
1.1

CAS CS 460/660
Introduction to Database Systems

File Organization and Indexing

Slides from UC Berkeley

1.2

Review: Files, Pages, Records
■  Abstraction of stored data is “files” of “records”.

➹ Records live on pages
➹ Physical Record ID (RID) = <page#, slot#>

■  Variable length data requires more sophisticated structures for
records and pages. (why?)
➹ Records: offset array in header
➹ Pages: Slotted pages w/internal offsets & free space area

■  Often best to be “lazy” about issues such as free space
management, exact ordering, etc. (why?)

■  Files can be unordered (heap), sorted, or kinda sorted (i.e.,
“clustered”) on a search key.
➹ Tradeoffs are update/maintenance cost vs. speed of

accesses via the search key.
➹ Files can be clustered (or sorted) at most one way.

■  Indexes can be used to speed up many kinds of accesses. (i.e.,
“access paths”)

1.3

Sorted Files

■ Heap files are lazy on update - you end up
paying on searches.

■ Sorted files eagerly maintain the file on
update.
➹ The opposite choice in the trade-off

■ Let’s consider an extreme version
➹ No gaps allowed, pages fully packed always
➹ Q: How might you relax these assumptions?

■ Assumptions for our BotE Analysis:
➹ Files compacted after deletions.
➹ Searches are on sort key field(s).

1.4

Average Case I/O Counts for
Operations (B = # disk blocks in

file)
Heap File Sorted File Clustered File

Scan all
records

Equality
Search
(1 match)

Range
Search

Insert

Delete

B

0.5 B

B

2

0.5B+1

B

log2 B (if on sort key)
0.5 B (otherwise)

(log2 B) +
selectivity * B

(log2B)+ B

Same cost as Insert

1.5

The Problem(s) with Sorted Files

1)  Expensive to maintain
➹  Especially if you want to keep the records packed tightly.
➹  Q: What if you are willing to relax that constraint?

2)  Can only sort according to a single search key
➹  File will effectively be a “heap” file for access via any other search

key.
➹  e.g., how to search for a particular student id in a file sorted by

major?

1.6

Indexes: Introduction

■  Sometimes, we want to retrieve records by specifying values in one or more
fields, e.g.,
➹ Find all students in the “CS” department
➹ Find all students with a gpa > 3.0
➹ Find all students in CS with a gpa > 3.0

■  index : a disk-based data structure that speeds up selections on some
search key fields.
➹  Any subset of the fields of a relation can be the search key for an index on the

relation.
➹  Search key is not the same as (primary) key
➹  e.g., Search keys don’t have to be unique.

1.7

Indexes: Overview

■  An index contains a collection of data entries, and supports efficient
retrieval of all records with a given search key value k.
➹  Typically, index also contains auxiliary information that directs searches to the

desired data entries (index entries)
■  Many indexing techniques exist:

➹  B+ trees, hash-based structures, R trees, …
■  Can have multiple (different) indexes per file.

➹  E.g. file sorted by age, with a hash index on salary and a B+tree index on
name.

1.8

Index Classification

1.  Selections (lookups) supported
2.  Representation of data entries in index

- what kind of info is the index actually
storing?
- we have 3 alternatives here

3.  Clustered vs. Unclustered Indexes
4.  Single Key vs. Composite Indexes
5.  Tree-based, hash-based, other

1.9

Indexes: Selections supported

field <op> constant
■  Equality selections (op is =)

- Either “tree” or “hash” indexes help here.
■  Range selections (op is one of <, >, <=, >=, BETWEEN)

- “Hash” indexes don’t work for these.

More exotic selections
- multi-dimensional ranges (“between Brookline, Newton,
Waltham, and Cambridge”)
- multi-dimensional distances (“within 2 miles of Copley Sq”)
- Ranking queries (“10 restaurants closest to Kenmore Sq”)
- Regular expression matches, genome string matches, etc.
- Keyword/Web search - includes “importance” of words in
documents, link structure, …

1.10

Tree Index: Example
■ Index entries:<search key value, page id>

they direct search for data entries in leaves.
■ In example: Fanout (F) = 3 (note: unrealistic!)

- more typical: 16KB page, 67% full, 32Byte entries
= approx 300

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

Root

Leaf Level:
Nodes contain
“Data Entries”

Index Levels:
Nodes contain
“Index Entries”

1.11

Index Fanout and Height

Leaf Pages

Non-leaf
Pages

Keys and pointers
to next level

Data
Entries

Data
Entries

Data
Entries

Q: How many
levels if B leaf
blocks and a
fanout of F?

 A: logF B

Leaf Blocks (Avg) Fanout Levels
1,000 100 3

10,000 100 3
100,000 100 4

1,000,000 100 4
10,000,000 100 4

100,000,000 100 5

16KB pages, 67%full and
100 byte records = approx 100 recs/page.

so, can store 10B rows with 5 levels.

Note: All pages at
all levels are:
“Slotted Pages”

1.12

What’s in a “Data Entry”?

