signing operations amortized to process a tuple.

It takes O(log n log(n/b) +
√

b + k) time to answer a one-

shot query, and provides a VO of size O(log n log(n/b)+
√

b).

The client takes O(log n log(n/b) +
√

b + k log b) time to au-
thenticate the results.

Note that level-0 of DMkd-tree is essentially the same as
TMkd-tree. Hence for sliding window queries, once the ini-
tial answers have been reported, subsequent updates can be
handled by using the level-0 TMkd-tree, as in Section 4.3.

5.2 The Exponential Mkdtree
So far, the DMkd-tree can be used for one-dimensional

queries only. In this section, we present an algorithm that
arranges a forest of Mkd-trees in an exponential hierarchy
and can answer multi-dimensional queries. We call this
structure the Exponential Mkd-tree (EMkd-tree). This ap-
proach can construct initial query answers much faster than
the TMkd-tree, with a slight increase in the amortized per
tuple update cost.

The structure. For simplicity assume that N/b is a power
of 2 and let ℓ = log(N/b) − 1. The EMkd-tree consists of
up to 2ℓ Mkd-trees: T0, T ′

0 , T1, T ′
1 , . . . , Tℓ. Each Ti is always

present, but a T ′
i may be present or absent, as will become

clear shortly. The tree Ti or T ′
i (if present) stores 2ib consec-

utive tuples, hence
Pℓ

i=0 |Ti| = b(2log N/b − 1) = N − b. For
any i < j, all tuples stored in Ti are newer than any tuple
stored in Tj ; and for any i, if T ′

i is present, all tuples in T ′
i

are newer than any tuple in Ti , such that no trees overlap in
the time dimension (see Figure 6). The EMkd-tree structure
is initialized with the first N tuples in the stream as follows.
Tree Tℓ receives the first N/2 tuples, Tℓ−1 the following N/4
tuples, until tree T0 which receives b tuples, for a total of
N − b tuples. The remaining b tuples are assigned to tree
T ′

0 , for a total of ℓ + 2 Mkd-trees. No other T ′
i exists yet

(see Figure 7).

The update algorithm. After initializing the EMkd-tree
we update it every b new arrivals. The update procedure
first combines trees T0 and T ′

0 into tree T ′
1 , then creates a

new tree T0 using the latest b tuples and stops (see Figure 7).
The next update proceeds similarly by creating a new tree T ′

0

using the latest b tuples and stops. This procedure continues
by merging and propagating trees on consecutive levels of
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the hierarchy, until a level with a non-existent T ′
i is found,

at which point the propagation stops. Notice that we merge
two trees Ti, T ′

i only if a third tree has been propagated
from level i − 1. Otherwise, we leave the trees intact. It
is easy to see that after any update, the invariant that no
trees overlap in the time dimension is preserved. A special
case occurs at level ℓ. When tree T ′

ℓ is created the update
procedure immediately discards tree Tℓ containing the oldest
N/2 tuples, and sets Tℓ = T ′

ℓ . This iterative procedure is
detailed in Algorithm 2.

Algorithm 2: EMkd-tree-Maintain

input: The b newest tuples in the stream.

build Mkd-tree R0 on the b new tuples;1

i := 0;2

while true do3

if T ′
i present then4

merge Ti and T ′
i into Ri+1;5

remove Ti and T ′
i ;6

Ti = Ri;7

i := i + 1;8

else9

if i = ℓ then Ti = Ri;10

else T ′
i = Ri;11

return;12

Although the maintenance algorithm in the worst case
may affect all the trees, its amortized cost can be effectively
bounded by the following lemma:

Lemma 7. The amortized maintenance cost per tuple for
the EMkd-tree is O(log(N/b) log N). The amortized number
of signing operations is O(1/b).

Proof. We use a charging argument. According to The-
orem 1, the construction cost of a Mkd-tree built on n tuples
is O(n log n), so we can charge an O(log n) cost to each tu-
ple. Consider each tuple in the stream. It is involved in the
construction of each T ′

i exactly once, so it is charged by a

total cost at most (asymptotically)

ℓ
X

i=0

log(2ib) =

ℓ
X

i=0

(i + log b) = O(log
N

b
(log

N

b
+ log b))

= O(log(N/b) log N).

