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Abstract— Many novel spatio-temporal applications deal with
moving objects. In such environments, a database typically main-
tains the initial position and the moving function for each object.
Instead of updating the database whenever an object position
changes (which is not manageable), updates are issued whenever
the moving function deviates beyond a given threshold. For
simplicity, we assume that objects move with linear trajectories.
Maintaining the moving functions in a database introduces novel
problems. For example, the database can answer queries about
object positions in the future: “find all objects that will be in
area A, 10 minutes from now”. In this paper we present a
thorough performance evaluation of techniques for estimating
the selectivity of such queries. We consider various existing
estimators that can be stored in main memory and are updated
dynamically. Furthermore, we propose two new approaches, a
technique that uses histograms and a secondary index based
estimator. We run a diverse set of experiments to identify the
strengths and weaknesses of every approach, using a wide variety
of datasets.

I. I NTRODUCTION

Various recent applications involve moving-object databases
(cars moving on a highway system, customers of a cellular
network, surveillance applications, etc.) To avoid high update
rates such databases typically maintain functional descriptions
of the object movements, issuing updates only when param-
eters of these functions change (velocity, direction, etc.) In
such a scenario the database can also answer queries about
the future positions of the objects, based on the movement
functions stored when the query is issued.

The most common functional representation is a linear
trajectory [11], [2], [17], [5], [16], [13], [4], [12], [21], [18],
[24], [25]. This assumption is based on simplicity, since linear
functions are easy to store and update, and practicality, because
even complex object movements can be approximated well
by a sequence of adjacent line segments (using least square
regression, line simplification and other fitting techniques). An
object moving on a line segment can be modeled as a point
moving with constantvelocity ~v, starting attime t0 from a
specific location a0. The position of the object at timet is:
x = |~v|(t − t0) + a0 for t > t0. Whenever the magnitude or
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direction of~v deviate beyond a given threshold an update is
performed.

Previous work has concentrated on range queries (“find
which objects will be in area A, 10 minutes from now”) [22],
[11], [2], [17], [5], [16], [13] and nearest neighbor queries
(“find the 10 objects that will be nearest to a given location,
5 minutes from now”) [10], [26], [19], [20]. All these tech-
niques provide exact answers. Nevertheless, there are many
applications whereselectivity estimation and approximate
aggregate computationare preferable to exact answers. For
example: “estimate how many vehicles will be within 2 miles
from the intersection of highways I10 and I405, 5 minutes
from now”. In addition to being useful in query optimization
such queries are important when privacy is a concern (by
finding “how many” instead of “who”).

Problem Definition: Consider a dynamic collection of
objects following linear trajectories. Given a regionR and a
time interval∆T = [qts, qte] (tnow ≤ qts < qte), we want to
estimate the number of objects thatwill pass throughR during
∆T (tnow is the current time). In this paper we concentrate
on objects moving in 1- or 2-dimensional spaces.

Figure 1 shows three objects moving on a line segment
(1-dimensional space). The vertical axis corresponds to the
line segment, while the horizontal axis corresponds to time.
The time instant and starting location of every object are also
depicted. Objecto3 is shown to issue an update at timet4. The
shaded area corresponds to the range queryQ = [qxl, qxh]×
[qts, qte]. Only two objects (o1 ando2) qualify for the answer.

We are aware of only two previous works that address se-
lectivity estimation queries in a spatio-temporal environment.
Originally, [4] proposed a novel histogram-based technique.
That work focused mostly on the 1-dimensional case and
made a strong uniformity assumption. Later, [21] extended the
work to the multi-dimensional case and dropped the uniformity
assumption.

In [4] the authors start with the simple 1-dimensional case
where objects move on a line segment[Xmin, Xmax] and
are modeled as points following linear trajectories. It is also
assumed that the object velocities are distributed uniformly
in the range[Vmin, Vmax]. Given a queryQ the selectivity
is computed as a function ofqts, qte, qxl, qxh, Xmin,
Xmax, Vmin and Vmax. Since the location of the objects is
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Fig. 1. An example of 1-dimensional object movements.
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Fig. 2. Evolution of a bucket with end-point velocities.
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Fig. 3. A false positive.

not typically uniform the authors propose building a spatial
histogram (like Minskew [1]) that partitions the 1-dimensional
segment into consecutive ranges (buckets). The histogram
algorithm is modified to calculate the minimum and maximum
velocities of all objects contained in each range. Each bucket
is thus characterized by three quantities: i. the bucket range (or
bounding region for the 2-dimensional case), ii. the number of
objects initially contained in this range, and iii. the minimum
and maximum velocities of these objects.

