R-trees: An Average Case Analysis

R-trees - performance analysis

- How many disk (=node) accesses we'll need for
 - range
 - nn
 - spatial joins
 - why does it matter?
R-trees - performance analysis

- A: because we can design split etc algorithms accordingly; also, do query-optimization
- motivating question: on, e.g., split, should we try to minimize the area (volume)? the perimeter? the overlap? or a weighted combination? why?

R-trees - performance analysis

- How many disk accesses (expected value) for range queries?
 - query distribution wrt location?
 - “ “ wrt size?
R-trees - performance analysis

- How many disk accesses for range queries?
 - query distribution wrt location? uniform; (biased)
 - “” wrt size? uniform

R-trees - performance analysis

easier case: we know the positions of data nodes and their MBRs, eg:
R-trees - performance analysis

How many times will P1 be retrieved (unif. queries)?

R-trees - performance analysis

How many times will P1 be retrieved (unif. POINT queries)?
R-trees - performance analysis

How many times will P1 be retrieved (unif. POINT queries)? A: x1*x2

R-trees - performance analysis

How many times will P1 be retrieved (unif. queries of size q1xq2)?
R-trees - performance analysis

- Minkowski sum

How many times will P1 be retrieved (unif. queries of size q1xq2)? A: (x1+q1)*(x2+q2)
R-trees - performance analysis

Thus, given a tree with \(n \) nodes (\(i=1, \ldots, n \)) we expect

\[
DA(q_1, q_2) = \sum_{i=1}^{n} (x_{i,1} + q_1)(x_{i,2} + q_2)
\]

\[
= \sum_{i=1}^{n} x_{i,1} \cdot x_{i,2} + q_1 \sum_{i=1}^{n} x_{i,2} + q_2 \sum_{i=1}^{n} x_{i,1} + q_1 \cdot q_2 \cdot n
\]

‘volume’

‘surface area’

count
R-trees - performance analysis

Observations:
- for point queries: only volume matters
- for horizontal-line queries: (q2=0): vertical length matters
- for large queries (q1, q2 >> 0): the count N matters
- overlap: does not seem to matter (but it is related to area)
- formula: easily extendible to n dimensions

R-trees - performance analysis

Conclusions:
- splits should try to minimize area and perimeter
- ie., we want few, small, square-like parent MBRs
- rule of thumb: shoot for queries with $q1=q2 = 0.1$ (or ≈ 0.05 or so).
More general Model

- What if we have only the dataset \(D \) and the set of queries \(S \)?
- We should “predict” the structures of a “good” R-tree for this dataset. Then use the previous model to estimate the average query performance for \(S \).
- For point dataset, we can use the Fractal Dimension to find the “average” structure of the tree.
 - (More in the [FK94] paper)

Uniform dataset

- Assume that the dataset (that contains only rectangles) is uniformly distributed in space.
- **Density** of a set of \(N \) MBRs is the average number of MBRs that contain a given point in space. OR the total area covered by the MBRs over the area of the work space.
- \(N \) boxes with average size \(s = (s_1, s_2) \), \(D(N, s) = N s_1 s_2 \)
- If \(s_1 = s_2 = s \), then:
 \[
 D = N s^2 \Rightarrow s = \sqrt{\frac{D}{N}}
 \]
Density of Leaf nodes

- Assume a dataset of N rectangles. If the average page capacity is f, then we have $N_{\text{in}} = N/f$ leaf nodes.
- If D_1 is the density of the leaf MBRs, and the average area of each leaf MBR is s_1^2, then:

$$D_1 = \frac{N}{f} s_1^2 \Rightarrow s_1 = \sqrt{D_1 \frac{f}{N}}$$

- So, we can estimate s_1, from N, f, D_1
- We need to estimate D_1 from the dataset’s density...

Estimating D_1

Consider a leaf node that contains f MBRs. Then for each side of the leaf node MBR we have: \sqrt{f} MBRs

Also, N_{in} leaf nodes contain N MBRs, uniformly distributed. The average distance between the centers of two consecutive MBRs is $t = \frac{1}{\sqrt{N}}$ (assuming $[0,1]^2$ space)
Estimating D_1

- Combining the previous observations we can estimate the density at the leaf level, from the density of the dataset:

$$D_1 = \left(1 + \frac{\sqrt{D} - 1}{\sqrt{f}}\right)^2$$

- We can apply the same ideas recursively to the other levels of the tree.

R-trees–performance analysis

- Assuming Uniform distribution:

$$DA(q) = 1 + \sum_{j=1}^{1+h} \{(\sqrt{D_j} + q \sqrt{\frac{N}{f_j}})^2\}$$

where

$$D_j = \left(1 + \frac{\sqrt{D_{j-1}} - 1}{\sqrt{f}}\right)^2$$ and \(D_0 = D\)

And D is the density of the dataset, f the fanout [TS96], N the number of objects
References