For the signing cost, we use a similar charging scheme.
Since building a Mkd-tree on n tuples requires only one sign-
ing operation, we can charge O(1/n) to each tuple. Every
tuple is involved in the construction of each T ′

i exactly once,
so it is charged with a total of

Pℓ
i=1 1/(2ib) = O(1/b) sign-

ing operations.

It is easy to verify that in the worst case this algorithm will
maintain 3N/2 tuples, hence the storage cost is O(N). In
addition, there is an easy optimization for merging two Mkd-
trees efficiently, without having to bulk load the structures
from scratch. For all trees Ti, T ′

i , and Ri, we first divide the
data along the attribute dimension if i is even, and along
the time dimension if i is odd (see Figure 6). Now, for even
i, given that Ti and T ′

i have no overlap in the temporal di-
mension and their roots are split on the attribute dimension,
we can merge them by creating a new kd-tree root node and
attaching Ti and T ′

i as its two subtrees. On even levels the
merging operation has constant cost. On odd levels (since
the attribute domains of the two trees might overlap) bulk
loading from scratch is unavoidable.

The query and authentication algorithms. To answer
the query the server traverses the kd-trees starting from T0,
until the query window is entirely covered. For kd-trees
that are entirely contained in the query window, the server
poses a 2-sided range query. For the first and last kd-trees
the server poses a 3-sided query, to filter out false positives.
The server returns an individual VO for each tree using the
original construction algorithm of the Mkd-tree. In addition,
it includes the indices of the oldest and newest tuple in each
tree. Authentication at the client side proceeds in exactly
the same way as for the DMkd-tree.

The following can be stated for the EMkd-tree:

Lemma 8. The EMkd-tree spends O(
√

n + b + k) to con-
struct an answer and returns a VO of size O(

√
n + b). It

takes the client O(
√

n + b+k log(n+b)) time to authenticate
the results.

Proof. Since the size of the Mkd-trees doubles every
level, given a query with window size n ≥ b, it is not diffi-
cult to see that the biggest tree that needs to be traversed
to construct the answer has size at most n. For each level of
the exponential hierarchy, at most two trees are traversed.
So the total VO size is at most

O(
√

n) + O(
p

n/2) + · · · + O(
√

b) = O(
√

n).

When n < b, at most two Mkd-trees of size b need to be
traversed, so the overall VO size is O(

√
n + b). The same

analysis applies for the total query time, plus an additional
term linear to the size of the query results.

The bound on the authentication cost can be easily ob-
tained by observing that the maximum height of the kd-trees
that need to be traversed is O(max{log n, log b}).

In order to answer sliding window queries, the provider
and the server also need to maintain a TMkd-tree, concur-
rently with the EMkd-tree. The EMkd-tree is used for con-
structing the initial answers, while the TMkd-tree is used



TM-tree TMkd-tree DMkd-tree EMkd-tree

Space N N N log N
b

N
Update cost log b log b log N log N

b
log N

Signing operations 1/b 1/b 1/b 1/b

Sliding query cost ⌈σ/b⌉ log b + b + k ⌈σ/b⌉
√

b + k - -

Sliding VO size ⌈σ/b⌉ log b + b ⌈σ/b⌉
√

b - -

Sliding authen. cost ⌈σ/b⌉ log b + b + k ⌈σ/b⌉
√

b + k log b - -

One-shot query cost n
b

log b + b + k n
b

√
b + k log n log n

b
+

√
b + k

√
n + b + k

One-shot VO size n
b

log b + b n
b

√
b log n log n

b
+

√
b

√
n + b

One-shot authen. cost n
b

log b + b + k n
b

√
b + k log n log n

b
+

√
b + k log b

√
n + b + k log (n + b)

