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Slides from UC Berkeley



1.2

Introduction 

■  We’ve covered the basic underlying 
storage, buffering, and indexing 
technology. 
➹  Now we can move on to query 

processing. 
■  Some database operations are EXPENSIVE 
■  Can greatly improve performance by being 
“smart” 
➹  e.g., can speed up 1,000x over naïve 

approach 
■  Main weapons are: 

1.  clever implementation techniques for 
operators 

2.  exploiting “equivalencies” of relational 
operators 

3.  using statistics and cost models to 
choose among these. 
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Cost-based Query Sub-System 
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heuristics-based 
rewriting step before 
the cost-based steps. 
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Query Processing Overview 
■  The query optimizer translates SQL to a special internal 
“language” 

➹ Query Plans 

■  The query executor is an interpreter for query plans 

■  Think of query plans as “box-and-arrow” 
dataflow diagrams 

➹ Each box implements a relational operator 
➹ Edges represent a flow of tuples (columns as specified) 

➹ For single-table queries, these diagrams are 
straight-line graphs 
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Query Optimization 

■  A deep subject, focuses on multi-table queries 
➹ We will only need a cookbook version for now. 

■  Build the dataflow bottom up: 
➹ Choose an Access Method (HeapScan or IndexScan) 

§  Non-trivial, we’ll learn about this later! 

➹ Next apply any WHERE clause filters 
➹ Next apply GROUP BY and aggregation 

§  Can choose between sorting and hashing! 

➹ Next apply any HAVING clause filters 
➹ Next Sort to help with ORDER BY and DISTINCT 

§  In absence of ORDER BY, can do DISTINCT via 
hashing! 
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Iterators 

■  The relational operators are all subclasses of the class 
iterator: 

 
class iterator { 
   void init(); 
   tuple next(); 
   void close(); 
   iterator inputs[]; 

     // additional state goes here 
} 
 

■  Note: 
➹ Edges in the graph are specified by inputs (max 2, usually 1) 
➹ Encapsulation: any iterator can be input to any other! 
➹ When subclassing, different iterators will keep different kinds 

of state information  
 

iterator
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Example: Scan 

■  init():  
➹ Set up internal state 
➹ call init() on child – often a file open 

■  next():  
➹ call next() on child until qualifying tuple found or EOF 
➹ keep only those fields in “proj_list” 

➹ return tuple (or EOF -- “End of File” -- if no tuples remain) 
■  close():  

➹ call close() on child 
➹ clean up internal state 

Note: Scan also applies “selection” filters and “projections” 
 (without duplicate elimination)  

 

class Scan extends iterator { 
   void init(); 
   tuple next(); 
   void close(); 
   iterator inputs[1]; 
   bool_expr filter_expr; 
   proj_attr_list proj_list; 
} 
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Example: Sort 

■  init():  
➹ generate the sorted runs on disk 
➹ Allocate runs[] array and fill in with disk pointers. 
➹ Initialize numberOfRuns 
➹ Allocate nextRID array and initialize to NULLs 

■  next():  
➹ nextRID array tells us where we’re “up to” in each run 
➹  find the next tuple to return based on nextRID array 
➹ advance the corresponding nextRID entry 
➹ return tuple (or EOF -- “End of File” -- if no tuples remain) 

■  close():  
➹ deallocate the runs and nextRID arrays 

 
 

class Sort extends iterator { 
   void init(); 
   tuple next(); 
   void close(); 
   iterator inputs[1]; 
   int numberOfRuns; 
   DiskBlock runs[]; 
   RID nextRID[]; 
} 
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Streaming through RAM

■  Simple case: “Map”. (assume many records per disk page)
➹ Goal: Compute f(x) for each record, write out the result
➹ Challenge: minimize RAM, call read/write rarely

■  Approach 
➹ Read a chunk from INPUT to an Input Buffer
➹ Write f(x) for each item to an Output Buffer
➹ When Input Buffer is consumed, read another chunk
➹ When Output Buffer fills, write it to OUTPUT

