
NoSQL

1

Based on slides by
Mike Franklin and Jimmy Lin

Big Data (some old numbers)
•  Facebook:

§  130TB/day: user logs
§  200-400TB/day: 83 million pictures

•  Google: > 25 PB/day processed data

•  Gene sequencing: 100M kilobases
per day per machine
§  Sequence 1 human cell costs Illumina $1k
§  Sequence 1 cell for every infant by 2015?
§  10 trillion cells / human body

•  Total data created in 2010: 1.ZettaByte

(1,000,000 PB)/year
§  ~60% increase every year

2

Big data is not only databases

•  Big data is more about data analytics and on-
line querying

Many components:
•  Storage systems
•  Database systems
•  Data mining and statistical algorithms
•  Visualization

3

What is NoSQL?

4

from “Geek and Poke”

What is NoSQL?

•  An emerging “movement” around non-
relational software for Big Data

•  Roots are in the Google and Amazon homegrown
software stacks

Wikipedia: “A NoSQL database provides a mechanism for storage and
retrieval of data that use looser consistency models than traditional
relational databases in order to achieve horizontal scaling and higher
availability. Some authors refer to them as "Not only SQL" to emphasize that
some NoSQL systems do allow SQL-like query language to be used.”

Imperative Lang
(RoR, Java,Scala, …)

Analytics Interface
(Pig, Hive, …)

Some NoSQL Components

6

Scalable File System
(GFS, HDFS, …)

Distributed Key/Value or Column Store
 (Cassandra, Hbase, Redis, …)

Data Parallel Processing
(MapReduce/Hadoop)

Query Optimization
and Execution

Relational Operators

Access Methods

Buffer Management

Disk Space Management

NoSQL features

•  Scalability is crucial!
§  load increased rapidly for many applications

•  Large servers are expensive

•  Solution: use clusters of small commodity
machines
§  need to partition the data and use replication

(sharding)
§  cheap (usually open source!)
§  cloud-based storage

7

NoSQL features

•  Sometimes not a well defined schema

•  Allow for semi-structured data
§  still need to provide ways to query efficiently
(use of index methods)
§  need to express specific types of queries easily

8

Scalability

9

Parallel Database
(circa 1990)

Map Reduce
(circa 2005)

Scalability (continued)

•  Often cited as the main reason for moving from
DB technology to NoSQL

•  DB Position: there is no reason a parallel DBMS
cannot scale to 1000’s of nodes

•  NoSQL Position: a) Prove it; b) it will cost too
much anyway

10

 Flavors of NoSQL

Four main types:
 • key-value stores
 • document databases
 • column-family (aka big-table) stores
 • graph databases

=>Here we will talk more about “Document”
databases (MongoDB)

11

Key-Value Stores

There are many systems like that: Redis,
MemcacheDB, Amazon's DynamoDB, Voldemort

• Simple data model: key/value pairs
 • the DBMS does not attempt to interpret the value

• Queries are limited to query by key

 • get/put/update/delete a key/value pair
 • iterate over key/value pairs

12

Document Databases
 Examples include: MongoDB, CouchDB, Terrastore

•  Also store key/value pairs
 - However, the value is a document.

 • expressed using some sort of semi-structured data model
 • XML
 • more often: JSON or BSON (JSON's binary counterpart)

 • the value can be examined and used by the DBMS (unlike in key/
 data stores)

• Queries can be based on the key (as in key/value stores),
but more often they are based on the contents of the
document.

• Here again, there is support for sharding and replication.
 • the sharding can be based on values within the document

13

The Structure Spectrum

Structured
(schema-first)

Relational
Database

Formatted
Messages

Semi-Structured
(schema-later)

Documents
XML
 Tagged

Text/Media

Unstructured
(schema-never)

Plain Text
Media

MongoDB (An example of a Document
Database)
-Data are organized in collections. A collection stores
a set of documents.
-  Collection like table and document like record

-  but: each document can have a different set of
attributes even in the same collection

-  Semi-structured schema!
-  Only requirement: every document should have an

“_id” field

-  humongous => Mongo

15

Example mongodb

{ "_id”:ObjectId("4efa8d2b7d284dad101e4bc9"),
 "Last Name": ” Cousteau",
 "First Name": ” Jacques-Yves",
 "Date of Birth": ”06-1-1910" },

 { "_id": ObjectId("4efa8d2b7d284dad101e4bc7"),
 "Last Name": "PELLERIN",
 "First Name": "Franck",
 "Date of Birth": "09-19-1983",
 "Address": "1 chemin des Loges",
 "City": "VERSAILLES" }

