
1.1

CAS CS 460/660
Introduction to Database Systems

Disks, Buffer Manager

1.2

DBMS architecture

Query Optimization
and Execution

Relational Operators

Access Methods

Buffer Management

Disk Space Management

Student Records
stored on disk

Database app

These layers
must consider
concurrency
control and
recovery

1.3

Why Not Store It All in Main Memory?

■ Costs too much. $100 will buy you either
 ~100 GB of RAM or around 2000 GB (2 TB) of disk

today.
➹ High-end Databases today can be in the Petabyte

(1000TB) range.
➹ Approx 60% of the cost of a production system is in the

disks.
■ Main memory is volatile. We want data to be saved

between runs. (Obviously!)
■ Note, some specialized systems do store entire

database in main memory.
➹ Vendors claim 10x speed up vs. traditional DBMS running

in main memory.

1.4

The Storage Hierarchy

•  Main memory (RAM) for
currently used data.

•  Disk for main database
(secondary storage).

•  Tapes for archive, maybe
(tertiary storage).

•  The role of Flash (SSD)
still unclear

Small, Fast

Big, Slow

Registers

On-chip Cache

On-Board Cache

RAM

SSD

Disk

Tape

1.5

Economics

For $1000, you can get:
➹ ~400GB of RAM
➹ ~2.5TB of Solid State Disk
➹ ~30TB of Magnetic Disk

1.6

Disks and Files

■ Today: Most data is stored on magnetic disks.
➹ Disks are a mechanical anachronism!

■ Major implications!
➹ No “pointer derefs”. Instead, an API:

§  READ: transfer “page” of data from disk to RAM.
§  WRITE: transfer “page” of data from RAM to disk.

➹ Both API calls expensive
§  Plan carefully!

➹ An explicit API can be a good thing
§  Minimizes the kind of pointer errors you see in C

1.7

1.8

Anatomy of a Disk

 The platters spin
 The arm assembly is moved
in or out to position a head
on a desired track. Tracks
under heads make a cylinder
(imaginary!).
Only one head reads/
writes at any one
time.
❖  Block size is a multiple of
sector size (which is fixed)

1.9

1.10

Accessing a Disk Page

■  Time to access (read/write) a disk block:
➹ seek time (moving arms to position disk head on track)
➹ rotational delay (waiting for block to rotate under head)
➹ transfer time (actually moving data to/from disk surface)

■  Seek time and rotational delay dominate.
➹ Seek time varies from about 1 to 15msec (full stroke)
➹ Rotational delay varies from 0 to 8msec (7200rpm)
➹ Transfer rate is < 0.1msec per 8KB block

■  Key to lower I/O cost:
 reduce seek/rotation delays!
Hardware vs. software solutions?

■  Also note: For shared disks most time spent
waiting in queue for access to arm/controller

Seek

Rotate

Transfer

Seek

Rotate

Transfer

Wait

1.11

Arranging Pages on Disk

■  `Next’ block concept:
➹  blocks on same track, followed by
➹  blocks on same cylinder, followed by
➹  blocks on adjacent cylinder

■  Arrange file pages sequentially on disk
➹ minimize seek and rotational delay.

■  For a sequential scan, pre-fetch
➹  several pages at a time!

■  We use Block/Page interchangeably!!

1.12

From the DB Administrator’s View

Modern disk structures are so complex even
industry experts refer to them as “black
boxes”. Today there is no alignment to
physical disk sectors, no matter what we
believe. Disks do not map sectors to physical
regions in a way that we can understand from
outside the box; the simplistic “geometry”
reported by the device is an artifice.

 from Microsoft’s “Disk Partition Alignment Best
Practices for SQL Server”

1.13

Disk Space Management

■ Lowest layer of DBMS software manages
space on disk (using OS file system or not?).

■ Higher levels call upon this layer to:
➹ allocate/de-allocate a page
➹ read/write a page

■ Best if a request for a sequence of pages is
satisfied by pages stored sequentially on disk!
Higher levels don’t need to know if/how this is
done, or how free space is managed.

1.14

Notes on Flash (SSD)

■ Various technologies, we focus on NAND
➹ suited for volume data storage
➹ alternative: NOR Flash

■ Read is random access and fast
➹ E.g. 512 Bytes at a time

■ Write is coarser grained and slower
➹ E.g. 16-512 KBytes at a time.
➹ Can get slower over time

■ Some concern about write endurance
➹ 100K cycle lifetimes?

■ Still changing quickly

1.15

CPU

M C

Typical
Computer

Secondary
Storage

... ...

