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Context 

Query Optimization
and Execution

Relational Operators

Access Methods

Buffer Management

Disk Space Management

Student Records 
stored on disk

Database app

These layers 
must consider 
concurrency 
control and 
recovery 
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Files of Records

■  Disk blocks are the interface for I/O, but…
■  Higher levels of DBMS operate on records, and files of records.

■ FILE: A collection of pages, each containing a 
number of records. The File API must support:
insert/delete/modify record
fetch a particular record (specified by record id)
scan all records (possibly with some conditions on the records to be 

retrieved)

■  Typically: file page size = disk block size = buffer frame size
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“MetaData” - System Catalogs
■ How to impose structure on all those bytes??
■ MetaData:  “Data about Data”
■ For each relation:
➹ name, file location, file structure (e.g., Heap file)
➹ attribute name and type, for each attribute
➹ index name, for each index
➹ integrity constraints

■ For each index:
➹ structure (e.g., B+ tree) and search key fields

■ For each view: view name and definition

■ Plus statistics, authorization, buffer pool size, etc.
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Catalogs are Stored as Relations!

 

 

attr_name rel_name type position length 

attr_name Attr_Cat string 1 50 

rel_name Attr_Cat string 2 40 

type Attr_Cat string 3 40 

position Attr_Cat integer 4 4 

sid Students string  1 10 

name Students string 2 50 

login Students string 3 40 

age Students integer 4 4 

gpa Students real 5 8 

fid Faculty string 1 10 

fname Faculty string 2 50 

sal Faculty real 3 8 

 

Attr_Cat(attr_name, rel_name, type, position, length)
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It’s a bit more complicated…
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Record Formats: Fixed Length

■  Information about field types same for all records in a file; stored 
in system catalogs.

■  Finding i’th field done via arithmetic.

Base address (B)

L1 L2 L3 L4 

F1 F2 F3 F4 

Address = B+L1+L2
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Record Formats:Variable Length
■  Two alternative formats (# fields is fixed):

☛  Second offers direct access to i’th field, efficient storage 
of nulls (special don’t know value); some directory overhead. 

$ $ $ $
Fields Delimited by Special Symbols

F1                    F2                   F3                    F4

F1             F2             F3             F4

Array of Field Offsets
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How to Identify a Record?

■  The Relational Model doesn’t expose “pointers”, but that doesn’t mean that 
the DBMS doesn’t use them internally.

■  Q: Can we use memory addresses to permanently “point” to records?

■  Systems instead use a “Record ID” or “RecID”

Typically: Record ID = <page id, slot #>
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Page Formats: Fixed Length Records

In first alternative, free space management requires record movement.
Changes RIds - may not be acceptable.
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“Slotted Page” for Variable Length 
Records

■ Slot contains: [offset (from start of page), length]
•  both in bytes

■ Record id = <page id, slot #>
■ Page is full when data space and slot array meet.

Page iRid = <i,1>

Rid = <i,N-1>

Rid = <i,0>

Offset
to start
of free
space

SLOT ARRAY

       2             1               0
3

# slots

Data 
Area  

Free 
Space 

[4,20][28,16] [64,28] 92
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Slotted Page (continued)

■ When need to allocate:
➹ If enough room in free space, use it and update free 

space pointer.
➹ Else, try to compact data area, if successful, use the 

freed space.
➹ Else, tell caller that page is full.

■ Advantages:
➹ Can move records around in page without changing 

their record ID
➹ Allows lazy space management within the page, with 

opportunity for clean up later
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0 8 15 

Slotted page (continued)

Pointer
to start
of free
space

Slot directory

# of slots

8 9 0 4 2 17 

■  What’s the biggest record you can add to the above page without 
compacting?
•  Need 2 bytes for slot: [offset, length] plus record.
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0 8 15 

Slotted page (continued)

Pointer
to start
of free
space

Slot directory

# of slots

17 9 8 9 0 4 3 X 

■  What’s the biggest record you can add to the above page without 
compacting?
➹  Need 2 bytes for slot: [offset, length] plus record.

