
1.1

CAS CS 460/660
Introduction to Database Systems

File Organization

Slides from UC Berkeley

1.2

Context

Query Optimization
and Execution

Relational Operators

Access Methods

Buffer Management

Disk Space Management

Student Records
stored on disk

Database app

These layers
must consider
concurrency
control and
recovery

1.3

Files of Records

■  Disk blocks are the interface for I/O, but…
■  Higher levels of DBMS operate on records, and files of records.

■ FILE: A collection of pages, each containing a
number of records. The File API must support:
insert/delete/modify record
fetch a particular record (specified by record id)
scan all records (possibly with some conditions on the records to be

retrieved)

■  Typically: file page size = disk block size = buffer frame size

1.4

“MetaData” - System Catalogs
■ How to impose structure on all those bytes??
■ MetaData: “Data about Data”
■ For each relation:
➹ name, file location, file structure (e.g., Heap file)
➹ attribute name and type, for each attribute
➹ index name, for each index
➹ integrity constraints

■ For each index:
➹ structure (e.g., B+ tree) and search key fields

■ For each view: view name and definition

■ Plus statistics, authorization, buffer pool size, etc.

1.5

Catalogs are Stored as Relations!

attr_name rel_name type position length

attr_name Attr_Cat string 1 50

rel_name Attr_Cat string 2 40

type Attr_Cat string 3 40

position Attr_Cat integer 4 4

sid Students string 1 10

name Students string 2 50

login Students string 3 40

age Students integer 4 4

gpa Students real 5 8

fid Faculty string 1 10

fname Faculty string 2 50

sal Faculty real 3 8

Attr_Cat(attr_name, rel_name, type, position, length)

1.6

It’s a bit more complicated…

1.7

Record Formats: Fixed Length

■  Information about field types same for all records in a file; stored
in system catalogs.

■  Finding i’th field done via arithmetic.

Base address (B)

L1 L2 L3 L4

F1 F2 F3 F4

Address = B+L1+L2

1.8

Record Formats:Variable Length
■  Two alternative formats (# fields is fixed):

☛  Second offers direct access to i’th field, efficient storage
of nulls (special don’t know value); some directory overhead.

$ $ $ $
Fields Delimited by Special Symbols

F1 F2 F3 F4

F1 F2 F3 F4

Array of Field Offsets

1.9

How to Identify a Record?

■  The Relational Model doesn’t expose “pointers”, but that doesn’t mean that
the DBMS doesn’t use them internally.

■  Q: Can we use memory addresses to permanently “point” to records?

■  Systems instead use a “Record ID” or “RecID”

Typically: Record ID = <page id, slot #>

1.10

Page Formats: Fixed Length Records

In first alternative, free space management requires record movement.
Changes RIds - may not be acceptable.

record
record
record

record

Slot 0
Slot 1

Slot N-1

. . .

N

PACKED
number
of records

Free
SpaceSlot M-1

record
record

record

. . .

M10. . .

 M-1 … 2 1 0
UNPACKED, BITMAP

Slot 0
Slot 1

Free
Space

recordSlot M-1
11

number
of slots

0 10

1.11

“Slotted Page” for Variable Length
Records

■ Slot contains: [offset (from start of page), length]
•  both in bytes

■ Record id = <page id, slot #>
■ Page is full when data space and slot array meet.

Page iRid = <i,1>

Rid = <i,N-1>

Rid = <i,0>

Offset
to start
of free
space

SLOT ARRAY

 2 1 0
3

slots

Data
Area

Free
Space

[4,20][28,16] [64,28] 92

1.12

Slotted Page (continued)

■ When need to allocate:
➹ If enough room in free space, use it and update free

space pointer.
➹ Else, try to compact data area, if successful, use the

freed space.
➹ Else, tell caller that page is full.

■ Advantages:
➹ Can move records around in page without changing

their record ID
➹ Allows lazy space management within the page, with

opportunity for clean up later

1.13

0 8 15

Slotted page (continued)

Pointer
to start
of free
space

Slot directory

of slots

8 9 0 4 2 17

■  What’s the biggest record you can add to the above page without
compacting?
•  Need 2 bytes for slot: [offset, length] plus record.