1.16

Storage Pragmatics & Trends

■ Many significant DBs are not that big.
➹ Daily weather, round the globe, 1929-2009: 20GB
➹ 2000 US Census: 200GB
➹ 2009 English Wikipedia: 14GB
➹ NYC Taxi Rides (~20GB per year)

■ But data sizes grow faster than Moore’s Law
■ What is the role of disk, flash, RAM?
➹ The subject of much debate/concern!

1.17

Buffer Management in a DBMS

■ Data must be in RAM for DBMS to operate on it!
➹ The query processor refers to data using virtual memory

addresses.

■ Buffer Mgr hides the fact that not all data is in RAM

DB

MAIN MEMORY

DISK

disk page

free frame

Page Requests from Higher Levels

BUFFER POOL

choice of frame dictated
by replacement policy

1.18

Some Terminology…

■ Disk Page – the unit of transfer between the
disk and memory
Typically set as a config parameter for the DBMS.
Typical value between 4 KBytes to 32 KBytes.

■ Frame – a unit of memory
Typically the same size as the Disk Page Size

■ Buffer Pool – a collection of frames used by
the DBMS to temporarily keep data for use by
the query processor (CPU).
➹ note: We will sometime use the term “buffer” and

“frame” synonymously.

1.19

When a Page is Requested ...

■  If requested page IS in the pool:
➹  Pin the page and return its address.

■  Else, if requested page IS NOT in the pool:
➹  If a free frame exists, choose it, Else:

§ Choose a frame for replacement (only un-pinned
pages are candidates)

§  If chosen frame is “dirty”, write it to disk
➹  Read requested page into chosen frame
➹  Pin the page and return its address.

Q: What information about buffers and their
contents must the system maintain?

1.20

Buffer Control Blocks (BCBs):

■ A page may be requested many times, so
•  a pin count is used.
•  To pin a page, pin_count++
•  A page is a candidate for replacement iff pin_count

== 0 (“unpinned”)
■ Requestor of page must eventually unpin it.

•  pin_count--
■ Must also indicate if page has been modified:

•  dirty bit is used for this.
Q: Why is this important?

<frame#, pageid, pin_count, dirty>

Q: How should BCB’s be organized?

1.21

Additional Buffer Mgr Notes

■  BCB’s are hash indexed by pageID

■  Concurrency Control & Recovery may entail additional I/O when a
frame is chosen for replacement.

 (Write-Ahead Log protocol; more later.)

■  If requests can be predicted (e.g., sequential scans) pages can be
pre-fetched several pages at a time.

1.22

Buffer Replacement Policy

■ Frame is chosen for replacement by a
replacement policy:
➹ Least-recently-used (LRU), MRU, Clock, etc.

■ This policy can have big impact on the
number of disk reads and writes.
➹ Remember, these are slooooooooooow.

■ BIG IDEA – throw out the page that you are
least likely to need in the future.
➹ Q: How do you predict the future?

1.23

LRU Replacement Policy

Least Recently Used (LRU)
1)  for each page in buffer pool, keep track of time

last unpinned
2)Replace the frame that has the oldest (earliest)
time
➹ Most common policy: intuitive and simple

§  Based on notion of “Temporal Locality”
§  Works well to keep “working set” in buffers.

➹  Implemented through doubly linked list of BCBs
§  Requires list manipulation on unpin

1.24

“Clock” Replacement Policy

■ An approximation of LRU
■ Arrange frames into a cycle, store

one reference bit per frame
➹ Can think of this as the 2nd chance bit

■ When pin count reduces to 0, turn on ref. bit
■ When replacement necessary 

do for each page in cycle { 
if (pincount == 0 && ref bit is on) 

turn off ref bit; 
else if (pincount == 0 && ref bit is off) 

choose this page for
 replacement; 

} until a page is chosen;

A(1)

B(p)

C(1)

D(1)

1.25

Some issues with LRU

■ Problem: Sequential flooding
➹ LRU + repeated sequential scans.
➹ # buffer frames < # pages in file means each page

request causes an I/O. MRU much better in this
situation (but not in all situations, of course).

■ Problem: “cold” pages can hang around a long
time before they are replaced.

1.26

DBMS vs. OS File System

OS does disk space & buffer mgmt: why not let OS manage these tasks?

■  Some limitations, e.g., files can’t span disks.
➹ Note, this is changing --- OS File systems are getting

smarter (i.e., more like databases!)

■  Buffer management in DBMS requires ability to:
➹ pin a page in buffer pool, force a page to disk & order

writes (important for implementing CC & recovery)
➹ adjust replacement policy, and pre-fetch pages based

on access patterns in typical DB operations.

