
1.1

CAS CS 460/660
Introduction to Database Systems

Query Evaluation I

Slides from UC Berkeley

1.2

Introduction

■  We’ve covered the basic underlying
storage, buffering, and indexing
technology.
➹  Now we can move on to query

processing.
■  Some database operations are EXPENSIVE
■  Can greatly improve performance by being
“smart”
➹  e.g., can speed up 1,000x over naïve

approach
■  Main weapons are:

1.  clever implementation techniques for
operators

2.  exploiting “equivalencies” of relational
operators

3.  using statistics and cost models to
choose among these.

Query Optimization
and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

SQL Query

1.3

Cost-based Query Sub-System

Query Plan Evaluator

Query Optimizer

Plan
Generator

Plan Cost
Estimator

Usually there is a
heuristics-based
rewriting step before
the cost-based steps.

Statistics

Catalog Manager

Schema

Select *
From Blah B
Where B.blah = blah

Queries

Query Parser

1.4

Query Processing Overview
■  The query optimizer translates SQL to a special internal
“language”

➹ Query Plans

■  The query executor is an interpreter for query plans

■  Think of query plans as “box-and-arrow”
dataflow diagrams

➹ Each box implements a relational operator
➹ Edges represent a flow of tuples (columns as specified)

➹ For single-table queries, these diagrams are
straight-line graphs

HeapScan

Sort

Distinct

name, gpa

name, gpa

name, gpa

Optimizer SELECT DISTINCT name, gpa
 FROM Students

1.5

Query Optimization

■  A deep subject, focuses on multi-table queries
➹ We will only need a cookbook version for now.

■  Build the dataflow bottom up:
➹ Choose an Access Method (HeapScan or IndexScan)

§  Non-trivial, we’ll learn about this later!

➹ Next apply any WHERE clause filters
➹ Next apply GROUP BY and aggregation

§  Can choose between sorting and hashing!

➹ Next apply any HAVING clause filters
➹ Next Sort to help with ORDER BY and DISTINCT

§  In absence of ORDER BY, can do DISTINCT via
hashing!

Distinct

HeapScan

Filter

HashAgg

Filter

Sort

1.6

Iterators

■  The relational operators are all subclasses of the class
iterator:

class iterator {
 void init();
 tuple next();
 void close();
 iterator inputs[];

 // additional state goes here
}

■  Note:
➹ Edges in the graph are specified by inputs (max 2, usually 1)
➹ Encapsulation: any iterator can be input to any other!
➹ When subclassing, different iterators will keep different kinds

of state information

iterator

1.7

Example: Scan

■  init():
➹ Set up internal state
➹ call init() on child – often a file open

■  next():
➹ call next() on child until qualifying tuple found or EOF
➹ keep only those fields in “proj_list”

➹ return tuple (or EOF -- “End of File” -- if no tuples remain)
■  close():

➹ call close() on child
➹ clean up internal state

Note: Scan also applies “selection” filters and “projections”
 (without duplicate elimination)

class Scan extends iterator {
 void init();
 tuple next();
 void close();
 iterator inputs[1];
 bool_expr filter_expr;
 proj_attr_list proj_list;
}

1.8

Example: Sort

■  init():
➹ generate the sorted runs on disk
➹ Allocate runs[] array and fill in with disk pointers.
➹ Initialize numberOfRuns
➹ Allocate nextRID array and initialize to NULLs

■  next():
➹ nextRID array tells us where we’re “up to” in each run
➹  find the next tuple to return based on nextRID array
➹ advance the corresponding nextRID entry
➹ return tuple (or EOF -- “End of File” -- if no tuples remain)

■  close():
➹ deallocate the runs and nextRID arrays

class Sort extends iterator {
 void init();
 tuple next();
 void close();
 iterator inputs[1];
 int numberOfRuns;
 DiskBlock runs[];
 RID nextRID[];
}

1.9

Streaming through RAM

■  Simple case: “Map”. (assume many records per disk page)
➹ Goal: Compute f(x) for each record, write out the result
➹ Challenge: minimize RAM, call read/write rarely

