Association Rule Mining

Generating assoc. rules from frequent itemsets

- Assume that we have discovered the frequent itemsets and their support
- How do we generate association rules?
- Frequent itemsets:

<table>
<thead>
<tr>
<th>Itemset</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>{1}</td>
<td>2</td>
</tr>
<tr>
<td>{2}</td>
<td>3</td>
</tr>
<tr>
<td>{3}</td>
<td>3</td>
</tr>
<tr>
<td>{5}</td>
<td>3</td>
</tr>
<tr>
<td>{1,3}</td>
<td>2</td>
</tr>
<tr>
<td>{2,3}</td>
<td>2</td>
</tr>
<tr>
<td>{2,5}</td>
<td>3</td>
</tr>
<tr>
<td>{3,5}</td>
<td>2</td>
</tr>
<tr>
<td>{2,3,5}</td>
<td>2</td>
</tr>
</tbody>
</table>

For each frequent itemset \(l \) find all nonempty subsets \(s \). For each \(s \) generate rule \(s \Rightarrow l-s \) if \(\sup(l)/\sup(s) \geq \min_{\text{conf}} \).

Example: for \{2,3,5\}, \(\min_{\text{conf}} = 75\% \)
- \{2,3\} \(\Rightarrow 5 \) \(\checkmark \)
- \{2,5\} \(\Rightarrow 3 \) \(\times \)
- \{3,5\} \(\Rightarrow 2 \) \(\checkmark \)
Discovering Rules

- **Naïve Algorithm**

  ```
  for each frequent itemset l do
    for each subset c of l do
      if (support(l) / support(l - c) >= minconf) then
        output the rule (l - c) \(\Rightarrow\) c,
        with confidence = support(l) / support(l - c)
        and support = support(l)
  ```

Discovering Rules (2)

- **Lemma.** If consequent c generates a valid rule, so do all subsets of c. (e.g. \(X \Rightarrow YZ\), then \(XY \Rightarrow Z\) and \(XZ \Rightarrow Y\))

- **Example:** Consider a frequent itemset ABCDE

 If ACDE \(\Rightarrow\) B and ABCE \(\Rightarrow\) D are the only one-consequent rules with minimum support confidence, then

 ACE \(\Rightarrow\) BD is the only other rule that needs to be tested
Is Apriori Fast Enough? — Performance Bottlenecks

- The core of the Apriori algorithm:
 - Use frequent \((k - 1)\)-itemsets to generate candidate frequent \(k\)-itemsets
 - Use database scan and pattern matching to collect counts for the candidate itemsets

- The bottleneck of Apriori: candidate generation
 - Huge candidate sets:
 - \(10^4\) frequent 1-itemset will generate \(10^7\) candidate 2-itemsets
 - To discover a frequent pattern of size 100, e.g., \(\{a_1, a_2, ..., a_{100}\}\), one needs to generate \(2^{100} \approx 10^{30}\) candidates.
 - Multiple scans of database:
 - Needs \((n + 1)\) scans, \(n\) is the length of the longest pattern

FP-growth: Mining Frequent Patterns Without Candidate Generation

- Compress a large database into a compact, Frequent-Pattern tree (FP-tree) structure
 - highly condensed, but complete for frequent pattern mining
 - avoid costly database scans

- Develop an efficient, FP-tree-based frequent pattern mining method
 - A divide-and-conquer methodology: decompose mining tasks into smaller ones
 - Avoid candidate generation: sub-database test only!
FP-tree Construction from a Transactional DB