16

Example Document Database:
MongoDB
 Key features include:

 • JSON-style documents
 • actually uses BSON (JSON's binary format)
 • replication for high availability
 • auto-sharding for scalability
 • document-based queries
 • can create an index on any attribute
 • for faster reads

17

MongoDB Terminology

relational term <== >MongoDB equivalent
--
database <== > database
table <== > collection
row <== > document
attributes <== > fields (field-name:value pairs)
primary key <== > the _id field, which is the key
associated with the document

18

JSON
•  JSON is an alternative data model for
 semi-structured data.

• JavaScript Object Notation

• Built on two key structures:
 • an object, which is a sequence of name/value pairs
 { ”_id": "1000",
 "name": "Sanders Theatre",
 "capacity": 1000 }

 • an array of values ["123", "222", "333"]

• A value can be:
 • an atomic value: string, number, true, false, null
 • an object
 • an array

19

The _id Field

Every MongoDB document must have an _id field.
 • its value must be unique within the collection
 • acts as the primary key of the collection
 • it is the key in the key/value pair

• If you create a document without an _id field:
 • MongoDB adds the field for you
 • assigns it a unique BSON ObjectID
 • example from the MongoDB shell:

 > db.test.save({ rating: "PG-13" })
 > db.test.find() { "_id" :ObjectId("528bf38ce6d3df97b49a0569"),

"rating" : "PG-13" }

• Note: quoting field names is optional (see rating above)

20

Data Modeling in MongoDB

Need to determine how to map
 entities and relationships => collections of documents
 • Could in theory give each type of entity:

 • its own (flexibly formatted) type of document
 • those documents would be stored in the same collection

• However, it can make sense to group different types
of entities together.

 • create an aggregate containing data that tends
 to be accessed together

21

Capturing Relationships in MongoDB

•  Two options:
§  1. store references to other documents using their

_id values

§  2. embed documents within other documents

22

Example relationships
Consider the following documents examples:

23

{
 "_id":ObjectId("52ffc33cd85242f436000001"),
 "name": "Tom Hanks",
 "contact": "987654321",
 "dob": "01-01-1991"
}

{
 "_id":ObjectId("52ffc4a5d85242602e000000"),
 "building": "22 A, Indiana Apt",
 "pincode": 123456,
 "city": "Los Angeles",
 "state": "California"
}

Here is an example of embedded relationship:

{
 "_id":ObjectId("52ffc33cd85242f436000001"),
 "contact": "987654321",
 "dob": "01-01-1991",
 "name": "Tom Benzamin",
 "address": [
 {
 "building": "22 A, Indiana Apt",
 "pincode": 123456,
 "city": "Los Angeles",
 "state": "California"
 },
 {
 "building": "170 A, Acropolis Apt",
 "pincode": 456789,
 "city": "Chicago",
 "state": "Illinois"
 }
]
}

{
 "_id":ObjectId("52ffc33cd85242f436000001"),
 "contact": "987654321",
 "dob": "01-01-1991",
 "name": "Tom Benzamin",
 "address_ids": [
 ObjectId("52ffc4a5d85242602e000000"),
 ObjectId("52ffc4a5d85242602e000001")
]
}

And here an example of reference based

Queries in MongoDB

Each query can only access a single collection of
documents.
• Use a method called

 db.collection.find(<selection>, <projection>)

 • Example: find the names of all R-rated movies:

 > db.movies.find({ rating: 'R' }, { name: 1 })

24

Projection

•  Specify the name of the fields that you want in the output with
1 (0 hides the value)

•  Example:
§  >db.movies.find({},{"title":1,_id:0})
(will report the title but not the id)

25

Selection
•  You can specify the condition on the corresponding attributes

using the find:

 >db.movies.find({ rating: "R", year: 2000 },
 { name: 1, runtime: 1 })

•  Operators for other types of comparisons:
 MongoDB SQL equivalent
 $gt, $gte >, >=
 $lt, $lte <, <=
 $ne !=

 Example: find the names of movies with an earnings <= 200000
 > db.movies.find({ earnings: { $lte: 200000 }})

•  For logical operators $and, $or, $nor
§  use an array of conditions and apply the logical operator among the array conditions:

 > db.movies.find({ $or: [{ rating: "R" }, { rating: "PG-13" }] })

26

Aggregation

•  Recall the aggregate operators in SQL: AVG(), SUM(), etc.
 More generally, aggregation involves computing a result
 from a collection of data.