This is equivalent to partitioning the space into time-
evolving buckets by assigning velocities to the end-points of
each bucket. For example, in figure 2 bucketB2 = [xl, xh]
(on the vertical axis) has a right end-pointxl that moves
with velocity Vmin and a left end-pointxh that moves with
velocity Vmax. The bucket’s extent at timeqts can be easily
calculated. By assuming uniformity of object locations and
velocities insideB2 we can compute the contribution of this
bucket to the queryQ. The sum of the contributions from all
buckets is the total selectivity of the query.

Initially, objects are assigned to buckets by using their
locations at timet = 0. Since objects issue regular updates the
histogram needs to be adjusted accordingly. An object update
is given as a tuple:< Oid, (v, a), (v′, a′) >, where (v′, a′)
are the new parameters of the object moving function. Using
this information we can remove the object from its original

bucket and reassign it to a new bucket. The problem with
this approach is that while the original Minskew histogram
assumes uniform distribution of objects within buckets, as
updates occur and objects move around, this uniformity can
be easily lost. One solution would be to rebuild the histogram
every so often but this leads to increased computational cost
since a complete database scan is required. To address this
problem the authors propose instead to maintain the histogram
over a (small) random sample of the objects and to rebuild it
every time instant. The sample is maintained in main memory
using a backing algorithm as described in [7].

The technique is extended to handle points moving on a 2-
dimensional plane by building a 2-dimensional histogram and
projecting buckets, objects and queries on both dimensions.
The 2-dimensional selectivity is computed as the product of
the individual 1-dimensional results on every projection.

In addition to the strong assumption of uniform object
velocities this technique over-estimates the selectivity in the
2-dimensional case. Projecting the data and the queries on
each dimension introduces false positives since objects that
intersect with the query projections on both dimensions do
not necessarily cross the original query (a false positive is
shown in figure 3).

The technique recently proposed in [21] drops the velocity
uniformity assumption and does not use projections in the 2-
dimensional case thus avoiding over-estimation. Consider an
object moving on a plane. Let’s assume that the object is
currently at position(x, y), moving with velocity(vx, vy). The
authors propose building a 4-dimensional histogram using 4-
dimensional points(x, y, vx, vy) projected at timet = 0. The
resulting buckets have a spatial MBR and a velocity MBR
(V-MBR). Each bucket contains all objects that fall inside its
spatial MBR with velocities bounded by the V-MBR. Since
the velocities of the objects are included in the histogram
construction process the resulting buckets will contain objects
that are uniformly distributed inside both the MBR and the
V-MBR. Hence, there is no need for the velocity uniformity
assumption. Furthermore, the authors use the spatial and
velocity MBRs to derive analytical formulas for computing
the contributions of both MBRs to the selectivity of a range
query. They also propose creating the histogram on the whole
dataset (not a sample) and rebuilding it less often in order to
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offset the cost of a full database scan. While this approach
is more complex to implement it has another advantage as it
is more general and applies also for moving queries (when
the spatial range of the query moves during the query time
interval).

Both [4], [21] as well as our proposed histogram technique
use the Minskew [1] algorithm for creating histograms. The
2-dimensional Minskew algorithm partitions the universe into
a user specifiednumber ofdisjoint rectangular buckets (the
algorithm can be extended for any number of dimensions).
Every bucket is characterized by its spatial extent and the
number of objects that fall in it. The goal is to partition the
space such that the distribution of objects inside each bucket is
uniform. Minskew starts with a very fine uniform grid of cells
(the number of cells must be much larger than the total number
of requested buckets) and calculates the spatial density of each
cell (i.e., the number of objects contained in a cell). Then,
it combines a number of cells into a bucket by minimizing
the statistical variance (spatial-skew)∗ of the spatial densities
of the cells. Initially all cells belong to a single bucket that
covers the entire universe. Then, the split (in any dimension)
that will result in two buckets with minimumglobal spatial-
skew is performed. This procedure continues recursively. The
algorithm stops when the required number of buckets has
been reached. Since this algorithm is exhaustive (for every
partitioning iteration all possible splits for all buckets have
to be evaluated) and its performance depends heavily on the
initial grid granularity, there are heuristics that produce near
optimal buckets much faster.