■  Reads and Writes are not coordinated (i.e., not in lockstep)
➹ E.g., if f() is Compress(), you read many chunks per write.
➹ E.g., if f() is DeCompress(), you write many chunks per read.

f(x)
RAM

Input
Buffer

Output
Buffer

OUTPUTINPUT
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Rendezvous

■ Streaming: one chunk at a time. Easy.
■ But some algorithms need certain items to be 

co-resident in memory
➹ not guaranteed to appear in the same input chunk

■ Time-space Rendezvous
➹ in the same place (RAM) at the same time

■ There may be many combos of such items
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B-2

Divide and Conquer

■  Out-of-core algorithms orchestrate rendezvous.
■  Typical RAM Allocation:

➹ Assume B pages worth of RAM available
➹ Use 1 page of RAM to read into
➹ Use 1 page of RAM to write into
➹ B-2 pages of RAM as workspace

IN OUT

OUTPUTINPUT
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Divide and Conquer

■ Phase 1
➹ “streamwise” divide into N/(B-2) megachunks
➹ output (write) to disk one megachunk at a time

B-2

IN OUT

OUTPUTINPUT



1.13

Divide and Conquer

■ Phase 2
➹ Now megachunks will be the input
➹ process each megachunk individually.

B-2

IN OUT

OUTPUTINPUT
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Sorting: 2-Way

sort
RAM

I/O
Buffer

OUTPUTINPUT

•  Pass 0: 
–  read a page, sort it, write it.
–  only one buffer page is used
–  a repeated “batch job”
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Sorting: 2-Way (cont.)

■  Pass 1, 2, 3, …, etc. (merge):
➹ requires 3 buffer pages

§  note: this has nothing to do with double buffering!

➹ merge pairs of runs into runs twice as long
➹ a streaming algorithm, as in the previous slide!

INPUT 1

INPUT 2

OUTPUT

RAM

Merge
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Two-Way External Merge Sort

■  Sort subfiles and Merge
■  How many passes?
■  N pages in the file  

=> the number of passes =

■  Total I/O cost?  (reads + 
writes)

■  Each pass we read + write  
each page in file.  So total 
cost is:

log2 N!" #$+1

2N log2 N!" #$+1( )

Input file

1-page runs

2-page runs

4-page runs

8-page runs

PASS 0 

PASS 1 

PASS 2 

PASS 3 

9

3,4 6,2 9,4 8,7 5,6 3,1 2

3,4 5,62,6 4,9 7,8 1,3 2

2,3
4,6

4,7
8,9

1,3
5,6 2

2,3
4,4
6,7
8,9

1,2
3,5
6

1,2
2,3
3,4
4,5
6,6
7,8
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Pass 0 – Create Sorted Runs 

General External Merge Sort

■  More than 3 buffer pages.  How can we utilize them?
■  To sort a file with N pages using B buffer pages:

➹ Pass 0: use B buffer pages. Produce              sorted runs of 
B pages each. 

N / B!" #$

INPUT 1

INPUT B
Disk 

INPUT 2

. . .
RAM

sort
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Merging Runs 

General External Merge Sort

Pass 1, 2, …,  etc.: merge B-1 runs.
Creates runs of (B-1) * size of runs from previous 
pass. 

INPUT 1

INPUT B-1

OUTPUT

Disk 

INPUT 2

. . .
RAM

Merge
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Cost of External Merge Sort

■ Number of passes:
■ Cost = 2N * (# of passes)
■ E.g., with 5 buffer pages, to sort 108 page file:
➹ Pass 0:                   = 22 sorted runs of 5 pages 

each (last run is only 3 pages) 
➹ Pass 1:                 = 6 sorted runs of 20 pages each 

(last run is only 8 pages)
➹ Pass 2:  2 sorted runs, 80 pages and 28 pages
➹ Pass 3:  Sorted file of 108 pages

! "! "1 1+ −log /B N B

! "108 5/

! "22 4/

Formula check:  1+┌log4 22┐= 1+3  à 4 passes  √ 
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# of Passes of External Sort