• MongoDB supports several approaches to aggregation:
 - single-purpose aggregation methods

 - an aggregation pipeline
 - map-reduce

Aggregation pipelines are more flexible and useful (see next):
https://docs.mongodb.com/manual/core/aggregation-pipeline/

27

Simple Aggregations

• db.collection.count(<selection>)
 returns the number of documents in the collection
 that satisfy the specified selection document

Example: how may R-rated movies are shorter than 90 minutes?
 >db.movies.count({ rating: "R”, runtime: { $lt: 90 }})

•  db.collection.distinct(<field>, <selection>)
 returns an array with the distinct values of the specified field
in documents that satisfy the specified selection document
 if omit the query, get all distinct values of that field
- which actors have been in one or more of the top 10 grossing movies?
 >db.movies.distinct("actors.name”, { earnings_rank: { $lte: 10 }})

28

Aggregation Pipeline
 •  A very powerful approach to write queries in MongoDB is to use
pipelines.

•  We execute the query in stages. Every stage gets as input some
documents, applies filters/aggregations/projections and outputs some
new documents. These documents are the input to the next stage
(next operator) and so on

29

Aggregation Pipeline example

•  Example for the zipcodes database:
 > db.zipcodes.aggregate([
 { $group: { _id: "$state", totalPop: { $sum: "$pop" } } },
 { $match: { totalPop: { $gte: 10*1000*1000 } } }
])

Here we use group_by to group documents per state, compute sum of
population and output documents with _id, totalPop (_id has the name of
the state). The next stage finds a match for all states the have more than
10M population and outputs the state and total population.
More here:
https://docs.mongodb.com/v3.0/tutorial/aggregation-zip-code-data-set/

30

{
 "_id": "10280",
 "city": "NEW YORK",
 "state": "NY",
 "pop": 5574,
 "loc": [
 -74.016323,
 40.710537
]
}

continued:

31

Output example:
{
 "_id" : "AK",
 "totalPop" : 550043
}

In SQL:

SELECT state, SUM(pop) AS totalPop
FROM zipcodes
GROUP BY state
HAVING totalPop >= (10*1000*1000)

db.zipcodes.aggregate([
 { $group: { _id: "$state", totalPop: { $sum: "$pop" } } },
 { $match: { totalPop: { $gte: 10*1000*1000 } } }
])

more examples:

32

db.zipcodes.aggregate([
 { $group: { _id: { state: "$state", city: "$city" }, pop: { $sum: "$pop" } } },
 { $group: { _id: "$_id.state", avgCityPop: { $avg: "$pop" } } }
])

What we compute here?

First we get groups by city and state and for each group we compute
the population.
Then we get groups by state and compute the average city population

{
 "_id" : {
 "state" : "CO",
 "city" : "EDGEWATER"
 },
 "pop" : 13154
}

{
 "_id" : "MN",
 "avgCityPop" : 5335
}

Aggregation Pipeline example
{ c_id:”A123”
 amount: 500,
 status: “A”
}
{ c_id:”A123”
 amount: 50,
 status: “A”
}
{ c_id:”B132”
 amount: 200,
 status: “A”
}
{ c_id:”A123”
 amount: 500,
 status: “D”
}

{ c_id:”A123”
 amount: 500,
 status: “A”
}
{ c_id:”A123”
 amount: 50,
 status: “A”
}
{ c_id:”B132”
 amount: 200,
 status: “A”
}

{ _id:”A123”
 total:
}
{ _id:”B132”
 total: 200
}
 $match

$group

db.orders.aggregate([
 { $match: {status: “A”}}
 { $group: {_id:“c_id”, total: {$sum: $amount}}

])

Other Structure Issues

•  NoSQL: a) Tables are unnatural, b) “joins” are evil,
c) need to be able to “grep” my data

•  DB: a) Tables are a natural/neutral structure, b)
data independence lets you precompute joins under
the covers, c) this is a price of all the DBMS
goodness you get

This is an Old Debate – Object-oriented databases,

XML DBs, Hierarchical, …

34

Fault Tolerance
•  DBs: coarse-grained FT – if trouble, restart

transaction
§  Fewer, Better nodes, so failures are rare
§  Transactions allow you to kill a job and easily restart it

•  NoSQL: Massive amounts of cheap HW,
failures are the norm and massive data means
long running jobs
§  So must be able to do mini-recoveries
§  This causes some overhead (file writes)

35

36

Cloud Computing Computation
Models

•  Finding the right level of abstraction
§  von Neumann architecture vs cloud environment

•  Hide system-level details from the developers
§  No more race conditions, lock contention, etc.