The contributions of this paper are:

• We propose two new spatio-temporal selectivity estima-
tion techniques, one based on histograms and another
using a secondary index structure. The first approach uses
a duality transform of the spatio-temporal space, while
the second can be used either on the dual or the original
space.

• We present a thorough comparison of all known spatio-
temporal selectivity estimation techniques as well as
a straightforward sampling approach. We test against
various datasets using uniform, skewed and other object
distributions inspired from practical examples. Based on
this experimental comparison we draw conclusions about
the practicality of the various techniques.

II. N EW SPATIO-TEMPORAL SELECTIVITY ESTIMATORS

We propose two techniques: The first one is based on
histograms and the duality transform presented in [11]. The
second assumes that a secondary index exists on the moving
objects. Similarly with [21], the histogram approach builds
an estimator using the whole dataset and is rebuilt frequently.
The index estimator is also built on the whole dataset but it
is dynamically updated.

∗The variance V of N numbers f1, . . . , fN is equal to V =
1
N

PN
i=1 (fi − f̄)2, wheref̄ is the average off1, . . . , fN .
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Fig. 4. A range query transformation in the dual space. Since trajectories
o1,2 intersect queryQ in the primal space, only the same points are contained
in Q in the dual space.

A. Histogram Estimators Using the Duality Transform

The duality transform was used in [11] and recently in [6]
for indexing moving objects. Theprimal space-time repre-
sentation (figure 1) is equivalent to itsdual velocity-intercept
representation (figure 4). In this transform:
• An object trajectoryx = vt + a (a line) is transformed

into a point (v, a). Coordinatea is the position where
the trajectory intersects the vertical axist = 0 in the
original space andv is the object velocity (this is called
the Hough-X transformation in [9]).

• A range queryQ : [qxl, qxh] × [qts, qte] is transformed
into a linear constraint. Object(v, a) will pass thoughQ
if and only if:





if v > 0: Vmin ≤ v ≤ Vmax

∧
a + qtev ≥ qxl

∧
a + qtsv ≤ qxh

if v < 0: −Vmax ≤ v ≤ −Vmin

∧
a + qtsv ≥ qxl

∧
a + qtev ≤ qxh

(1)

(for a detailed analysis of this equation please refer to [6]).
An advantage of this approach is that lines (which are

objects difficult to index [9]) are transformed to points (which
can be indexed with a variety of Point Access Methods). The
difficulty of course is that the rectangular query of figure 1 is
transformed to the shaded trapezoid of figure 4.

Our proposed histogram technique works as follows:
1) Convert the object trajectories to Hough-X space.
2) Partition the Hough-X space into buckets using a

2-dimensional spatial histogram like Minskew. Each
bucket contains the following information:

a) An X-MBR [vl, vh]× [al, ah].
b) The number of pointsN that fall inside the X-

MBR.
3) Update the histogram as objects issue updates.
4) Rebuild the histogram after the number of updates

exceeds a given threshold.
The selectivity of queryQ is the sum of the contributions

from all histogram buckets. Since Minskew tries to maintain a
uniform distribution within each bucketB, the contribution of
B is proportional to the area of its intersection withQ and the
number of objectsN contained inB. The intersection ofQ
(represented by equation (1)) andB (which is a rectangle), can
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Fig. 5. Example of computing the contribution of bucketB to queryQ .

be computed efficiently using any polygon clipping technique
[23], [15]. An example is shown in figure 5. The selectivity
is SB = N

AreaQ∩B

AreaB
, whereAreaQ∩B = (a1+a2)(vh−vl)

2 and
AreaB = (vh − vl)(ah − al).

Every time an object issues an update the histogram is ad-
justed accordingly. Suppose an update< Oid, (v, a), (v′, a′) >
occurs. We locate the bucket with X-MBR that contains point
(v, a) and decrement its counter by one. We find the new
bucket with X-MBR that contains point(v′, a′) and increment
its counter by one. When using the Hough-X space to create
the histograms the velocity range is bounded by[Vmin, Vmax].
On the other hand, the intercept range is unbounded. Since
intercept calculation is relative to timet = 0 and the current
time advances indefinitely, the range of intercepts always
increases. Thus, the new point(v′, a′) might fall outside of
the intercept range that was used to construct the histogram.
In that case either the appropriate boundary bucket has to
be enlarged to contain the new point or the update can be
ignored since the histogram will eventually be rebuilt. In our
implementation we chose to ignore such updates given that
the histogram was rebuilt every 10 time instants. With this
approach, though, fast moving objects that tend to have larger
(negative or positive) intercepts will fall outside the histogram
range more often thus, the technique becomes biased towards
slower moving objects. For most applications very fast moving
objects (relative to the rest of the dataset, that is) are rare in
practice. We should mention here that the approach in [21]
suffers from the same problem.