■  Question: What is stored in the leaves of the index for key value “k”?
(a data entry for key “k” is denoted “k*” in book and examples)

■  Three alternatives:
1.  Actual data record(s) with key value k
2.  {<k, rid of a matching data record>}
3.  <k, {rids of all matching data records}>

■  Choice is orthogonal to the indexing technique.
➹  e.g., B+ trees, hash-based structures, R trees, …

1.13

Alt 1= “Index-Organized File”

■ Actual data records are stored in leaves.

•  If this is used, index structure becomes a file organization for data records (e.g.,
a sorted file).

•  At most one index on a given collection of data records can use Alternative 1.

•  This alternative saves pointer lookups but can be expensive to maintain with
insertions and deletions.

1.14

Operation Cost
Heap File Sorted File

(100%
Occupancy)

Tree Index-
Organized File
(67% Occupancy)

Scan all
records

B
B

Equality
Search
unique
key

0.5 B
log2 B

Range
Search

B (log2 B) +
 #match pg

Insert 2 (log2B)+B

Delete 0.5B+1 (log2B)+B
(because rd,wrt 0.5
file)

B: The size of the data (in pages)

1.5 B (bcos 67% full)

logF 1.5B

(logF 1.5B) +
 #match pg

(logF 1.5B)+1

(logF 1.5B)+1

1.15

RIDs in Data Entries
Alternative 2

{<k, rid of a matching data record>}
and Alternative 3

<k, {rids of all matching data records}>
■  Easier to maintain than Index-Organized.

§  but: Index-organized could be faster for reads.
■  For a given file, at most one index can use Alt 1 (index organized); rest

must use 2 or 3.
■  Alt 3 more compact than Alt 2, but:

➹  Has variable sized data entries
➹  For large rid lists could span multiple blocks!

1.16

Clustered vs. Unclustered Index

“Clustered” Index: order of data records is same as or `close to’ the order
of index data entries.

A file can be clustered on at most 1 search key.

Cost of retrieving data records via index varies greatly based on whether
it is clustered or not!

■  Index-organized implies clustered but not vice-versa.
§  In other words, alt-1 is always clustered
§  alt 2 and alt 3 may or may not be clustered.

1.17

Ex: Alt 2 index for a Heap File

(Index File)
(Data file)

Data entries

Data Records

UNCLUSTERED

For alts 2 or 3, we typically have two files – one
for data records and one for the index.

For an unclustered index, the order of data
records in the data file is unrelated to the order
of the data entries in the leaf level of the index.

1.18

Ex: Alt 2 index for a Heap File
For a clustered index:
■  Sort the heap file on the search key column(s)

➹  Leave some free space on pages for future inserts
■  Build the index
■  Use overflow pages in data file if necessary

➹ Thus, clustering is only approximate – data records may not be exactly in
sort order (can clean up later)

Index entries

Data entries

direct search for

(Index File)

(Data file)
Data Records

data entries
CLUSTERED

1.19

Clustered vs. Unclustered

Index entries

Data entries

direct search for

(Index File)

(Data file)

Data Records

data entries

Data entries

Data Records

CLUSTERED
UNCLUSTERED

■  Clustered Pros
➹ More efficient for range searches
➹ May be able to do some types of compression

■  Clustered Cons
➹ Maintenance cost (pay on the fly or be lazy with reorganization)
➹  Can only cluster according to a single search key

1.20

Operation Cost
Unclustered Alt-2 Tree Idx
(Index file: 67% occupancy)
(Data file: 100% occupancy)

Clustered Alt-2 Tree
Index

(Index and Data files:
67% occupancy)

Scan all
records

B
(ignore index)

Equality
Search
unique
key

1+ logF 0.5 B
assume an index entry is 1/3
the size of a record so index
leaf level = .33 * 1.5B = 0.5B

Range
Search

(logF 0.5B) +
 #matching_leaf_pages
+ #match records

Insert (logF 0.5B)+3

Delete same as insert

B: The size of the data (in pages)

1.5 B
(ignore index)

1+ logF 0.5B

(logF 0.5B) +
#match_leaf_pgs
+ #match pages

(logF 0.5B)+3

same as insert

1.21

Composite Search Keys

■  Search on a combination of fields.
➹ Equality query: Every field value is

equal to a constant value. E.g. wrt
<age,sal> index:
§  age=20 and sal =75

➹ Range query: Some field value is
not a constant. E.g.:
§  age > 20; or age=20 and sal > 10

■  Data entries in index sorted by search
key to support range queries.
➹ Lexicographic order
➹ Like the dictionary, but on fields,

not letters!

sue 13 20

bob
cal
joe 12

10

20
80 11

12
name age sal

<sal, age>

<age, sal> <age>

<sal>

12,20
12,10
11,80

13,20

20,12

10,12

20,13
80,11

11
12

12

13

10
20

20
80

Data records
sorted by name

Data entries in index
sorted by <sal,age>

Data entries
sorted by <sal>

Examples of composite key
indexes using lexicographic order.

1.22

Index Classification Revisited

1.  Selections (lookups) supported
2.  Representation of data entries in index
➹  what kind of info is the index actually

storing?
➹  3 alternatives here

3.  Clustered vs. Unclustered Indexes
4.  Single Key vs. Composite Indexes
5.  Tree-based, hash-based, other