Dimensions (*) One Multiple One Multiple
Aggregation (**) Yes Yes Yes Yes

Table 1: Summary of the (asymptotic) results for various solutions. (*) For d dimensions, all the
√

b terms become

b1−1/(d+1); all the
√

n + b terms become (n + b)1−1/(d+1). (**) For aggregation queries, all the bounds hold by setting k = 1.

for constructing subsequent updates. Notice here that even
if the initial answer from the EMkd-tree is delayed for some
reason, the TMkd-tree can still provide updates unhindered
(deltas can be computed even without knowing the answer of
the previous window). The updates will have to be buffered
by the client until the initial answer arrives. The following
summarizes the performance of the EMkd-tree:

Theorem 4. For a maximum response delay b, the EMkd-
tree uses O(N) space, takes O(log(N/b) log N) time and O(1/b)
signing operations amortized to process a tuple. It takes
O(

√
n + b + k) time to answer a one-shot query, with a VO

size O(
√

n + b). The client takes O(
√

n + b + k log(n + b))
time to authenticate the results.

6. DISCUSSION

Supporting time-based windows. Supporting time-based
windows is also possible. First, we use standard symbolic
perturbation techniques to uniquely associate each tuple
with a timestamp, if there are multiple tuples per time in-
stant. Then, we generate dummy tuples for time instants
without activity (a time instant can be defined as the small-
est permissible window slide). The rest poses only technical
difficulties that are not hard to overcome. Dummy tuples
in general can be ignored and are used only for triggering
signing operations. The theoretical bounds of the solutions
hold, where N now expresses the maximum number of tuples
within a maximum window.

Summary of various solutions. Table 1 summarizes the
performance of various solutions. We can see that for sliding
window queries, the TMkd-tree is better than the TM-tree
for typical values of σ and b. The difference in the VO
size could be significant when the sliding period σ is smaller
than or comparable to b, which is common in real scenarios.
However, for one-shot queries (or equivalently the initial-
ization cost for sliding window queries), the two tumbling
approaches both perform badly. The proposed DMkd-tree
and EMkd-tree structures complement nicely in this respect.
For one-dimensional queries, the DMkd-tree is the struc-
ture of preference, as it has excellent query performance,
for a small penalty in the server’s storage cost. When the
server’s memory is limited or for multi-dimensional queries,
the EMkd-tree can be used. Notice that for sliding window
queries, the server needs to maintain both an EMkd-tree
and a TMkd-tree, which doubles the storage cost in the

worst case. For most practical cases though, the storage
cost will still be smaller than the DMkd-tree. Finally, all
structures can be extended easily to support aggregates like
sum, count, avg, min, and max.

7. EXPERIMENTS
We implemented the proposed techniques and evaluated

their performance over two real data streams [3, 1]. The fol-
lowing cost metrics are considered: 1. the amortized update
cost per tuple for the data owner; 2. the storage cost of the
authentication structure for the server; 3. the query cost; 4.
the VO size; and 5. the verification cost for the client.

All algorithms are implemented using GNU C++. Cryp-
tographic functions are provided by [9, 30]. Two real data
streams have been tested. The World Cup (WC) data stream
[3] consists of web server request traces for the 1998 Soc-
cer World Cup. Each request contains attributes such as
a timestamp, a client id, a requested object id, a response
size, etc. We used the request streams of days 46 and 47 that
have about 100 millions records. The IP traces (IPs) data
stream [1] is collected over the AT&T backbone; each tu-
ple is a TCP/IP packet header. Since similar patterns have
been observed for all cost metrics for both data streams,
we present results from the WC data only. We use tuples
consisting of attributes response size, object id, and client
id, and a unique timestamp. Experiments were run on a
Linux box with an Intel Pentium 2.8GHz CPU. The SHA1
hash function takes about 1 ∼ 2µs (for input size up to 500
bytes); 128-byte RSA has a signing cost of about 2ms and
verifying cost of 120µs. Each hash value produced by SHA1
is 20 bytes and a signature from RSA is 128 bytes.