This technique extends to 2-dimensional movements in a
straightforward way. A linear trajectory in the 2-dimensional
space becomes a 4-dimensional point(vx, vy, ax, ay) in the
Hough-X space. A 4-dimensional histogram has to be con-
structed and the transformed queries can be represented with
an extended linear constraint. The linear constraint is essen-
tially the intersection of 4-dimensional hyperplanes. In the dual
Hough-X space the intersecting volume of the query with a
4-dimensional bucket has no closed form solution. Hence, it
has to be computed using monte-carlo integration [14].

We should list here the similarities and differences with [21]
(the techniques were developed independently). Both tech-
niques drop the velocity uniformity assumption and built a 4-
dimensional histogram on the whole dataset and not a sample.
Both approaches rebuild the histogram less frequently (when-

ever the number of updates exceeds a threshold). Similarly
to our technique, the selectivity estimation formula in [21]
does not have a closed form solution. A complex algorithm
based on the trapezoid rule was proposed to compute the
selectivity. The monte-carlo approach used here for computing
4-dimensional volume intersections is as efficient (in run-time
and accuracy as the experimental section shows) and much
simpler to implement than the combined trapezoid rule needed
for the MBR and the V-MBR of [21].

The update cost of our technique (as well as that of [21]) is
expected to be higher than the technique proposed in [4] for
three reasons. First, for the 2-dimensional case our technique
uses a 4-dimensional histogram which has higher rebuilding
cost when compared to the 2-dimensional histogram of [4]
(the 4-dimensional grid is much larger than the 2-dimensional
grid). Second, performing a full database scan is more ex-
pensive when compared to maintaining a sample in memory.
Finally, a monte-carlo computation needs to be performed for
every intersecting bucket in order to calculate the selectivity
of a given query. Nevertheless (and as it will be apparent
from the experimental evaluation), we argue that the estimation
accuracy of our technique improves dramatically due to better
histogram quality which justifies a slightly increased update
cost for the 2-dimensional movements. Moreover, we were
able to reduce the update cost by rebuilding the histogram
less often (hence reducing the database scans to a minimum)
without sacrificing much of the estimator accuracy.

Note that for 1-dimensional movements the 1-dimensional
histogram of [4] needs a very large grid size in order to
produce good estimates. In that case the 2-dimensional his-
togram construction of our technique becomes much faster.
Furthermore, the 2-dimensional Hough-X formulas have a
closed form solution (i.e., the monte-carlo computation is not
needed) thus the query cost is reduced also.

In [11] the authors use another space transformation called
Hough-Y [9]. Instead of using a velocity-intercept space the
Hough-Y transformation uses the reciprocal of the velocity
n = 1

v and the intercept divided by the velocityb = −a
v . The

advantage of this transformation is that the query is repre-
sented by a simpler linear constraint such that the intersections
between the query and the buckets can be computed analyti-
cally (thus removing the need for the monte-carlo integration).
The drawback however is that the resulting distribution of the
objects on the Hough-Y universe becomes highly skewed even
for data that is non-skewed on the primal space. The main
reason behind this is that the division by the object velocity
distorts the dual space representation. We implemented the
proposed technique using this dual transformation also. Indeed
the estimator accuracy deteriorated substantially. In the rest we
discuss the Hough-X dual transform only.

B. Index Based Estimator

This approach assumes that a disk-based access method
is available for indexing the moving objects. Various such
indexing techniques have been proposed in the recent literature
[11], [2], [5], [6], [13], [17], [16]. Typically, an index is main-
tained for answering exact range and nearest neighbor queries.
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Assuming that such an index exists we built a dynamically
updated selectivity estimator. The combination of the existing
index with the proposed estimator provides a unified solution
for a variety of queries (range, nearest neighbor as well as
selectivity estimation).

Other advantages of this approach are:

• The estimator is built on the whole dataset and not on a
sample leading to better accuracy.