<table>
<thead>
<tr>
<th>TID</th>
<th>Items bought</th>
<th>(ordered) frequent items</th>
<th>min_support = 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>{f, a, c, d, g, i, m, p}</td>
<td>{f, c, a, m, p}</td>
<td>f: 4</td>
</tr>
<tr>
<td>200</td>
<td>{a, b, c, f, l, m, o}</td>
<td>{f, c, a, b, m}</td>
<td>c: 4</td>
</tr>
<tr>
<td>300</td>
<td>{b, f, h, j, o}</td>
<td>{f, b}</td>
<td>a: 3</td>
</tr>
<tr>
<td>400</td>
<td>{b, c, k, s, p}</td>
<td>{c, b, p}</td>
<td>b: 3</td>
</tr>
<tr>
<td>500</td>
<td>{a, f, c, e, l, p, m, n}</td>
<td>{f, c, a, m, p}</td>
<td>m: 3</td>
</tr>
</tbody>
</table>

Steps:

1. Scan DB once, find frequent 1-itemsets (single item patterns)
2. Order frequent items in descending order of their frequency
3. Scan DB again, construct FP-tree

FP-tree Construction

<table>
<thead>
<tr>
<th>TID</th>
<th>freq. Items bought</th>
<th>min_support = 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>{f, c, a, m, p}</td>
<td>f: 4</td>
</tr>
<tr>
<td>200</td>
<td>{f, c, a, b, m}</td>
<td>c: 4</td>
</tr>
<tr>
<td>300</td>
<td>{f, b}</td>
<td>a: 3</td>
</tr>
<tr>
<td>400</td>
<td>{c, p, b}</td>
<td>b: 3</td>
</tr>
<tr>
<td>500</td>
<td>{f, c, a, m, p}</td>
<td>m: 3</td>
</tr>
</tbody>
</table>

Item frequency:

<table>
<thead>
<tr>
<th>Item</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>4</td>
</tr>
<tr>
<td>c</td>
<td>4</td>
</tr>
<tr>
<td>a</td>
<td>3</td>
</tr>
<tr>
<td>b</td>
<td>3</td>
</tr>
<tr>
<td>m</td>
<td>3</td>
</tr>
<tr>
<td>p</td>
<td>3</td>
</tr>
</tbody>
</table>
FP-tree Construction

TID freq. Items bought
100 {f, c, a, m, p}
200 {f, c, a, b, m}
300 {f, b}
400 {c, p, b}
500 {f, c, a, m, p}

min_support = 3
Item frequency
f 4
c 4
a 3
b 3
m 3
p 3

FP-tree Construction

TID freq. Items bought
100 {f, c, a, m, p}
200 {f, c, a, b, m}
300 {f, b}
400 {c, p, b}
500 {f, c, a, m, p}

min_support = 3
Item frequency
f 4
c 4
a 3
b 3
m 3
p 3
FP-tree Construction

<table>
<thead>
<tr>
<th>TID</th>
<th>Items bought</th>
<th>min_support = 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>[f, c, a, m, p]</td>
<td>f: 4</td>
</tr>
<tr>
<td>200</td>
<td>[f, c, a, b, m]</td>
<td>c: 4</td>
</tr>
<tr>
<td>300</td>
<td>[f, b]</td>
<td>a: 3</td>
</tr>
<tr>
<td>400</td>
<td>[c, p, b]</td>
<td>b: 3</td>
</tr>
<tr>
<td>500</td>
<td>[f, c, a, m, p]</td>
<td>m: 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>p: 3</td>
</tr>
</tbody>
</table>

Header Table

<table>
<thead>
<tr>
<th>Item</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>4</td>
</tr>
<tr>
<td>c</td>
<td>4</td>
</tr>
<tr>
<td>a</td>
<td>3</td>
</tr>
<tr>
<td>b</td>
<td>3</td>
</tr>
<tr>
<td>m</td>
<td>2</td>
</tr>
<tr>
<td>p</td>
<td>2</td>
</tr>
</tbody>
</table>

Benefits of the FP-tree Structure

- Completeness:
 - never breaks a long pattern of any transaction
 - preserves complete information for frequent pattern mining

- Compactness
 - reduce irrelevant information—in frequent items are gone
 - frequency descending ordering: more frequent items are more likely to be shared
 - never be larger than the original database (if not count node-links and counts)
 - Example: For Connect-4 DB, compression ratio could be over 100
Mining Frequent Patterns Using FP-tree