•  Separating the what from how
§  Developer specifies the computation that needs to

be performed
§  Execution framework (“runtime”) handles actual

execution

Similar to SQL!!

Typical Large-Data Problem

•  Iterate over a large number of records
•  Extract something of interest from each
•  Shuffle and sort intermediate results
•  Aggregate intermediate results
•  Generate final output

Key	 idea:	 provide	 a	 func1onal	 abstrac1on	 for	
these	 two	 opera1ons	 –	 MapReduce	

Map	

Reduce
	

(Dean	 and	 Ghemawat,	 OSDI	 2004)	

g	 g	 g	 g	 g	

f	 f	 f	 f	 f	 Map	

Fold	

Roots in Functional Programming

MapReduce

•  Programmers specify two functions:
map (k, v) → <k’, v’>*
reduce (k’, v’) → <k’, v’’>*
§  All values with the same key are sent to the same

reducer
•  The execution framework handles everything else…

map map map map

Shuffle and Sort: aggregate values by keys

reduce reduce reduce

k1	 k2	 k3	 k4	 k5	 k6	 v1	 v2	 v3	 v4	 v5	 v6	

b	 a	 1	 2	 c	 c	 3	 6	 a	 c	 5	 2	 b	 c	 7	 8	

a	 1	 5	 b	 2	 7	 c	 2	 3	 6	 8	

r1	 s1	 r2	 s2	 r3	 s3	

MapReduce

MapReduce

•  Programmers specify two functions:
map (k, v) → <k’, v’>*
reduce (k’, v’) → <k’, v’>*
§  All values with the same key are sent to the same

reducer
•  The execution framework handles everything else…

What’s	 “everything	 else”?	

MapReduce “Runtime”
•  Handles scheduling

§  Assigns workers to map and reduce tasks
•  Handles “data distribution”

§  Moves processes to data
•  Handles synchronization

§  Gathers, sorts, and shuffles intermediate data
•  Handles errors and faults

§  Detects worker failures and automatically restarts
•  Handles speculative execution

§  Detects “slow” workers and re-executes work
•  Everything happens on top of a

distributed FS (later) Sounds simple, but many
challenges!

MapReduce

•  Programmers specify two functions:
map (k, v) → <k’, v’>*
reduce (k’, v’) → <k’, v’>*
§  All values with the same key are reduced together

•  The execution framework handles everything
else…

•  Not quite…usually, programmers also specify:
partition (k’, number of partitions) → partition for k’
§  Often a simple hash of the key, e.g., hash(k’) mod R
§  Divides up key space for parallel reduce operations
combine (k’, v’) → <k’, v’>*
§  Mini-reducers that run in memory after the map phase
§  Used as an optimization to reduce network traffic

combine combine combine combine

b	 a	 1	 2	 c	 9	 a	 c	 5	 2	 b	 c	 7	 8	
partition partition partition partition

map map map map

k1 k2 k3 k4 k5 k6 v1 v2 v3 v4 v5 v6

b	 a	 1	 2	 c	 c	 3	 6	 a	 c	 5	 2	 b	 c	 7	 8	

Shuffle and Sort: aggregate values by keys

reduce reduce reduce

a	 1	 5	 b	 2	 7	
c	 2	 9	 8	

r1	 s1	 r2	 s2	 r3	 s3	

c	 2	 3	 6	 8	

Two more details…

•  Barrier between map and reduce phases
§  But we can begin copying intermediate data

earlier
•  Keys arrive at each reducer in sorted order

§  No enforced ordering across reducers

split	 0	
split	 1	
split	 2	
split	 3	
split	 4	

worker	

worker	

worker	

worker	

worker	

Master	

User	
Program	

output	
file	 0	

output	
file	 1	

(1)	 submit	

(2)	 schedule	 map	 (2)	 schedule	 reduce	

(3)	 read	
(4)	 local	 write	

(5)	 remote	 read	 (6)	 write	

Input	
files	

Map	
phase	

Intermediate	 files	
(on	 local	 disk)	

Reduce	
phase	

Output	
files	

Adapted	 from	 (Dean	 and	 Ghemawat,	 OSDI	 2004)	