7.1 Sliding window queries.
The TM-tree and the TMkd-tree are the two candidates

for authenticating sliding window queries. We compare them
using one-dimensional queries on the “response size” at-
tribute (as the TM-tree does not support multi-dimensional
queries). Since kd-tree requires its indexed data having dis-
tinct values (see Section 4.1), we perturb the attribute “re-
sponse size” so that all tuples have unique values. In addi-
tion, in order to easily generate a set of random queries with
a fixed query selectivity, tuples are perturbed so that they
have uniformly distributed values in “response size”. Our
performance study is not affected by this, as the query cost
is solely determined by the query selectivity.
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Update cost per tuple. The data owner has to maintain
the authenticated data structures as tuples are being pro-
duced. The data streaming setting mandates this cost to
be small. Figure 8(a) shows the amortized update cost per
tuple for both trees over different values of b (the maximum
delay, which is determined by the owner). We notice that
for small b both trees have an excessive update cost; as b in-
creases, the cost drops quickly. After some point both start
to grow slowly, due to the fact that the cost consists of an
O(1/b) signing and an O(log b) update cost (see Table 1).
For small b, signing is the dominant cost; when b exceeds a
certain threshold, the latter begins to dominate. Figure 8(a)
reveals that for both trees b = 1, 000 is a sweet point. For
smaller b’s the update cost is too high to cope with bursty
streams, while larger b’s introduce longer response delays for
the clients without further reducing the data owner’s cost
significantly. With b = 1, 000 the amortized update cost per
tuple is only 10 ∼ 15µs, i.e., both the owner and the server
could handle 105 tuples per second.

Structure size. Our analysis has pointed out that both
TM-tree and TMkd-tree use linear space given a window size
N . It is still interesting to investigate the constant factors
associated with this cost. Figure 8(b) plots the results. It
should be noted that the storage cost does not depend on b.
The size of the raw data (32 bytes per tuple) is also provided
in Figure 8(b) as a baseline for comparison. Both trees have
very good scalability and introduce very small overhead in
size (only 5 MB for 100,000 tuples). Another interesting
fact to highlight is that at any time instance, the provider
only needs space large enough to store one Merkle tree (or
Mkd-tree), built for the latest b tuples. This has size roughly
equal to 40 KB for b = 1, 000.

Query cost. We turn our attention to the per period up-
date cost for sliding window queries. The performance of
one-shot window queries (or equivalently the initialization
cost for a new sliding window query) will be studied in Sec-
tion 7.2. The query cost is measured for two different work-
loads of 1, 000 randomly generated queries: 1. fixed sliding
period σ but varying query selectivity γ (Figure 9(a)); and
2. fixed query selectivity γ but varying sliding period σ (Fig-
ure 9(b)). We set b to 1, 000 as suggested before and report
the average cost for one query. Note that γ is essentially
equal to the selectivity on the query attribute dimension,
since most tuples in a window, except those in the bound-
ary trees when window slides, are indexed by trees that are
fully covered in the time dimension by the query window.

With the sliding period σ = b = 1, 000, four boundary
trees will be queried to report the new and expiring tuples.
From the results we observe that both TM-tree and TMkd-
tree have roughly linearly increasing costs w.r.t query selec-
tivity. TM-tree does have a lower query cost even though
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Figure 9: Query cost per period, b = 1, 000.
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Figure 10: VO size per period, b = 1, 000.

theoretically it may access more nodes than TM-kd tree due
to the fact that it incurs false positives. This is explained by
the fact that a balanced binary search tree is used as the un-
derlying structure for a single tree in TM-tree, which means
that all tuples are retrieved in a sequential scan in the leaf
level. In addition, since trees are bulk-loaded there will be
strong locality among these leaf nodes in the main memory.
Adjacent nodes are loaded into the cache in one memory
access and this dramatically reduces the number of memory
access. On the other hand, though TMkd-tree accesses less
number of nodes theoretically by avoiding any false posi-
tives, but they are all random access which in practice leads
to more nodes access and slower performance. When the
sliding period σ is larger than b, around 2σ

b
+2 trees will be

queried. Hence, the query cost is roughly linear in σ as we
have observed in Figure 9(b). Finally, since we only retrieve
the new and expiring tuples as the window slides, the sliding
window query cost does not depend on the window size n.