■  Approach
➹ Read a chunk from INPUT to an Input Buffer
➹ Write f(x) for each item to an Output Buffer
➹ When Input Buffer is consumed, read another chunk
➹ When Output Buffer fills, write it to OUTPUT

■  Reads and Writes are not coordinated (i.e., not in lockstep)
➹ E.g., if f() is Compress(), you read many chunks per write.
➹ E.g., if f() is DeCompress(), you write many chunks per read.

f(x)
RAM

Input
Buffer

Output
Buffer

OUTPUTINPUT

1.10

Rendezvous

■ Streaming: one chunk at a time. Easy.
■ But some algorithms need certain items to be

co-resident in memory
➹ not guaranteed to appear in the same input chunk

■ Time-space Rendezvous
➹ in the same place (RAM) at the same time

■ There may be many combos of such items

1.11

B-2

Divide and Conquer

■  Out-of-core algorithms orchestrate rendezvous.
■  Typical RAM Allocation:

➹ Assume B pages worth of RAM available
➹ Use 1 page of RAM to read into
➹ Use 1 page of RAM to write into
➹ B-2 pages of RAM as workspace

IN OUT

OUTPUTINPUT

1.12

Divide and Conquer

■ Phase 1
➹ “streamwise” divide into N/(B-2) megachunks
➹ output (write) to disk one megachunk at a time

B-2

IN OUT

OUTPUTINPUT

1.13

Divide and Conquer

■ Phase 2
➹ Now megachunks will be the input
➹ process each megachunk individually.

B-2

IN OUT

OUTPUTINPUT

1.14

Sorting: 2-Way

sort
RAM

I/O
Buffer

OUTPUTINPUT

•  Pass 0:
–  read a page, sort it, write it.
–  only one buffer page is used
–  a repeated “batch job”

1.15

Sorting: 2-Way (cont.)

■  Pass 1, 2, 3, …, etc. (merge):
➹ requires 3 buffer pages

§  note: this has nothing to do with double buffering!

➹ merge pairs of runs into runs twice as long
➹ a streaming algorithm, as in the previous slide!

INPUT 1

INPUT 2

OUTPUT

RAM

Merge

1.16

Two-Way External Merge Sort

■  Sort subfiles and Merge
■  How many passes?
■  N pages in the file  

=> the number of passes =

■  Total I/O cost? (reads +
writes)

■  Each pass we read + write  
each page in file. So total
cost is:

log2 N!" #$+1

2N log2 N!" #$+1()

Input file

1-page runs

2-page runs

4-page runs

8-page runs

PASS 0

PASS 1

PASS 2

PASS 3

9

3,4 6,2 9,4 8,7 5,6 3,1 2

3,4 5,62,6 4,9 7,8 1,3 2

2,3
4,6

4,7
8,9

1,3
5,6 2

2,3
4,4
6,7
8,9

1,2
3,5
6

1,2
2,3
3,4
4,5
6,6
7,8

1.17

Pass 0 – Create Sorted Runs

General External Merge Sort

■  More than 3 buffer pages. How can we utilize them?
■  To sort a file with N pages using B buffer pages:

➹ Pass 0: use B buffer pages. Produce sorted runs of
B pages each.

N / B!" #$

INPUT 1

INPUT B
Disk

INPUT 2

. . .
RAM

sort

1.18

Merging Runs

General External Merge Sort

Pass 1, 2, …, etc.: merge B-1 runs.
Creates runs of (B-1) * size of runs from previous
pass.

INPUT 1

INPUT B-1

OUTPUT

Disk

INPUT 2

. . .
RAM

Merge

1.19

Cost of External Merge Sort

■ Number of passes:
■ Cost = 2N * (# of passes)
■ E.g., with 5 buffer pages, to sort 108 page file:
➹ Pass 0: = 22 sorted runs of 5 pages

each (last run is only 3 pages)
➹ Pass 1: = 6 sorted runs of 20 pages each

(last run is only 8 pages)
➹ Pass 2: 2 sorted runs, 80 pages and 28 pages
➹ Pass 3: Sorted file of 108 pages