MapReduce Overall Architecture

“Hello World” Example: Word Count

Map(String	 docid,	 String	 text):	
	 	 	 	 	 for	 each	 word	 w	 in	 text:	
	 	 	 	 	 	 	 	 	 	 Emit(w,	 1);	
	
Reduce(String	 term,	 Iterator<Int>	 values):	
	 	 	 	 	 int	 sum	 =	 0;	
	 	 	 	 	 for	 each	 v	 in	 values:	
	 	 	 	 	 	 	 	 	 	 sum	 +=	 v;	
	 	 	 	 	 	 	 	 	 	 Emit(term,	 value);	
	

MapReduce can refer to…

•  The programming model
•  The execution framework (aka “runtime”)
•  The specific implementation

Usage	 is	 usually	 clear	 from	 context!	

MapReduce Implementations

•  Google has a proprietary implementation in
C++
§  Bindings in Java, Python

•  Hadoop is an open-source implementation
in Java
§  Development led by Yahoo, used in production
§  Now an Apache project
§  Rapidly expanding software ecosystem, but still lots of

room for improvement
•  Lots of custom research implementations

§  For GPUs, cell processors, etc.

Cloud Computing Storage, or how do
we get data to the workers?

Compute	 Nodes	

NAS	

SAN	

What’s	 the	 problem	 here?	

Distributed File System

•  Don’t move data to workers… move workers
to the data!
§  Store data on the local disks of nodes in the cluster
§  Start up the workers on the node that has the data

local
•  Why?

§  Network bisection bandwidth is limited
§  Not enough RAM to hold all the data in memory
§  Disk access is slow, but disk throughput is reasonable

•  A distributed file system is the answer
§  GFS (Google File System) for Google’s MapReduce
§  HDFS (Hadoop Distributed File System) for Hadoop

GFS: Assumptions
•  Choose commodity hardware over “exotic”

hardware
§  Scale “out”, not “up”

•  High component failure rates
§  Inexpensive commodity components fail all the time

•  “Modest” number of huge files
§  Multi-gigabyte files are common, if not encouraged

•  Files are write-once, mostly appended to
§  Perhaps concurrently

•  Large streaming reads over random access
§  High sustained throughput over low latency

GFS	 slides	 adapted	 from	 material	 by	 (Ghemawat	 et	 al.,	 SOSP	 2003)	

GFS: Design Decisions
•  Files stored as chunks

§  Fixed size (64MB)
•  Reliability through replication

§  Each chunk replicated across 3+ chunkservers
•  Single master to coordinate access, keep

metadata
§  Simple centralized management

•  No data caching
§  Little benefit due to large datasets, streaming reads

•  Simplify the API
§  Push some of the issues onto the client (e.g., data

layout)

HDFS	 =	 GFS	 clone	 (same	 basic	 ideas	 implemented	 in	 Java)	

From GFS to HDFS

•  Terminology differences:
§  GFS master = Hadoop namenode
§  GFS chunkservers = Hadoop datanodes

•  Functional differences:
§  No file appends in HDFS (was planned)
§  HDFS performance is (likely) slower

Adapted	 from	 (Ghemawat	 et	 al.,	 SOSP	 2003)	

(file name, block id)

(block id, block location)

instructions to datanode

datanode state
(block id, byte range)

block data

HDFS namenode

HDFS datanode
Linux file system

…

HDFS datanode
Linux file system

…

File namespace
/foo/bar

block 3df2

Application

HDFS Client

HDFS Architecture

Namenode Responsibilities
•  Managing the file system namespace:

§  Holds file/directory structure, metadata, file-to-
block mapping, access permissions, etc.

•  Coordinating file operations:
§  Directs clients to datanodes for reads and writes
§  No data is moved through the namenode

•  Maintaining overall health:
§  Periodic communication with the datanodes
§  Block re-replication and rebalancing
§  Garbage collection

Putting everything together…

datanode daemon

Linux file system

…

tasktracker

slave node

datanode daemon

Linux file system

…

tasktracker

slave node

datanode daemon

Linux file system

…

tasktracker

slave node

namenode

namenode daemon

job submission node

jobtracker

MapReduce/GFS Summary
•  Simple, but powerful programming

model
•  Scales to handle petabyte+ workloads

§  Google: six hours and two minutes to sort 1PB (10
trillion 100-byte records) on 4,000 computers

§  Yahoo!: 16.25 hours to sort 1PB on 3,800
computers

•  Incremental performance improvement
with more nodes

•  Seamlessly handles failures, but
possibly with performance penalties