VO size. The VO size is the determining factor for the
communication overhead between the server and the client.
In Figure 10 we plot the VO size using the same queries as in
Figure 9(a) and 9(b). Figure 10(a) reveals that the TM-tree
has a much higher VO size than the TMkd-tree, as it will
incur roughly 4γb false positives in this case (see Figure 3).
Recall that when σ = b, four boundary trees will be queried.
On the other hand, the TMkd-tree can avoid false positives
as it indexes and stores authentication information for both
the selection attribute and the time axis. The difference can
be order of magnitude as the query selectivity increases.
This is due to the fact that the TM-tree generates false
positives, which are part of the VO and each false positive
is a tuple (32 bytes in our experiment). Similarly, the linear
trend w.r.t σ in Figure 10(b) for both trees is explained by
the same reason as in Figure 9(b). Again, the sliding window
size n does not affect the results.

Verification cost. The verification cost at the client is
a mirror of the query process performed by the server, ex-
cept for the additional hashing operations to reconstruct the
hashes of the roots, and the verification of the digital signa-
tures. Since these costs are common to both the TM-tree
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Figure 11: Update cost and size for DMkd-tree and
EMkd-tree, b = 1, 000.
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Figure 12: One-shot window query b = 1, 000, γ = 0.1
and N = 20, 000.

and the TMkd-tree, similar trends as in Figure 9 have been
observed for the verification cost. We omit the details.

Experimental conclusion. For sliding window queries,
TM-tree has better query cost and TMkd-tree outperforms
TM-tree with respect to the VO size. Nevertheless, TMkd-
tree naturally supports multi-dimensional queries while TM-
tree can not handle those cases.

7.2 Oneshot queries
Both TM-tree and TMkd-tree have linear cost in n (Ta-

ble 1) for one-shot queries. In this section, we study the
performance of the DMkd-tree and the EMkd-tree.

Amortized update cost and structure size. First we
study the amortized per-tuple update cost. The result is
shown in Figure 11(a) with varying maximum window sizes
N . Both trees have higher update cost compared to the TM-
tree and TMkd-tree (see Figure 8(a)) due to the O(log N)
dependence (comparing to the O(log b) cost for tumbling
trees). In addition, the EMkd-tree is more expensive than
the DMkd-tree as it has an additional factor of O(log N

b
).

Nevertheless, for fairly large N (up to 100, 000 in our ex-
periments), both DMkd-tree and EMkd-tree achieve update
costs of less than 30µs per tuple. The smaller update cost
of DMkd-tree is not for free. The tree occupies more space,
as shown in Figure 11(b), by an O(log N

b
) factor compared

to the EMkd-tree. EMkd-tree utilizes linear space that is
almost equal to the raw data size. It should be highlighted
though that the DMkd-tree still has a reasonable main mem-
ory size. As Figure 11(b) has suggested, it takes less than 30
MB of memory for the maximum window of 100, 000 tuples.

Query cost and VO size. Our theoretical analysis shows
that the DMkd-tree and EMkd-tree should perform better
than the TM-tree and TMkd-tree respectively, especially
for large window sizes. This is confirmed by our findings
from Figure 12(a) (where N is set to 20, 000 and γ = 0.1).
The results are obtained by averaging over a workload of
1, 000 randomly generated queries. Clearly, the DMkd-tree
and EMkd-tree outperforms their counterparts TM-tree and

TMkd-tree. The gaps between them are increasing with the
larger value for n. This saving is critical when there are mul-
tiple clients registering many queries in the system. Lastly,
we study the VO size for various trees under one-shot win-
dow queries and present the results in Figure 12(b). The
TM-tree has the worst performance since it has to include
roughly 2γb tuples as false positives in the two boundary
trees. Both the DMkd-tree and EMkd-tree have less VO
size than the TM-kd tree.

Verification cost. Following the discussion in Section 7.1
for the verification cost, similar trends as those reflected
in the query cost for one-shot window queries have been
observed. The results are omitted for the brevity.