          N B=3 B=5 B=9 B=17 B=129 B=257 
100 7 4 3 2 1 1 
1,000 10 5 4 3 2 2 
10,000 13 7 5 4 2 2 
100,000 17 9 6 5 3 3 
1,000,000 20 10 7 5 3 3 
10,000,000 23 12 8 6 4 3 
100,000,000 26 14 9 7 4 4 
1,000,000,000 30 15 10 8 5 4 

 

 

( I/O cost is 2N times number of passes) 
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Memory Requirement for External 
Sorting

■  How big of a table can we sort in two passes?
➹ Each “sorted run” after Phase 0 is of size B
➹ Can merge up to B-1 sorted runs in Phase 1

■  Answer: B(B-1).
➹ Sort N pages of data in about             space

 
 

€ 

N
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Alternative: Hashing

■  Idea:
➹ Many times we don’t require order 
➹ E.g.: removing duplicates
➹ E.g.: forming groups

■ Often just need to rendezvous matches
■ Hashing does this
➹ And may be cheaper than sorting!  (Hmmm…!)
➹ But how to do it out-of-core??
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Divide

■ Streaming Partition (divide):  
Use a hash f’n hp to stream records to disk 
partitions
➹ All matches rendezvous in the same partition.
➹ Streaming alg to create partitions on disk: 

§  “Spill” partitions to disk via output buffers
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Divide & Conquer
■ Streaming Partition (divide):  

Use a hash function hp to stream records to          
disk-based partitions
➹ All matches rendezvous in the same partition.
➹ Streaming alg to create partitions on disk: 

§  “Spill” partitions to disk via output buffers

■ ReHash (conquer):  
Read partitions into RAM-based hash table one at 
a time, using hash function hr
➹ Then go through each bucket of this hash table to 

achieve rendezvous in RAM
■  Note: Two different hash functions

➹  hp is coarser-grained than hr
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Two Phases

■  Partition: 

B main memory buffers Disk Disk 

Original  
Relation OUTPUT 

2 INPUT 

1 

hash function 
hp B-1 

Partitions 

1 

2 

B-1 

. . .
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Two Phases

■  Partition: 

■  Rehash: 

Partitions 
Hash table for partition 

Ri (k <= B  pages) 

B main memory buffers Disk 

Result 

hash 
fn 
hr 

B main memory buffers Disk Disk 

Original  
Relation OUTPUT 

2 INPUT 

1 

hash function 
hp B-1 

Partitions 

1 

2 

B-1 

. . .
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Cost of External Hashing

 
 

cost = 4*N IO’s 
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Memory Requirement

■ How big of a table can we hash in two 
passes?
➹ B-1 “partitions” result from Phase 0
➹ Each should be no more than B pages in size
➹ Answer: B(B-1).

§  We can hash a table of size N pages in about        space

➹ Note: assumes hash function distributes records 
evenly!

■ Have a bigger table?  Recursive partitioning!
➹ How many times?

§ Until every partition fits in memory !! (<=B)
 
 

€ 

N
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How does this compare with 
external sorting?
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So which is better ??

■  Simplest analysis:
➹ Same memory requirement for 2 passes
➹ Same I/O cost
➹ But we can dig a bit deeper…

■  Sorting pros:
➹ Great if input already sorted (or almost sorted) w/heapsort
➹ Great if need output to be sorted anyway
➹ Not sensitive to “data skew” or “bad” hash functions

■  Hashing pros:
➹ For duplicate elimination, scales with # of values

§  Not # of items!  We’ll see this again.
➹ Can exploit extra memory to reduce # IOs (stay tuned…)
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Summing Up 1

■  Unordered collection model
■  Read in chunks to avoid fixed I/O costs

■  Patterns for Big Data
➹  Streaming
➹  Divide & Conquer
➹  also Parallelism (but we didn’t cover this here)  
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Summary Part 2

■  Sort/Hash Duality
➹  Sorting is Conquer & Merge
➹  Hashing is Divide & Conquer

■  Sorting is overkill for rendezvous
➹  But sometimes a win anyhow

■  Sorting sensitive to internal sort alg
➹ Quicksort vs. HeapSort
➹  In practice, QuickSort tends to be used

■  Don’t forget double buffering (with threads)