- General idea (divide-and-conquer)
 - Recursively grow frequent pattern path using the FP-tree
- Method
 - For each item, construct its conditional pattern-base, and then its conditional FP-tree
 - Repeat the process on each newly created conditional FP-tree
 - Until the resulting FP-tree is empty, or it contains only one path (single path will generate all the combinations of its sub-paths, each of which is a frequent pattern)

Mining Frequent Patterns Using the FP-tree (cont’d)

- Start with last item in order (i.e., p).
- Follow node pointers and traverse only the paths containing p.
- Accumulate all of transformed prefix paths of that item to form a conditional pattern base

Conditional pattern base for p

\[fc:am:2, \, cb:1 \]

Construct a new FP-tree based on this pattern, by merging all paths and keeping nodes that appear \(\geq \text{sup} \) times. This leads to only one branch \(c:3 \)
Thus we derive only one frequent pattern cont. p. Pattern \(cp \)
Mining Frequent Patterns Using the FP-tree (cont’d)

- Move to next least frequent item in order, i.e., \(m \)
- Follow node pointers and traverse only the paths containing \(m \).
- Accumulate all of transformed prefix paths of that item to form a **conditional pattern base**

\[
\text{m-conditional pattern base: } \quad \text{fca:2, fcab:1}
\]

\[
\begin{align*}
\{\} & \Rightarrow m, \\
f:3 & \Rightarrow \text{fm, cm, am,} \\
c:3 & \Rightarrow \text{fcm, fam, cam,} \\
a:3 & \Rightarrow \text{fcam}
\end{align*}
\]

\(m \)-conditional FP-tree (contains only path \(\text{fca:3} \))

Properties of FP-tree for Conditional Pattern Base Construction

- **Node-link property**
 - For any frequent item \(a_i \), all the possible frequent patterns that contain \(a_i \) can be obtained by following \(a_i \)'s node-links, starting from \(a_i \)'s head in the FP-tree header

- **Prefix path property**
 - To calculate the frequent patterns for a node \(a_i \) in a path \(P \), only the prefix sub-path of \(a_i \) in \(P \) need to be accumulated, and its frequency count should carry the **same count** as node \(a_i \).
Conditional Pattern-Bases for the example

<table>
<thead>
<tr>
<th>Item</th>
<th>Conditional pattern-base</th>
<th>Conditional FP-tree</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>{ (fca:2), (cb:1) }</td>
<td>{(c:3)}</td>
</tr>
<tr>
<td>m</td>
<td>{ (fca:2), (fcab:1) }</td>
<td>{(f:3, c:3, a:3)}</td>
</tr>
<tr>
<td>b</td>
<td>{ (fca:1), (f:1), (c:1) }</td>
<td>Empty</td>
</tr>
<tr>
<td>a</td>
<td>{ (fc:3) }</td>
<td>{(f:3, c:3)}</td>
</tr>
<tr>
<td>c</td>
<td>{ (f:3) }</td>
<td>{(f:3)}</td>
</tr>
<tr>
<td>f</td>
<td>Empty</td>
<td>Empty</td>
</tr>
</tbody>
</table>

Principles of Frequent Pattern Growth

- **Pattern growth property**
 - Let α be a frequent itemset in DB, B be α’s conditional pattern base, and β be an itemset in B. Then $\alpha \cup \beta$ is a frequent itemset in DB iff β is frequent in B.

- “$abcdef$” is a frequent pattern, if and only if
 - “$abcde$” is a frequent pattern, and
 - “f” is frequent in the set of transactions containing “$abcde$”
Why Is Frequent Pattern Growth Fast?

- Performance studies show
 - FP-growth is an order of magnitude faster than Apriori, and is also faster than tree-projection

- Reasoning
 - No candidate generation, no candidate test
 - Uses compact data structure
 - Eliminates repeated database scan
 - Basic operation is counting and FP-tree building

FP-growth vs. Apriori: Scalability With the Support Threshold

Data set T25I20D10K