Experimental conclusion. Our results reveal that the
DMkd-tree and EMkd-tree are good candidates for answer-
ing one-shot window queries. For one dimensional query, the
data owner and the server could combine either the DMkd-
tree, if reducing update and query cost is a higher priority,
or the EMkd-tree, if reducing the space usage is a higher pri-
ority, together with the TM-tree, if the efficient query cost
for maintaining the updates to sliding window queries is a
higher priority, or the TMkd-tree if low VO size for main-
taining the updates to sliding window queries is a higher
priority. This gives the data owner and the server flexible
choices to answer all queries efficiently in different settings.

7.3 Aggregation and multidimensional queries
All of the proposed structures in this paper can support

authentication of aggregation queries as we have discussed.
The detailed evaluation of the performance under different
cost metrics is rather involved and they are not discussed
here. However, as Table 1 has suggested, the cost analysis
remains almost the same for aggregation queries. We would
like to highlight that all of our index structures could be
made to support the authentication of selection and aggre-
gation queries at the same time, as the trees for authenti-
cating aggregation queries trivially support answering and
authenticating selection queries.

Finally, the TMkd-tree and EMkd-tree support multi-
dimensional queries. The combination of these two struc-
tures provide a nice treatment for a highly dynamic environ-
ment where multiple clients register various sliding window
queries at any time instance, possibly with different dimen-
sionality, window sizes and sliding periods.

8. RELATED WORK
General issues for outsourced databases first appeared

in [19]. A large corpus of related work has appeared on au-
thenticating queries for outsourced databases ever since [12,
23, 6, 32, 31, 28, 27, 17, 25, 22, 33, 7]. Previous work focuses
on authenticating selection, projection and join queries for
relational databases. To the best of our knowledge, this work
is the first to address query authentication issues on sliding
window queries for outsourced streams. Nevertheless, pre-
vious work utilizes similar cryptographic primitives. Signa-
ture based approaches [28, 31] produce a signature for each
consecutive pair of tuples in the database, ensuring both
correctness and completeness of query results. These tech-
niques could be generalized to support multi-dimensional
queries, as shown in [28, 7], but clearly are very inefficient
when applied to data streams, due to the high signing cost.
Index based approaches apply the Merkle tree ideas over



binary search trees [12, 27] or B+ trees [32, 22]. Index
based approaches have not been shown to work for multi-
dimensional queries. Nevertheless, applying the Merkle tree
principles to more generic index structures has been stud-
ied in the past [2, 23, 17, 35]. Our extensions for the kd-
tree (and similarly for other multi-dimensional structures
like the R-tree) are straightforward but new. Most impor-
tantly, arranging these structures into hierarchies, making
them suitable for sliding windows over data streams, and
studying their performance over a variety of cost metrics
has not been addressed before.

Other related work includes the work of [6] that uses
Merkle trees to authenticate XML documents, and tech-
niques for integrity in data exchange [26] that are also rel-
evant in an outsourced data setting (we refer readers to an
excellent thesis [25] for more details). Query execution as-
surance [33] makes the assumption that the client has a copy
of the database, and hence does not apply to streams. Fi-
nally, our problem is orthogonal to watermarking techniques
for proving ownership of streams [34] and work on sketches
in sensor streams that can provide verifiable probabilistic
guarantees for distributed aggregation queries [13].

Sliding window queries over data streams have been stud-
ied extensively recently [4]. A number of algorithms have
been proposed that utilize exponential hierarchies [10] and
dyadic ranges [8, 14] to solve sliding window problems. Our
improved versions of the Mkd-trees use similar ideas. Read-
ers are referred to an excellent thesis [15] for more details.

9. CONCLUSION
To conclude, we propose structures for authenticating multi-

dimensional selection and aggregation queries over sliding
windows on data streams. Our solutions combine concepts
from the Merkle tree, kd-tree, dyadic ranges, and exponen-
tial hierarchies. We provide theoretical bounds for all tech-
niques considered across a number of cost metrics. Our ex-
perimental evaluation shows that the proposed structures
exhibit excellent performance in practice. In the future we
plan to extend our results to joins and other types of queries.
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