• The estimator does not have to be rebuilt. Only relevant
entries are affected during updates and thus it adapts
accordingly.

• The size and accuracy can be tuned on-line.

For ease of exposition the following discussion assumes that
an R-tree [8] is indexing the complete database in Hough-X
space. Other spatio-temporal indices (like the TPR-tree [17]
which indexes objects in the primal space) can also be used
in a straight-forward manner since the implementation details
of our technique are not affected by index updating policies.

The estimator is created as an in-memory hash table that
contains a number of entries. Every entryE corresponds to a
specific leaf node (data page)L of the R-tree. Each entry has
the following properties:

1) An E-MBR, which is the MBR ofL.
2) A hash key, equal toL’s unique node identifier.
3) The number of objectsN contained in the E-MBR (i.e.,

the number of objects contained inL).

Any entry can be further split in-memory (without affecting
the persistent structure) yielding multiple entries per leaf if
needed (that share a common hash key). As discussed in the
experimental section such splits result in increased estimator
size but also increased accuracy since the E-MBRs become
more fine-grained, partitioning space into smaller regions.
Various splitting algorithms may be used for such in-memory
splits. For simplicity we use the R*-tree splitting heuristic [3].

Figure 6 depicts an R-tree (leaf nodes are plotted with
rounded corners). The estimator entries are shown at the
bottom. The hash table contains one entry per leaf and every
entry holds the number of data contained in the associated
leaf. In addition, entryf is split into two sub-entries, both
indexed by the same hash key.

The cost of updating the hash table is insignificant. The
estimator is modified along with the index. More specifically,
whenever a leaf node of the tree is updated (and thus loaded
into main memory) the corresponding entry in the hash table
is accessed and adjusted as necessary. Since the entries of
the estimator correspond to the actual partitioning of the data,
imposed by the secondary index, we expect the quality of the
estimated results to be related to the quality of the spatial
index.

For answering a selectivity query the hash table entries are
scanned sequentially (if the hash table size is considerable
the buckets can instead be organized as an in-memory spatial
index). The contribution of entryE to queryQ is proportional
to the intersecting area of its E-MBR withQ and the number of
objectsN . Query selectivity can be computed similarly with
the histogram technique. Extending the approach for multi-
dimensional environments is straightforward.

Estimator

a

be

hgdcfj

2
3 3 1 1

3
3

c d f g h j

R−tree

i

Fig. 6. The index based estimator.

The size of the estimator is proportional to the total number
of leaf nodesNL in the secondary index which in turn depends
on the total number of data entriesND and the average
fanout of the indexfavg (NL = ND

favg
). For example, in a

2-dimensional R-tree withND = 106 data objects, a page
size of 2 Kbytes, where every entry is 20 bytes long (4 floats
for the MBR and 1 integer for the id), the node fanoutf is
100 entries per node. Given that the average R-tree utilization
per node is typically around 70%, the average fanout would
befavg = 70. Hence, there areNL = 106

70 = 14286 leaf nodes
and the estimator will contain at least as many entries. Given
today’s large main memoriesNL is still small when compared
to ND, the total number of moving objects.

III. E XPERIMENTAL RESULTS

All experiments were run on an Intel Pentium(R) 4, 1.60Ghz
CPU with 1Gb of main memory. We run several experiments
testing the proposed techniques for 1-dimensional and 2-
dimensional environments.

A. 2-dimensional Movements

Dataset and Query Description.We generated four dif-
ferent datasets of moving objects containing 1 million objects
each. The spatial universe was set to 500 by 500 miles. Object
velocities were randomly generated using skewed and uniform
distributions between 10 miles per hour and 110 mph. All
simulations were run for 200 time instants (every time instant
corresponding to 1 minute). At least 1% of the objects issued
an update each time instant.

Each dataset is described by the initial distribution of the
moving objects. For the first dataset (denoted as UNIFORM)
objects were initially distributed using a uniform distribution
and then they were allowed to move randomly inside the
universe. In the second dataset objects started with a uniform
distribution but then each object randomly selected one of
three destinations with a specified probability. The three des-
tinations “attracted” the objects (the ATTRACTOR dataset. A
snapshot after 80 time instants is shown in figure 7(a)). In the
third dataset objects were positioned initially using a skewed
distribution and then moved randomly (a SKEWED dataset
shown in figure 7(b) after 20 time instants). Finally, the last
dataset represents a network of freeways and surface streets
(different towns connected by freeways) where every road is
a collection of connected line segments. The objects followed
random paths on this network (a snapshot of the ROAD dataset
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Fig. 7. Datasets

TABLE I

QUERY SETS.