! "! "1 1+ −log /B N B

! "108 5/

! "22 4/

Formula check: 1+┌log4 22┐= 1+3 à 4 passes √

1.20

of Passes of External Sort

 N B=3 B=5 B=9 B=17 B=129 B=257
100 7 4 3 2 1 1
1,000 10 5 4 3 2 2
10,000 13 7 5 4 2 2
100,000 17 9 6 5 3 3
1,000,000 20 10 7 5 3 3
10,000,000 23 12 8 6 4 3
100,000,000 26 14 9 7 4 4
1,000,000,000 30 15 10 8 5 4

(I/O cost is 2N times number of passes)

1.21

Memory Requirement for External
Sorting

■  How big of a table can we sort in two passes?
➹ Each “sorted run” after Phase 0 is of size B
➹ Can merge up to B-1 sorted runs in Phase 1

■  Answer: B(B-1).
➹ Sort N pages of data in about space

€

N

1.22

Alternative: Hashing

■  Idea:
➹ Many times we don’t require order
➹ E.g.: removing duplicates
➹ E.g.: forming groups

■ Often just need to rendezvous matches
■ Hashing does this
➹ And may be cheaper than sorting! (Hmmm…!)
➹ But how to do it out-of-core??

1.23

Divide

■ Streaming Partition (divide):  
Use a hash f’n hp to stream records to disk
partitions
➹ All matches rendezvous in the same partition.
➹ Streaming alg to create partitions on disk:

§  “Spill” partitions to disk via output buffers

1.24

Divide & Conquer
■ Streaming Partition (divide):  

Use a hash function hp to stream records to
disk-based partitions
➹ All matches rendezvous in the same partition.
➹ Streaming alg to create partitions on disk:

§  “Spill” partitions to disk via output buffers

■ ReHash (conquer):  
Read partitions into RAM-based hash table one at
a time, using hash function hr
➹ Then go through each bucket of this hash table to

achieve rendezvous in RAM
■  Note: Two different hash functions

➹  hp is coarser-grained than hr

1.25

Two Phases

■  Partition:

B main memory buffers Disk Disk

Original
Relation OUTPUT

2 INPUT

1

hash function
hp B-1

Partitions

1

2

B-1

. . .

1.26

Two Phases

■  Partition:

■  Rehash:

Partitions
Hash table for partition

Ri (k <= B pages)

B main memory buffers Disk

Result

hash
fn
hr

B main memory buffers Disk Disk

Original
Relation OUTPUT

2 INPUT

1

hash function
hp B-1

Partitions

1

2

B-1

. . .

1.27

Cost of External Hashing

cost = 4*N IO’s

1.28

Memory Requirement

■ How big of a table can we hash in two
passes?
➹ B-1 “partitions” result from Phase 0
➹ Each should be no more than B pages in size
➹ Answer: B(B-1).

§  We can hash a table of size N pages in about space

➹ Note: assumes hash function distributes records
evenly!

■ Have a bigger table? Recursive partitioning!
➹ How many times?

§ Until every partition fits in memory !! (<=B)

€

N

1.29

How does this compare with
external sorting?

1.30

So which is better ??

■  Simplest analysis:
➹ Same memory requirement for 2 passes
➹ Same I/O cost
➹ But we can dig a bit deeper…

■  Sorting pros:
➹ Great if input already sorted (or almost sorted) w/heapsort
➹ Great if need output to be sorted anyway
➹ Not sensitive to “data skew” or “bad” hash functions

■  Hashing pros:
➹ For duplicate elimination, scales with # of values

§  Not # of items! We’ll see this again.
➹ Can exploit extra memory to reduce # IOs (stay tuned…)

1.31

Summing Up 1

■  Unordered collection model
■  Read in chunks to avoid fixed I/O costs

■  Patterns for Big Data
➹  Streaming
➹  Divide & Conquer
➹  also Parallelism (but we didn’t cover this here)

1.32

Summary Part 2

■  Sort/Hash Duality
➹  Sorting is Conquer & Merge
➹  Hashing is Divide & Conquer

■  Sorting is overkill for rendezvous
➹  But sometimes a win anyhow

■  Sorting sensitive to internal sort alg
➹ Quicksort vs. HeapSort
➹  In practice, QuickSort tends to be used

■  Don’t forget double buffering (with threads)