 



1.15

0 8 15 

Slotted page (continued)

Pointer
to start
of free
space

Slot directory

# of slots

8 9 0 4 2 17 

■  What’s the biggest record you can add to the above page with compacting?
•  Need 2 bytes for slot: [offset, length] plus record.
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0 8 15 

Slotted page (continued)

Pointer
to start
of free
space

Slot directory

# of slots

13 13 4 9 0 4 3 X 

■  What do you do if a record needs to move to a different page?
•  Leave a special “tombstone” object in place of record, pointing to new page 

& slot.
§  Record id remains unchanged

■  What if it needs to move again?
•  Update the original tombstone – so one hop max. 
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So far we’ve organized:

■  Fields into Records (fixed and variable length)

■  Records into Pages (fixed and variable length)

Now we need to organize Pages into Files
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Alternative File Organizations

Many alternatives exist, each good for some situations, and not so good in 
others:

Heap files:  Unordered.  Fine for file scan retrieving all records.  Easy to 
maintain.

Sorted Files:  Best for retrieval in search key order, or if only a `range’ of 
records is needed.   Expensive to maintain.

Clustered Files (with Indexes): A compromise between the above two 
extremes.
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Unordered (Heap) Files

■  Simplest file structure contains records in no particular order.
■  As file grows and shrinks, pages are allocated and de-allocated.
■  To support record level operations, we must:

➹  keep track of the pages in a file
➹  keep track of free space on pages
➹  keep track of the records on a page

■  Can organize as a list, as a directory, a tree, … 
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Heap File Implemented as a List 

■ The Heap file name and header page id must be 
stored persistently.

The catalog is a good place for this.

■ Each page contains 2 `pointers’ plus data.

Header
Page

Data
Page

Data
Page

Data
Page

Data
Page

Data
Page

Data
Page Pages with

Free Space

Full Pages
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Heap File Using a Page Directory

■ The entry for a page can include the number 
of free bytes on the page.

■ The directory is a collection of pages; linked 
list implementation is just one alternative.

Data
Page 1

Data
Page 2

Data
Page N

Header
Page

DIRECTORY
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Cost Model for Analysis
■ Average-case analysis; based on                           

several simplistic assumptions.
➹ Often called a “back of the envelope” calculation.

■  We ignore CPU costs, for simplicity:
B:  The number of data blocks
R:  Number of records per block

■ We simply count number of disk block I/O’s
•  ignores gains of pre-fetching and sequential access; 

thus, even I/O cost is only loosely approximated. 
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Some Assumptions in the Analysis

■  Single record insert and delete.
■  Equality selection - exactly one match (what if more or less???).
■  For Heap Files we’ll assume:

➹  Insert always appends to end of file.
➹  Delete just leaves free space in the page.
➹  Empty pages are not de-allocated.
➹  If using directory implementation assume directory is in-memory.
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Average Case I/O Counts for Operations 
(B = # disk blocks in file)

Heap File Sorted File Clustered File 
Scan all 
records 

Equality 
Search       
(1 match) 

Range 
Search 

Insert 

Delete 

B 
 

0.5 B 
 
B 

2 

0.5 B+1 
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Sorted Files

■ Heap files are lazy on update - you end up 
paying on searches.

■ Sorted files eagerly maintain the file on 
update.
➹ The opposite choice in the trade-off

■ Let’s consider an extreme version
➹ No gaps allowed, pages fully packed always
➹ Q: How might you relax these assumptions?

■ Assumptions for our BotE Analysis:
➹ Files compacted after deletions.
➹ Searches are on sort key field(s).
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Average Case I/O Counts for 
Operations (B = # disk blocks in 

file)
Heap File Sorted File Clustered File 

Scan all 
records 

Equality 
Search      
(1 match) 

Range 
Search 

Insert 

Delete 

B 
 

0.5 B 
 
B 

2 

0.5B+1 

B 
 

log2 B (if on sort key) 
0.5 B (otherwise)  

(log2 B) + 
selectivity * B 

 
(log2B)+ B 

 
Same cost as Insert 