Set SS SL LS LL
Time 1 1 5 5
Space 1% 3% 1% 3%

is shown in figure 7(c)). Within each dataset we varied object
velocities using uniform or skewed distributions.

We also created four different sets of queries with all
combinations of small and large sizes of time intervals and
spatial extents (see table I). Small size corresponds to a time
interval with length 1 time instant and a 5 miles range in the
spatial domain. Large size corresponds to 5 time instants and
15 miles range. We generated 2 queries from each type for
every time instant giving a total of 1600 queries per simulation.
For all techniques based on random samples we run every
experiment multiple times and averaged the final results.

Performance Optimizations. We present comparison re-
sults for the following techniques: Random sampling (denoted
in the rest by S), the spatio-temporal selectivity estimation
technique of [4] (HC), the spatio-temporal selectivity estima-
tion technique of [21] (HT), histogram on Hough-X (HX)
and the R-tree based estimator on Hough-X (R-tree). Since
all techniques provide approximate answers we calculated the
relative error of each technique as a ratio over the exact answer.
The relative error is the ratio|E−A|

E , where E and A are
the exact and approximate answers, respectively. Queries with
exact answer equal to zero were ignored.

We present the “optimized” performance for every ap-
proach. We first varied different parameters to fine-tune each
technique. We tested the histogram techniques (HC, HT and
HX) with varying number of buckets and grid sizes. Both pa-
rameters affected the computation cost and the accuracy of the
histogram results. We observed that a very small or very large
number of buckets or grid size has a negative effect on the
estimations. We noticed that a very large grid size increases the
computational cost substantially without providing noticeable
improvement in accuracy. We tested using up to 5000 buckets
since for larger numbers of buckets the building cost of the
histogram became too expensive to be considered as a viable
solution. For our experiments HX and HT worked better when

using up to 3000 buckets, while HC gave better results for up
to 1000 buckets.

Another important parameter for the sampling based tech-
niques (S and HC) is the sampling factor. We experimented
with up to 1% samples. As expected, for HC the computational
cost of the histogram is not affected at all from the sample
size since the core of the histogram construction algorithm
depends only on the number of buckets and the grid size. The
results on the other hand become more accurate as the sample
becomes larger. For simplicity all graphs refer to 1% samples.

We tried a number of R-tree estimators with varying number
of hash table sizes. It became apparent that the bigger the
estimator size (the more fine-grained the entries of the hash
table) the better the accuracy of the results. For the rest of this
section the R-tree based estimators have approximately 10000
entries.

Comparisons. Figure 8 plots the sizes of all estimators.
The R-tree estimator has the largest size followed by HC
and S. The smaller sizes are used by HX and HT. The best
compromise between computational cost and accuracy for
every technique is achieved for different sizes. For HC and S,
since the sample needs to be updated in memory, the sample
size dominates the total size of the estimator (the number of
buckets is much smaller in comparison). The size of the R-
tree estimator is large since the secondary index needs more
than 10000 leaf entries in order to store 1 million objects
thus making the estimator at least as large. The rest of the
techniques are more space efficient because only the histogram
buckets are kept in memory. While an interesting comparison
parameter the estimator size was not a real implementation
concern since even the larger estimator required only 234
Kbytes of main memory.

Figure 9 plots the normalized rebuilding cost for all tech-
niques and the SKEWED dataset (similar behavior was ob-
served for the rest of the datasets). For HX and HT the update
cost is a full database scan plus the histogram construction
time (in our experiments the histogram was rebuilt every 10
time instants). For HC we create the histogram from the
stored sample every time instant as described in [4]. S has
minimal update cost since the backing algorithm of [7] is not
computationally expensive. The R-tree estimator update cost is
the time needed to adjust and split the entries of the in memory
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hash table. It is faster (about four times) than HC since
updating occurs on-line. HX and HT have the highest update
cost for 2-dimensional movements due to the 4-dimensional
histogram and the database scan overhead.