1.14

0 8 15

Slotted page (continued)

Pointer
to start
of free
space

Slot directory

of slots

17 9 8 9 0 4 3 X

■  What’s the biggest record you can add to the above page without
compacting?
➹  Need 2 bytes for slot: [offset, length] plus record.

1.15

0 8 15

Slotted page (continued)

Pointer
to start
of free
space

Slot directory

of slots

8 9 0 4 2 17

■  What’s the biggest record you can add to the above page with compacting?
•  Need 2 bytes for slot: [offset, length] plus record.

1.16

0 8 15

Slotted page (continued)

Pointer
to start
of free
space

Slot directory

of slots

13 13 4 9 0 4 3 X

■  What do you do if a record needs to move to a different page?
•  Leave a special “tombstone” object in place of record, pointing to new page

& slot.
§  Record id remains unchanged

■  What if it needs to move again?
•  Update the original tombstone – so one hop max.

1.17

So far we’ve organized:

■  Fields into Records (fixed and variable length)

■  Records into Pages (fixed and variable length)

Now we need to organize Pages into Files

1.18

Alternative File Organizations

Many alternatives exist, each good for some situations, and not so good in
others:

Heap files: Unordered. Fine for file scan retrieving all records. Easy to
maintain.

Sorted Files: Best for retrieval in search key order, or if only a `range’ of
records is needed. Expensive to maintain.

Clustered Files (with Indexes): A compromise between the above two
extremes.

1.19

Unordered (Heap) Files

■  Simplest file structure contains records in no particular order.
■  As file grows and shrinks, pages are allocated and de-allocated.
■  To support record level operations, we must:

➹  keep track of the pages in a file
➹  keep track of free space on pages
➹  keep track of the records on a page

■  Can organize as a list, as a directory, a tree, …

1.20

Heap File Implemented as a List

■ The Heap file name and header page id must be
stored persistently.

The catalog is a good place for this.

■ Each page contains 2 `pointers’ plus data.

Header
Page

Data
Page

Data
Page

Data
Page

Data
Page

Data
Page

Data
Page Pages with

Free Space

Full Pages

1.21

Heap File Using a Page Directory

■ The entry for a page can include the number
of free bytes on the page.

■ The directory is a collection of pages; linked
list implementation is just one alternative.

Data
Page 1

Data
Page 2

Data
Page N

Header
Page

DIRECTORY

1.22

Cost Model for Analysis
■ Average-case analysis; based on

several simplistic assumptions.
➹ Often called a “back of the envelope” calculation.

■  We ignore CPU costs, for simplicity:
B: The number of data blocks
R: Number of records per block

■ We simply count number of disk block I/O’s
•  ignores gains of pre-fetching and sequential access;

thus, even I/O cost is only loosely approximated.

1.23

Some Assumptions in the Analysis

■  Single record insert and delete.
■  Equality selection - exactly one match (what if more or less???).
■  For Heap Files we’ll assume:

➹  Insert always appends to end of file.
➹  Delete just leaves free space in the page.
➹  Empty pages are not de-allocated.
➹  If using directory implementation assume directory is in-memory.

1.24

Average Case I/O Counts for Operations
(B = # disk blocks in file)

Heap File Sorted File Clustered File
Scan all
records

Equality
Search
(1 match)

Range
Search

Insert

Delete

B

0.5 B

B

2

0.5 B+1

1.25

Sorted Files

■ Heap files are lazy on update - you end up
paying on searches.

■ Sorted files eagerly maintain the file on
update.
➹ The opposite choice in the trade-off

■ Let’s consider an extreme version
➹ No gaps allowed, pages fully packed always
➹ Q: How might you relax these assumptions?

■ Assumptions for our BotE Analysis:
➹ Files compacted after deletions.
➹ Searches are on sort key field(s).

1.26

Average Case I/O Counts for
Operations (B = # disk blocks in

file)
Heap File Sorted File Clustered File

Scan all
records

Equality
Search
(1 match)

Range
Search

Insert

Delete

B

0.5 B

B

2

0.5B+1

B

log2 B (if on sort key)
0.5 B (otherwise)

(log2 B) +
selectivity * B

(log2B)+ B

Same cost as Insert