Figure 10 shows the query cost for all estimators. For the
R-tree, HT and HX the cost is a sequential scan of the buckets
plus the time to compute the complex integrations involved.
HC does not have the monte-carlo integration overhead. S
performs one iteration per query over the sample and since
the sample size is very small the cost per query is minimal.
R-tree is 10 times more expensive than HX and HT. The
more buckets that intersect with a query the more integrations
need to be performed. The R-tree estimator contains twice as
many buckets compared to the other techniques, which may
also overlap each other (this does not happen with buckets
produced with the Minskew algorithm). Hence, the monte-
carlo computations increase proportionally.

Figures 11 to 15 plot the relative error for various datasets.
Figure 11 shows the results for the UNIFORM dataset using
uniform velocities. This dataset is similar to the datasets used
in the performance analysis of [4], [21]. HX and HT performed
very well giving from 1% to 5% errors depending on the query
types. The R-tree estimator followed (with up to 10% error).
S did not work well, yielding more than 60% error in some
cases. HC worked better than sampling but still gave as much
as 40% error for LS queries. It is apparent that these techniques
(HC and S) are affected substantially from the quality of the
sample. The standard deviation of our measurements for HC
was 4.3% (SL queries) and for S up to 15.1% (SS queries).
The large sparsely populated space and the small sampling
factor are responsible for the bad sample quality.

Next, we examined the UNIFORM dataset with skewed
velocities (figure 12). We observed a similar behaviour, except
that the performance of HC deteriorates substantially when
skewed velocities are used. This is because the velocity
uniformity assumption does not hold. The other techniques
remain unaffected. Due to lack of space in the rest we depict
only datasets with skewed velocities.

For the ATTRACTOR dataset with skewed velocities (figure
13) all techniques gave more than 10% errors for all query
types. HX and HT again perform similarly, yielding between
10% and 15% error. The rest of the techniques performed
poorly, giving more than 22% errors for all cases. For HC and
S the standard deviation of the measurements was up to 2.3%
and 7.1% respectively, for some query types. Interestingly,
the R-tree estimator is affected by the ATTRACTOR data.
We attributed this behavior to the difficulty of the original
index to maintain a good partitioning as the data become two
concentrated to the three destinations.

Similar conclusions are drawn for the SKEWED dataset
(figure 14). The results deteriorate further since the data are
skewed in the initial distribution. For SS queries S gave 21%
standard deviation and HC 34%. This means that sampling
cannot be used for such datasets. The R-tree estimator also
performed poorly since the initial partitioning of the index was
probably of low quality. HX and HT did not perform well for
LS queries, giving more than 30% error.

Surprisingly, for the ROAD dataset (figure 15) results were

different. S yielded less than 14% error for all query types
and it was better than HC in all cases, which gave 26% error
for SS queries and less than 13% for all other types. For this
dataset we generated random query sets with one constraint:
Queries should contain at least one line segment. Since objects
are highly constrained on the 2-dimensional plane (following
specific line segments), a small sample is enough to represent
the distribution of the dataset accurately (a smaller active
space means better sample quality). On the other hand, the
techniques that use a 4-dimensional space lose this property
(the space is sparse). HX, HT and R-tree gave more than 19%
error for all query types.

Clearly, no technique is best for all datasets. For uniform
object distributionsHX and HT should be the choice. For
skewed distributionsno techniquegave satisfactory results thus
it remains an interesting open problem. Datasets with skewed
object distributions occur very often. For example, imagine the
traffic patterns after a big event like theSuper Bowl. Objects
tend to disperse from a stadium in a non-uniform manner
following freeways to several different directions (imagine the
stadium being at the lower left corner of the universe in figure
7(b) and cars leaving toward the north and east). High degrees
of skewness seem to affect the histogram and the R-tree
schemes. For the ROAD dataset results were surprising. The
simplest technique,random sampling, actually worked very
well, yielding reasonable errors and should thus be considered
as the best alternative.

B. 1-dimensional Movements

We also examined all estimators for 1-dimensional move-
ments. This is useful for applications involving straight-line
segments (e.g., a busy highway). Our 1-dimensional synthetic
environment consists of one highway represented as a line
segment extending from 0 to 1000 miles. We randomly placed
16 entrances/exits on this highway. The simulations run for
500 time units, each time unit corresponding to 1 minute.
In the beginning, 400,000 vehicles are randomly placed on
the highway. This corresponds to an average of 400 vehicles
per mile. Every vehicle moves toward a specific exit with a
constant velocity. When a vehicle reaches its exit it is removed
from the highway and a new vehicle appears through a random
entrance. Thus, the number of vehicles per time instant is kept
constant. Every time instant at least 1% of the objects issue
an update. We tested both with uniform and skewed velocity
distributions. Velocities were chosen between 10 mph and 110
mph. For the skewed distribution we split the vehicles into two
groups, one for speeds between 10 and 55 mph and the other
between 55 and 110 mph. The first group corresponds to slow
moving vehicles in traffic with a few exceptions. The second
group corresponds to normal highway conditions with a few
speeding vehicles.

Figure 17 shows the results for skewed velocity distribution.
For simplicity, HT is not included in the graph as its perfor-
mance was equivalent to HX. All techniques worked quite well
for 1-dimensional movements, with HX and R-tree being the
best. It is interesting to note that S is slightly better than HC
for the 1-dimensional case, making the histogram construction
overhead obsolete in that case.



8

0 50 100 150 200 250

HX

HT

Rtree

HC

S

Size (Kbytes)

Fig. 8. Estimator sizes in Kbytes.

1 10 100 1000 10000

HX

HT

Rtree

HC

S

Seconds (log scale)

Fig. 9. Rebuilding computational cost (log scale).

1 10 100 1000 10000 100000

HX

HT

Rtree

HC

S

Seconds (log scale)

Fig. 10. Query computational cost (log scale).

0

10

20

30

40

50

60

70

80

90

100

SS SL LS LL

Query type

R
el

at
iv

e 
er

ro
r 

(%
)

HX HT Rtree HC S

Fig. 11. UNIFORM dataset, uniform velocities.
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Fig. 12. UNIFORM dataset, skewed velocities.
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Fig. 13. ATTRACTOR dataset, skewed velocities.
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Fig. 14. SKEWED dataset, skewed velocities.
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Fig. 15. ROAD dataset, skewed velocities.
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Memory requirements are the same as for the 2-dimensional
experiments. S and HC require much more space than HX
because they keep the sample in memory. R-tree is as large
since the resulting tree has many data pages. In terms of
computational cost (figure 16) S is again the fastest technique
requiring only 2 seconds to answer all queries. R-tree run in
10 seconds, HX in 600 seconds and HC in 2000 seconds. R-
tree is very fast in the 1-dimensional case since no monte-
carlo integration is needed in the 2-dimensional Hough-X
space (intersections can be computed with polygon clipping).
HX is slow because of the histogram construction time and
the database scans. Finally, HC is very slow because the 1-
dimensional histogram needs a very large grid size (3000 cells)
to produce competitive results.

To conclude, if an index is present the index based estimator
gives the best performance/query cost trade-off. S is also a
good choice since it is very efficient and easy to implement
when an index is not present. Finally, HX gives very accurate
results for an added computational cost which, of course, could
be reduced by rebuilding the histogram less often.

IV. CONCLUSIONS

We conducted a thorough performance evaluation of spatio-
temporal selectivity estimation techniques. We considered var-
ious existing estimators that can be stored in main memory and
are dynamically updated as objects are moving. Furthermore,
we proposed two techniques, a simple histogram approach and
an index-based estimator. We run a diverse set of experiments
on 1- and 2-dimensional environments using various synthetic
datasets. Clearly, no technique is best for all types of datasets.
For 1-dimensional movements the index-based estimator is
the most robust technique. For 2-dimensional and uniformly
distributed data histograms give the best results. For a freeway
network a simple random sample gives the best answers. For
highly skewed environments the techniques did not provide
good estimates. Finding a better alternative is left as an open
problem for future work.
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[22] J. Tayeb,Ö. Ulusoy, and O. Wolfson. A quadtree-based dynamic
attribute indexing method.The Computer Journal, 41(3):185–200, 1998.

[23] B. R. Vatti. A generic solution for polygon clipping.Communications
of the ACM, 35(7):56–63, July 1992.

[24] O. Wolfson, S. Chamberlain, S. Dao, L. Jiang, and G. Mendez. Cost
and imprecision in modeling the position of moving objects. InICDE,
pages 588–596, 1998.

[25] O. Wolfson, B. Xu, S. Chamberlain, and L. Jiang. Moving Objects
Databases: Issues and Solutions.In Proc. of 11th Int. Conf. on SSDBMs,
pages 111–122, July 1998.

[26] Z.Song and N.Roussopoulos. K-nearest neighbor search for moving
query point. InIn Proc. SSTD 2001, pages 79–96, 2001.


